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ON GENERATORS OF THE GROUP 
OF PROJECTIVE TRANSFORMATONS 

The problem of composing of p ro j ec t iv i t i e s by two cyclic 
projective col l ineations was considered in [1], Now, we shal l 
deal with the problem how to minimize the c l a s s of generators 
of the group of p r o j e c t i v i t i e s . 

F i r s t l y , we introduce some auxi l iary notions and notations. 
Notation. - n-dimensional projective space over 

the f i e l d P. I f Ρ i s arb i t rary , we write simply Pn in-
stead of GPn(P) - the group of projective t rans for-
mations ( p r o j e c t i v i t i e s ) of P n ( p ) onto i t s e l f . 
I ΡI - number of elements of the f i e l d P. 
Ζ(H^,. . . ,Hm) - the join of subspaces (the smallest 
subspace containing H^ , . . . ,H m ) . 

k » 
We write LJ νa1 , » . . , a m ) , i f every k of m pointe 

are l inearly independent ( U m ) . 
I f f : X — X and x Q e X, then we denote the set 

j x 0 , f x 0 , . . . , Λ 0 } by the symbol 
Definitions : 
D e f i n i t i o n 1. A transformation f:X—— X i s 

called k-cyclic (k-periodic) i f f = e , where e i s the 
ident i ty . 

D e f i n i t i o n 2. We sha l l say that a projective 
transformation φ : P f l — b a s property 1, i f every point 
of Pn l i e s in 1-dimensional subspace of PQ invariant an-
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2 E.Witczyósk i 

der φ . Assume tha t p r o j e c t i v i t y φ has property m, and 
at the same time φ has not property k f o r a l l 0 ^ k ^ m - 1 . 
Then m w i l l be c a l l e d the c h a r a c t e r i s t i c 
of φ ( i n symbols, m = char φ), 

n o t i c e tha t every p r o j e c t i v i t y o f P n has property n . 
D e f i n i t i o n 3 · A n o r m a l c y c l i c 

c o l l i n e a t i o n of P f l i s an n+1 - c y c l i c p r o j e c -
t i v i t y of PQ having c h a r a c t e r i s t i c n . 

We s h a l l w r i t e NCn(P) f o r the s e t of a l l normal c y c l i c 
c o l l i n e at ions of P ß ( F ) . 

D e f i n i t i o n 4 . I f f o r each χ belonging 
k k 

to f i e l d Ρ there e x i s t s y e Ρ such t h a t y = χ (y = χ 
or y = - χ ) , then Ρ w i l l be c a l l e d a k - c l o s e d 
( k - s e m i c l o s e d ) f i e l d . The s e t of a l l k - c l o s e d 
( k - s e m i c l o s e d ) f i e ld ' s w i l l be denoted by C k ( S C k ) . C l e a r l y , 
C k c SCk and Ck = SCk i f k i s odd. Hote a l s o t h a t i f k 
i s even and P e S C k \ C k , then Ρ can be ordered. Hence 
char Ρ = 0 . 

P i r s t , we s h a l l s t r e n g h t e n Lemma 2 ( [ l ] ) . The n o t a t i o n 
from the proof of the lemma w i l l be preserved. Choose an 
al lowable coordinate system in ex i n such a way t h a t the 
points p 0 , p^, p 2 have the c o o r d i n a t e s p ^ = δ ± ^ » j = 
= 0 , 1 , 2 . Por each point x e Z ( p 0 , p ^ ) t h e r e e x i s t s the point 
y = Z ( x , x ' ) n l a . Conversely, i f y i s such a point on 1 α , 
then t h e r e may e x i s t the second point ζ Φ χ such t h a t 
z e Z ( p 0 , p ^ ) and y = Z Í z . z ' J n l ^ . This can be checked by 
easy c a l c u l a t i o n s . We should exclude a t most n+1 p o s i t i o n s 
of such a point y on l e . S i m i l a r l y , we ought to exclude 
at most n+1 p o s i t i o n s of analogous point y on The-
r e f o r e i f the l i n e Z ( p Q , p 1 ) c o n t a i n s a t l e a s t 4n+5 d i f f e -
r e n t p o i n t s , then the lemma i s t r u e . Hence i t i s t r u e , i f 
I F | > 4 n + 4 . 

S i m i l a r l y , Theorem 1 [ l ] i s a l s o t r u e , i f | p | ^ 4 n + 4 . 
Let us cons ider Theorem 5 [ 1 ] now. The i n t e n t i o n of the t h e o -
rem was to f ind a decomposition of an a r b i t r a r y p r o j e c t i v i t y 
.on two c y c l i c p r o j e c t i v i t i e s . 
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Od generators of the group 3 

That i s why the f i e l d Ρ has been assumed to be a lge-
braica l ly closed. 

Now we shall apply the proof of th is theorem to receive 
an another resul t . 

The matrix of an arbitrary p ro j ec t i v i t y of Pn may be 
written in the form as in the mentioned proof (see [ 2 ] ) . 
Choose numbers i Φ 0 , r ^ , . . . , in such a way that 

^ f o r 1 ^ «i» a n d ^ a 1 1 i · ^ince 
we can do i t , i f ¡P|^.n+Í2. Then char h = n. Thus, we have 
obtained the fol lowing r esu l t : 

C o r o l l a r y 1. Every p ro j ec t i v i t y of 
where |p|^.n+2, i s a composition of a normal cyc l ic c o l l i -
neation g and a p ro j ec t i v i t y h of character ist ic n. 
¡The above corol lary and Theorem 1 [1] strengthened here imply. 

T h e o r e m 1. I f |iF|^4n+4 and f i s a pro jec t i 
v i t y of , then f i s a composition of at most three 
normal cyc l ic co l l ineat ions. 

S imi lar ly , with respect to Corollary 1 and Theorem 6 [ l j 
we obtain 

T h e o r e m 2. I f |p|^n+j2 and f i s a pnoject i -
v i t y of P ß ( F ) , then f i s a composition of two normal cycl 
co l l ineat ions and one involutive co l l ineat ion (being a harmo-
nic homology, or an e la t ion i f char F = 2 ) . 

Theorem 1 states that the set NCQ(P) generates GPn (F), 
when |p|^4n+4. This result i s analogous to the well-known 
property of the group of isometries in Euclidean space which 
i s generated by symmetries. 

I t should be noticed here that in the case η = 1 normal 
cyc l ic col l ineat ions as wel l as symmetries are 2-cyc l ic trans-
formations. 

In this work we shall consecutively r e s t r i c t the class of 
generators of GPn (F). Two d is t inct classes of generators w i l l 
be obtained with respect to start from Theorem 1 or Theorem 2. 
We are begining from Theorem 2. 

F i rst of a l l , we shall divide the set Jn (F ) of a l l in -
volut ive p r o j e c t i v i t i e s of P n ( p ) onto two subsets 
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4 K.Witczynski 

2 • < 
and The f i r s t of them w i l l contain the transforma-
tions having at l eas t one united point, the second w i l l con-
ta in the remaining elements of J (F). The set of harmonic 
homologies we sha l l denote by Evidently, J ° ( F ) c 

1 9 c J ^ ( ï ) . Although e = e, we sha l l assume that e ^ J n ( F ) . 
L e m m a 1. Let char Ρ / 2, and l e t f e 

Then there ex is t exact ly two fundamental subspaces P^, F2 of 
f such that dim F., + dim F2 = n-1 ( i . e . Z(PT,P2) = Pn(F). 

Explanation. Fundamental subspace of f i s a subspace 
every point of which i s a united point of f . 

P r o o f . The lemma i s t r i v i a l , when η = 1. Assume 
i t s genuineness for η = k. Consider η = k+1. Let a be 
a united point of f . We may assume that Η i s not a funda-
mental hyperplane of f . In f a c t , i f Η were a fundamental 
hyperplane, then f would be a harmonic homology, since 
char Ρ Φ 2. Therefore the lemma would be t rue . Obviously, 
f/H has a united point. In f a c t , i f b^H i s a such point 
that fb Φ b, then the point c = Z(b,fb)nH i s a united 
point of f . According to the inductive assumption, there 
exist, in Η two fundamental subspaces P̂  and Fg such 
that dim P1 + dim F2 = n-2. The point c must belong to 
P1 or P2· But on the l ine Z(b,fb) there i s a second uni-
ted point d^H, since f/Z(b.fb) i s an involution and 
char Ρ φ 2. Assume that e . g . dim P ^ dim P2· Let next P1 

be a subspace contained in P^, and l e t dim F* = dim P^-1. 
Obviously, dim Ĥ  = n-1, where Ĥ  = Z(d,F*,F2) . I t i s imme-
d ia te l y seen that Ĥ  i s invariant under f . Hence, by the 
inductive assumption, Ĥ  contains exact ly two fundamental 
subspaces of f . So, one of subspaces Z(d,F*) or Z(d,P2) 
must be a fundamental subspace of f . Thence, Zid.P^ or 
Z(d,P2) i s a fundamental subspace of f . Since dim Ζ(ά,Ρ^) = 
= dim F.j+1 and dim Z(d,P2) = dim F2+1, the lemma i s 
t rue , q . e . d . 

Remark. The assumption char Ρ Φ 2, i s necessary·. If 
char Ρ = 2, then there are involutive e l a t ions in Ρ (F). 
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On generators of the group 5 

I f η ia even, then every involutive 
. belongs to J^. 

L e m m a 2. 
col l ineat ion of Pr 

P r o o f . Suppose that a ^ fa for every point 
a e Ρ . Then each l ine Z (a , f a ) i s invariant under f . Let 
a 1 , . . . , a n be such points that a2^ Z (a 1 » f a^ ) , Z{Z(a^ , f a 1 ) 

2 
Z ( a 2 , f a 2 ) ) , e tc . Then Η = Z ( a 1 , . . . , a n , f a 1 , . . . , f a j n J i s 

2 2 
a hyperplane invariant under f . Let b be a point not be-
longing to H. Then the point Z ( b , f b )nH is a united point 
of f , contrary to our supposition. 

L e m m a 3· Let η be even. If every normal cyclic 
collineation of i a a composition of a finite number 
of involutive collineations, then F must belong to C0+-j· 

P r o o f , 
in some coordinate system, the form 

Let geUC n (F ) . The matrix of g has, 

( 1 ) G = 

0 

' n - 1 

0 i c i 6 Ï1 

η (see [ 1 ] ) . 
Note that c = det G = ( - l ) n ΓΤ c.,. Assume that 

i=1 1 

g = f . j f 2 . . . f k , where f ^ Denote by F± the ma-
tr ices of f i t i = 1 , . . . , k . In view of Lemmas 1 and 2, i t 
fol lows that det F i = ε̂ ^ a?+ 1 , where a i e P , and c? = 1, 
i = 1 , . . . , k . The equality λ G = Ρ ι ' Ρ 2 Pk i m P l i e s 

c = Π a£+1 ε, 
i=1 1 

This ends the proof. 

L e m m a 4. Let η be odd. I f every normal cyc l ic 
col l ineat ion of is a composition a f i n i t e number in-
volutive col l ine ations, then Fe SC . . n+1 

2 
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K.Witczyñski 

Ρ 
P r o o f . I f f 6 then the determinant of its 

M l ρ 
matrix is equal to a , where a e P. Let geNCn (F ) , and 

let g = f ^ . f g , . . . , ^ , where f 1 f ¿ e J¿(P) and 
ρ 

f-, , „ . . . . ,f,, e J„(F). As in the proof of previous lemma we ob~ J.+1 κ η n+i n+1 
tain the equality λ° + 1ο = · . . . · a£+1 · 

Remark, It is not neoessary to be l < k in the above. 
L e m m a 5. Let η be even. I f then every 

normal oyclic collineation of Pn(F) is a composition of two 
involutive collineations. 

P r o o f . Let f eNC n ( P ) . Let ( a Q ) ° , b j fb j ] ; be 

such points that fa f l » aQf f b j = b j j and LJ n + 1 ( a Q , . . . » a n , b j ) . 
Thus f is determined by the following point system: 

f s 
· · · 

'n-1 an b I 

ao b I I . 

The points in the second row of the above matrix are images 
of the respective points of the f i r s t row. In the sequel, we 
shall simplify the notation by writing the indexes only. Then 

f : 
0 . . . n-1 η I 

1 . . . η 0 I I 

Assume that a± = (<5? , . . . ,<5?), b j = ( 1 , . . . , 1 ) , b ^ = (cn ,1, 
c 1 , . . . ,cJl_1 ) , where <5̂  is Kronecker <5. 
Then (1) is a matrix of f . Take into account the following 
matrices : 
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On generators of the group 7 

o O 

0 

1 o 

o 

»1 0 

2 -1 

ί+1 
2 - 1 

+1 

O q; a+i 
o 

o o 2 -1 q-£+1 V 

2 2 + 2 

2+1 

O 

O 

J 

Pi φ 0 for i = 1, 1 i···)*1) q^ φ O for j = "2+ 1,... ,n. 
2 2 2 2 One can see easily that A = p1J and Β = q J, 7/here J 

-2+ ι 
is the unit matrix. Hence the projectivities y = Ax and 
y = Bx are involutive. 

17e require non-zero values for p., q. which satisfy 
J 

the equation 
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8 K.ffitczynski 

(3) AG = Α Β. 

(3) i s equivalent to the following equation system: 

qn.„ = P1C1 
2 

= p1qnc2 
• ΣΓ 

qn pn = p1qn °n 
1+1 1+2 1 1+2 § 

p1qn = pn cn 
1 1+1 1+2 f+1 

p1qn-l = pnGn-1 

p1qn = °n* 

One can see e.asily that a l l values of the indeterminates 
p., q . , exce'pt q , can be found with the help of powers 

1 f ÍLlI Ö+ ι 
n+1 

ûf qn . However qn = c-j · c2* · · · * cn' q.e.d. 
2+1 ^+1 

L e m m a 6. Let η be odd. I f Ρ e SCß+1 then every 
~ΊΓ 

normal cyclic coll ineation of Ρ (F) is a composition of two 
involutive coll ineations. 

P r o o f . Let the matrices A, Β be as fol lows: 
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On g e n e r a t o r s of the group 9 

Ο Ο ρ" O 

O P̂  O 

1 O 

O 

A = 

2 - 1 O O O p^pn 

n+5 

±Pi 

o o 

1 o 

o 

Β = 

0 0 v ñ 1 · 

n+3 

O 

O 

1„ 
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10 Κ. Witczyiíski 

p ± ,q 3 φ Ö fer i = 1, £+5 û f ¿ = 1 t n+3 

The equation AG = A Β leads us to 

q 1 = P 1 C 1 

q 1 p n = p1 qn c2 

CJ1 pn+5 = p1qn±5 ^ 
2 2 2 

± q 1 = qn+3 °n+1 

p1qn+3 = pn+5 cn+3 
2 

p1qn = V 

As previously, a l l p^, q^, except qQ , can be found with 
n+1 n-1 n-1 

2 . _ 2 „ 2 . π -1 the help of powers of q f l . But q ß = + c^ ·ο 2 · | I c.̂  

This ends the proof. 
Prom Lemmas 3 and 5 i t follows 
T h e o r e m 3. Let η be even. The following are 

eq uivalent: 
( i ) P 6 C n + 1 , 
( i i ) every normal cyclic col l ineat ion of i s a compo-

s i t i o n of two involutive co l l ineat ions . 
S imilar ly , from Lemmas 4 and 6 i t follows 
T h e o r e m 4. Let η be odd. The following are 

equivalent: 
(i> * * s c n + 1 ï 

2 
( i i ) every normal cyclic col l ineat ion of i s a compo-

s i t i o n of two involutive co l l ineat ions . 
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On generators of the group 11 

With respect to Lemmas 5, 6 and Theorem 2 we arrive at 
the fol lowing theorem. 

T h e o r e m 5. I f |P|^SCn+1 and |P|$s.n+1, then, 
every pro ject iv i ty of i s a composition of at most f i v e 
involutive col l ineations. 

Remark. I f η ist odd, then i t suf f ices to assume that 

P 6 S C n ± r 
2 

Thus, we have shown that GPQ(P) i s generated by the 
class of involutive col l ineations. Next we shall show that 
i t su f f i ces to use a small subset of J Q ( p ) order to ge-
nerate GPn(P). 

L e m m a 7. Let η be odd. I f every element of ρ 
J¿(P) i s a composition of a f i n i t e number of elements of 

J¿ (P ) , then Ρ must belong to SC2· 

P r o o f . Let g e J 2 ( P ) , l e t f 1 , . . . , f k e , and 
l e t g = f . j . . . f k . Write G,P1 . . . ,Ρ^ f o r the respective 
matrices of g , f ^ , . . . » f ^ . By the assumption, there i s a t Ρ 

n+1 
such that det G = a 2 ¿ bn + 1 for each be P. Since 
det F^ = where b.̂ 6 Ρ and ε? = 1, the equality 

k • 5 + 1 k 
* G = Π Ρ , i m p l i e s λ · η + 1 a * = "Π" q . e . d . 

i = 1 1 A M 1 1 

L e m m a 8. I f η i s odd and PeSC, , then every 
2 1 element of i s a composition of two elements of J^(P) . 

p 

P r o o f . Assume that f e J ß ( P ) . Hence we can choose 

straight l ines in such a way that 11 π 1 2 = 

= 0, l 3 n z ( l 1 , l 2 ) = 0 , . . . , l ^ n Z f ^ 1 ^ ] = 0, and 

f l ± = 1 ± for i = 1 , . , . , 5+ i . Let a^ be a point belong-

ing to a l l i . Call b± = f a ± for i = . 

Obviously, L J n + 1 ( a r . . . , a n + 1 , b 1 , . . . , b f l + 1 ) . Assume that 
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12 K . W i t c z y ó s k i 

a 1 = ( 1 , 0 0 ) , b 1 = ( 0 , 1 , ü , . . . , 0 ) , . . . , b n + 1 = ( 0 , — , 0 , 1 J , 

~T 
T h e n f h a s t h e m a t r i x o f t h e f o r m 

C = d i a g ( C 1 f C 2 t . . . , C n + 1 ) , 

0 1 " " 0 c 0 " 0 c 2 c ~ 

w h e r e C ^ = 

c 2 c ^ 0 

• C 2 » 
c. 

c j 0 
' C 3 = 

C 3 C 1 · 1 0 

" n + 1 

2 
c 3 ° n + 3 

c 2 c n+3 

0 

0 i ^ e F , a n d C g C ^ Φ a f o r e a c h c e P . 

T a k e i n t o a c c o u n t t h e n + 1 * n + 1 m a t r i c e s 

Ρ = d i a g ( P 1 f P 2 , . . . , P n + 1 ) a n d Q = d i a g ( Q 1 , Q 2 , . . . , Q f l + 1 ) , 

w h e r e Ρ 1 

" 0 1 " 
~ P 1 

0 

0 

P ? 0 

1 F 2 » 
~ P 1 

0 
• p 1 . 

- P 4 - p 6 -

• · • » · -

0 p ± 

Lp? PI1 0 J 

f o r i = 3 , 5 , 

Q 1 = 

1 0 

0 - 1 Q 3 « Q 5 Q j -

L « ? » . 

f o r j = 2 , 4 , . . . , 0 j i p ^ q ^ e F , a l l i , j . 

L ? O 2 

I t i s e a s i l y s e e n t h a t (P = p ^ J a , n d Q = J . H e n c e t h e 

p r o j e c t i v i t i e s y = P x a n d y = | q x a r e i n v o l u t i v e . A s , i n 

t h e p r o o f o f l e m m a 5 , w e r e q u i r e n o n - z e r o v a l u e s f o r p . , q . J· J 
w h i c h s a t i s f y t h e e q u a t i o n 

λ Ο = p . q . 
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On generators of the group 13 

This i s equivalent to the following system of equations; 
ρ 

( 1 ' > P1 = - c 2 c 3 

( 2 ' ) = - c 2 

( 4 Ί P2 = c 2 c 4 

( 3 ' ) p -q ; 1 = c 

( 5 ' ) p f e 1 = ~C3C4 1 

( n " 1 , ) Plqn+1 = - c 2 ° n + 3 

( a ' > P l q ñ ! l = ° 3 C ¿ 3 * 
~2~ 2 

Kote that ( 2 ' ) · ( 3 ' ) = ( 4 ' ) · ( 5 Ί = . . . = ( η - ΐ ' ) · ( η ' ) = (1 ' ) . 
Hence we may eliminate the equations ( 3 ' ) , ( 5 ' ) ( n ' ) from 

o 
the system. By the assumption ^ c ^ ¿ c , \ie can count p1 

from (1 ' ) . Prom ( 2 ' ) we count q^, e t c . 
Prom Lemmas 6, 8 and Theorems 2 , 5 i t follows 
T h e o r e m 6. I f |F|^n+2 , F e S C n + 1 , then any 

p r o j e c t i v i t y of ? n ( P ) i s a composition of at most seven 
product iv i t i es from 

More p r e c i s e l y , i f η i s even, then every pro jec t ive ty 
of i s s composition of at most f ive elements of 
I f hov;ever r i s odd, then eve'riy p r o j e c t i v i t y of P n (F) i s 
e composition of at most seven elements of since 
th-3 transformation y = Ax from Lexma 6 belongs to J ^ ( F ) . 

L e m m a 9. I f char F φ ? nnd f 6 j J ( P ) , then 
f i s s composition of at a;ost of harmonic homologies. 

Λ 

P r o o f . Since f e the matrix of f may be 
ritten, in some coordinate system, in the form 
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14 Κ. V/itczynski 

A = d iag( -1 , . . . , - 1 ,1 , . . . ,1 ). 
i 

Evidently, A = Β ^ Β ^ . •••Bk, where B i = digg( 1 , . . . , 1,-1,1,.~,1) 
q.e.d. 

From Lemma 9 and Theorem 6 we obtain 
T h e o r e m 7. I f char F ¿j]2, Pe SCn+1 and 

I ΡI^ n+2, then any projectivity of i s a composition 
of at most transformations from 

Let now a^,.. . ,a f l be fixed l inearly independent points 
in Pn. Write ^ for the set of harmonic homologies ha-
ving the center a ,̂ i=1,2. S imi lar ly , we denote by 
the set of a l l harmonic homologies the fundamental· hyperpla-
nes of which belong to the penoil Z (a 2 , . . . ,a ß ) '(fi.e. a l l these 
hyperplanes contain Z (a 2 , . . . ,a f l ) ). ¡Call $ = φ^υφ2' $ i u , P i · 

In what follows, we shal l write f H for the harmonic 
homology with the center a and the fundamental hyperplane Η. 

L e m m a 10. Every harmonic homology of Ρ (n^2) 
i s a composition of at most seven (three dist inct) trans-
formations from ψ. 

P r o o f . Assume that f η^Ψ* distinguish "two 
cases: 

10 â  φ Η. Let aß+^ be such q point that LJn + 1 

( a 1 , . . . ,a f l + 1 ) and an+1 e Η. Call â  = fa1, Η2 = 
= Z (a 2 , . . . ,an+1 ), = HAZÍa^a^ for i = 2, . . . ,n+1. 
Let us define g_ tj· and h - „ as follows »" a,n2 

ga1tH 
a1 a2 b2 ' * ' an bn an+1 

La1 b2 a2 ' · · bn an an+1 ' h5,H2 

a2 . . . an+1 b a., 

La2 ' ' ' an+1 a1 b . 
where b = g& ga'̂ . Certainly, f = ghg. 

2° a1e Η. Then i t suffices to take such points c ,̂ 
that a / c ^ H , aß + 1^H, and LJn + 1 (a.,, . . . ,an+1 ). Write 
Η2 for Z(a 2 , . . . ,an +^). As in 1°, we can construct gQ g 
and h - „ such that f = ghg. I t i s obvioiis that a14 H. a »n.2 ι 
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On generators of tüe group 15 

Hence, by 1°, there exist such g-j e ̂  and h 1e ψ 1 that 
β = . This ends the proof. 

Erom the last lemma and Theorem 7 it follows 
L e m m a 11. If ohar F i 2, F 6SC Q + 1 and |P|^n-n2, 

then the group GPfl(F) is generated by φ . 
L e m m a 12. If the center of a harmonic homology f 

liles on Zta^dg)· then f is a composition of at most three 
transformations from φ . 

P r o o f . Assume that f Evidently, a1 $ Η 
or a 2 $ H , say a ^ H . Call a'̂  = fa1. Let a^,...,an+1 be 
such points that LJ°+1 ( a1,... ) and a.̂ 6 H foi? i = 
= 3,...,n+1. Let next be such a hyperplane that 
g a H & 2 = a and a ^ H1 for i = 3....,n+1. Let us define 
h ü as follows 

a2' 

V H ~ ! 

a2 a3 ··* an+1 a1 b 

a2 a3 " · an+1 * a1 

where b = g o w a\. One easily checks that f = ghg, q.e.d. a^ ι 
With respect to Lemma 12, the question arises whether it 

is possible to generate the set of all harmonic homologies 
with the help of harmonic homologies with given centers. The 
answer will be contained in two following lemmas. 

L e m m a 13» let φ^ be the set of all harmonic 
homologies with the center a^, i = 1,...,k. If every harmo-
nic homology of P Q is a composition of a finite number ele-

k 
ments of φΛΧ. = M dL , then there must be k^n+1. 

Ί* i=1 1 

P r o o f . Suppose k<n+1, and suppose f H = 
= f^f2 ... f m, where a φ Z( a^,..., a k) φ Κ and f ^ 
i = 1,...,m. Clearly, Z(a1,...,ak) is invariant under 
f-jfg ··· f^» and consequently i ΐ is invariant under f 
This is a contradiction with the assumption a φ Ζ(a1,..., 
<t Η. 
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L e m m a 14» Let a 0 , . . . , a n be fixed l inearly in-
de pendent points in P^, and let Φ q j · · · »$«, he sets of a l l 
harmonic homologies having as centers a 0 , . . . , a n , respect i-
vely. Then every transformation f „ of P„ i s a composi-? η n 

tion of a f i n i t e number transformations ftom = IJ 

P r o o f , We may assume that a ¿ a^ for i =0 , . . . , n . 
I f we had a e Z f a ^ a ^ ) , then, by Lemma 12, we would obtain 
the thesis. Hence we may assume that a^Z(a^,a^) for a l l 
i Φ j . Write bQ for Z(a0 ,a ) η Z ( a 1 , . . . , a Q ) I f b ^ Z U ^ a ^ ) 
i , j = 1 , . . . , n , then we can construct, as in Lemma 12/, the set 
of a l l harmonic homologies having the center bQ. Next, sinoe 
aeZ (b ,a 1 ) , we can construct f I f b_¿ Z(a.¡ ) , then O l cl « Ω O 1 J 
we take into account b̂  = Z(a^,bQ )η Z ( a 2 , . . . , a Q ) etc. 

Thus the following theorem is true. 
T h e o r e m 8. I f char F φ 2, F eSCn+1 and 

|P|>n+i2, then GPn(P) is generated by 
Now we shall, s t i l l restr ic t the set ψ of generators 

of GPn(F). Let H 1 , . . . ,H n + 1 be l inearly independent hyper-
planes such that HnD Z ( a 2 , . . . ,aß ) = G . jCH^ and a ^ H ^ , 
a l l i . Write á* for the set ( f „ , . . . , f „ 1. Let 

V # 1 1 ' 1 1 n-li 
us denote by φ . 

L e m m a 15. Every element of J° is a composition 
of a f in i t e dumber elements of the set 

P r o o f . 1° Let us cal l Hq = Z(a^ a ß ) , 
f1 = f a Η ' G2 = f l G r Naturally, HQ = ZiG^Gg). Take into 

account ga y) = S6 !P iu-§ i> where y e H ^ G ^ Clearly, 

the transformation f-jfii"·] belongs to φ^ and i t s fundamental 
hyperplane is Z(G2 ,y). Thus we have obtained the set φ2 

of a l l elements of in fundamental hyperplanes of which 
is contained G2· 

2° Let Gq be a hyper plane containing Ĝ  = G^G^. Ta-
ke into account f „ = i' . We shall show tiiat f can be 

a,u0 o o 
obtained as a composition of elements of ψ^ U »j;^· Clearly, 
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we may assume that i HQ. Let ρ be such a point that 
p e G 0 \ H Q . Ca l l G* = f 0 z j G ? jG^. Let P a p be a hyper-

1 
plane containing G . Then g b p = f h f , where f = f a ^ , 

c = f b , and h = h c C l e a r l y , h e ^ , T i l us 

we can cons t ruc t , with the help of elements of Ç ^ U ^ » a n 7 
harmonic homology with the fundamental hyperplane containing 
G*. l e t Η be the harmonic conjugate of Z(G^,p) with r e s -
pect to Gq and Z (G * , p ) , and l e t χ ¿ a be a point belong-
ing to H \ Z ( G ^ , p ) . Let next y be the harmonic conjugate of 
a with re spec t to χ and Z(G^,ρ)η Z ( a , x ) . One can check 
e a s i l y that fQ = f x > z (G.,, p)hy„Z(G*, p ) f x ,Z ( G.,, p) ' 

Thus we have constructed the se t a l l harmonic 
homologies with fundamental hyperplanes passing through G^. 

3° Ca l l G, = f υ G,. We can cons t ruc t , as in 1 ° , the 
1 ' 2 

se t y/^c φj of a l l harmonic homologies with fundamental hy-
perplanes containing G^ and having a^ as a center . 

4° As in 2 ° , we can obtain the se t ψ^ of a l l harmonic 
homologies containing Ĝ  = G^ Π G^ i n t h e i r fundamental hy-
perplanes . 

Since dim Ĝ  = n-2, dim G^ = n - 3 , . · . , dim G2n_.j = -1 , 
we a r r i v e at the se t ?2n-1 = ^n' c 3« e *d . 
Hence we have obtained the fol lowing lemma: 

L e m m a 16. I f char F Φ 2, | p | | ^ n + 2 , and F e S C Q + 1 , 
then the s e t § * generates GPn(F), 

Let now , b g » · · · b e f i xed l i n e a r l y independent 
points i n PQ such that b^ = a 1 and Z ( b i , b ^ ) O G 1 = φ , 
a l l i , j . Let Γ^ denote the se t of a l l elements of 

n+1 
having b. a s a center , i = 1 , . . . , n + 1 . Cal l Γ = J J p. 

Λ i=1 
and Γ = Γ o υ 

L e m m a 17. Every element of ^ i s a composition 
of a f i n i t e number elements of Γ . o 

P r o o f . Assume that f^ ^ and at the same time 
f b b^ '"o* p i r s t w i l l be considered the case b e Z f b ^ b j ) f o r 
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some i , j . Let e .g . be Z ( b^ ,b 2 ) . Let b' denote the har -
monic conjugate of b^ with respect to b and bg. Similar-
ly , let d be the harmonio conjugate of c with respect to 
b^ and b ' , where c = Z i b ^ b g ) AB. Take into acoount har -
monic homologies g b i , Z ( G i > b ' , = S and ^ Z ( G β = h. 

I t i s easy to see that f b B = ghg. I f b ^ Z f b ^ b . j ) fo r 
a l l i , j , then we take into account the point b^ « Z (b ,b^ )0 
Π Z ( b 2 , . . . ,b n + 1 ) . I f now b ^ Z l b ^ b . ) f o r some i , j , then 
we can construct, as above, any harmonic homology belonging 
to and having b^ as a center. Next, also as above, we 
can construct f^ I f b 1 ^ Z ( b i , b j ) for a l l i , j , then 

we take b2 = Z(b1 ,b2 ) π z j fb^ , . . . ) etc, q .e .d . 
From the above and lemma 16 there fol lows 
L e m m a 18. I f char F / 2, |F|>n+J2|, and Fe 

€ S C n + 1 ' t h e n 1 8 generated by Γ . 
Let now ,H* be such a fixed hyperplane that G^CH* and 

b ^ H*, i = 1 n+1. Call ^ = ^ , η * ' , = { f 1 " · * ' f n } 

and Γ*= í * U J i * u r n + 1 , i = 1 , . . . , n . 
L e m m a 19. Every element of i s a composition 

of a f i n i t e number elements of Ψ* 1 " "^ .^ · 
P r o o f . Assume that h = h, u e Cal =. 

°n+1'H n + 1 1 

= H*n Z (b n + ^ »b^ ) , i = 1 , . . . , n . Let b* be the harmonio 
conjugate of with respect to b^ and c^, i = 1 , . . . , n . 
Let next hyperplane T^ be the harmonic conjugate of Η with 
respect to H* and Z ( G 1 , b i ) , i = 1 , . . . , n . Naturally, the 
harmonic homology f j ^ f ^ ^ β center b^ and the funda-
mental hyperplane T^, i = 1 , . . . , n . Hence, f o r given Ï ^ G ^ 
there exists a hyperplane HDG, such that f^hy.* „f.. = 

1 n+1 * 
= ®b Τ * w e c a n obtain each harmonic homology from 

having the center b*. Notice that i f Z ( b i , b ^ ) n G 1 = 0,, 
then Z ( b * , b * ) n G 1 = 0'. Hence, by Lemma 17, we can construct 
each element of ψ.,. 
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According to Theorem 7 and the above lemma we obtain 
T h e o r e m 9. I f char F 2, lF|$>n+2, and 

FeSCn + 1 , then GPß(F) is generated by Γ* . 
This is the last theorem from the series. The set Γ * of 

generators of the projective group GPQ(F) is a one-parame-
ters set only. 

Now, we shall construct another set of generators of 
GPn(F), with the help of normal cyclic collineations. 

By NC°(F) we w i l l denote the set of a l l normal- cyclic 
collineations which have at least one united point. 

L e m m a 20. I f each element of NCn(F) is a compo-
sition of a f in i te number elements of NC°(F), then F must 
belong to 

P r o o f . Let us assume that f e NCn(F), f = f ^ . . . 
. . . f k , f ^e NC°(F), i = 1 . . , k . Write A ,A 1 t . . . ,A k for the 
matrices of f , f , f . , respectively. By (1 ) , the charac-I κ M , J 

ter is t ic polynomial of f is ( -x ) + det A. We distin-
guish two cases: 

1) η even. Then det Â  = , where a i e F , 
1 , . . . , k . By çA = A1* . . . *Ak , i t follows that <ξ>η+1 det A = 

Γ a< 
i=1 
π " n + 1 

2) η odd. Then det = -a£+1, a ^ F , i = 1 , . . . , k . 

Hence ç f l + 1 det A = ( -1 ) k Π a f + 1 , q .e .d. 
i=1 1 

L e m m a 21. Let f € NC^(F). Then a coordinate sys-
tem can be chosen such that f has the matrix of the form (1) 
satisfying the following equalities: c1 = c2 . . . = 1 , c n = c · 

P r o o f . We may assume that (1) is the matrix of f . 
Take into account the matrix Τ = diag(t , . . . , t ) , where 
t 0 = V t 2 = t l 0 - \ t 3 = t2c"1 t n = t ^ c - ^ , t 1 φ 0. 

I t is immediately seen that the matrix TGT~1 sat is f ies the 
required conditions. 

L e m m a 22. I f F6SC f l+1, then every element of 
HCn(F) is a composition pf at most two elements of NC°(F). 
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P r o o f . First of a l l , notice that i f η is even, 
then NC°(F) =HCn (F) , since FeSC r I f however η is 
odd and P e C n + i > Î i i e i l a l s o NC°(F) = NCn(F). Hence we may 
assume that η is odd and FeSCn+^, but p ^ c n + - ] · Then F 
may be ordered by a choice of the set of positive elements 
(x i s positive i f χ = y n + 1 , y e F ) . Let f e HCn(P) \HC°(F), 
and let A denote the matrix of f . By Lemma 22, A may be 
written in the from (1) with the additional conditions 

1 = · · · . = °n-l = 1 * c = V 
Since f φ NC?(F), det A = - c > 0 . Denote an = 

= ( l , 0 , . . . , 0 ) , . . . , a n = ( 0 , . . . , 0 , 1 ) , b j = ( 1 , . . . , 1 ) , \ύιτ = 
= ( c , 1 , . . . , 1 ) . Then f is determined as follows 

0 . . . η I 

1 . . . Ό I I 

Let us define 

h j 
Ö 1 2 3 

l i η 1 2 

n-1 η I 

n-2 I n-1 

I I η 1 2 . . . n-2 I n-1 

1 2 3 4 . . . n 0 I I 

Clearly,· g,h6NCn (F) and f = gh. Hence çA 
G, H are the matrices of g, h. Note that 

G'H, where 

H = 

c 0 0 0 
1 0 c-1 0 
. . 0 c-1 

ι c-1 α . . . 
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Since c < 0 , det H = - c ( c - 1 ) n < ; 0 . Hence, since det A > 0 , 
det G < 0 . Thus we have shown that g , heNC ° ( F ) , q .e .d . 

In.view of Theorem 1 and the above lemmas i t fol lows 
T h e o r e m 10. Let f e G P n ( F ) , let F eSC n + 1 , and 

let I FI 4n+4. Then f i s a composition of at most s ix 
(three i f η i s even) elements of NC°(F) . 

Let us denote by S the set of a l l f i e l d s sat is fy ing 
the fol lowing condition: 
( i ) Fj^P) contains such.a point system 7 that 

L I n + ^ ( a , . . . ,a g ) . 
η +n 

o,~+n 

Assume now that F e Let a ^ b e 

n+1 11 + G 
points of Pn (P ) such that LI ' ( a , b 1 , . . . , b ? ) . Let 
v i v i n + n 
2 l 0 \ L j / denote the set of a l l elements of NC°(F) having 

a ( b ± ) as a united point, i = 1 n2+n. Cal l 2L = 
2 n^+n ν-

= v j L i · 
i=0 

L e m m a 23· Every element of NC°{F) i s a composi-
tion of at most three elements of Σ, 

P r o o f . Assume that f e N C ° ( F ) \ . Obviously, 

at least one from relat ions L I n + 1 ( ( a Q ) £ ) , L I n + 1 ( ( b 1 ) , . . . 

. . . , L I n + 1 ( ( b J j + 2 n ) holds. Let e .g . L I n + 1 ( ( a j 2 ) . 
η +n 

Cal l 

= f a i _ 1 , i = 1 , . . . , n . Then 

f : 
0 . . . η n+1 

1 . . . 0 n+1 

Take into account the fol lowing transformations: 

0 1 2 . . . n-2 n-1 η n+1 

η 1 2 . . . n-2 n+1 0 n-1 
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η 1 2 . . . n - 2 n+1 O η - Γ 

1 2 3 ' . . . η - 1 η Ο η+1_ 

I t i s easy to see that f = & Q i , gQ e 3[10 and i e l ^ ( P ) . 

How, we d i s t i n g u i s h two ca se s ; 
1° The r e l a t i o n L I ^ (a 0 ,a n ,b,| ,ib.j ) h o l d s . Then we may 

assume that a l s o L I n + ^ ( a 0 , a n , b ^ , . . . ) , s i n ce 

otherwise po i n t s a ^ , . . . , a n _ 2 may be rep laced by o ther un i ted 

po i n t s a i ' , . . . , a ' „ of i s a t i s f y i n g t h i s c ond i t i o n . C a l l 

Y = b_ 2' -Ψ 1· 
Let us def ine 

2' 2 3 

n - 3 n - 2 η 1 

n - 2 0 1 1 

h o 

2' 2 

η 1 

3 

2 

n-¡2 0 1 ' 1 

n - 3 n - 2 0 2' 1' 

One can e a s i l y see that h Q e ¡C0> h-j e Σν = • an<^ 
consequent ly f = gQhj h^. 

2° The po i n t s a Q , a n , b^, ib^ are l i n e a r l y dependent. 

Then we take b 2 = ( q 0 , . . . , q f l ) , b^ = ( r Q r f l ) I f , 

f o r some j , L I ^ ( a , a , b^, i b . ) , then, as i n 1°, we can U Ii J J 
decompose i onto elements of , 

Suppose the r e l a t i o n L I ^ ( a , a , b . , i b . ) does not ho ld 
? I 

f o r j = 1 , . . . , n + h . Put aQ = ( 1 , 0 , . . . , 0 ) , . . . , a n = ( 0 , . . . , 0 , 1 ) , 
an+1 = i " 1 » · · · » 1 ^ a n d = ( Ρ 0 > · · · · Ρ η ) · I 'fc i s e a s i l y seen 

that the matr ix 3 of i i s as f o l l o w s : 
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3 = 

0 0 
0 -1 

O 
-1 

O 
O 

-1 

Ü 
O 

- 1 

O 

Thea, by the supposition, we arrive at the following equali-
t i e s : 

'n-1 = 0 or 

n-1 « 0 or 

'n-1 = 0 or r 

i = pk " \ Pn-1* 

i = qk = \ qn-1 ; 

= r. 1 r . 
2 n-1» ' 

j ,k=1,2 , . . . ,n-2 , 

n , A 

which contradict the assumption LI (b, . , . . . ,b ? ) , q.e.d. 
η +n 

Thus we have obtained the following theorem. 
T h e o r e m 1 1 . I f P e · ^ , PeSCQ+1> |F| > 4n+4. 

and f eGPn (F), then f is a composition of at most eighteen 
(nine when η i s even) transformations from £ . 
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