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ON GENERATORS OF THE GROUP
OF PROJECTIVE TRANSFORMATIONS

The problem of composing of projectivities by two cyclic
projecftive collineations was considered in [1]. Now, we shall
deal with the problem how to minimize the class of generators
of the group of projectivities.

Firstly, we introduce some auxiliary notions and notations.

Notation. Pn(F) - n-dimensional projective space over
the field F., If F 1is arbitrary, we write simply Pn in-
stead of Pn(F). GPn(F) -~ the group of projective transfor-
mations (projectivitics) of Pn(F) onto itself,
| F| ~ number of elements of the field F.
Z(H1,...,Hm) - the join of subspaces H,,...,H
subspace containing iy,...,H ).

o (the smallest

We write LJk(a1,...,am), if every k of m points
8100058y are linearly independent (k<m).

If f: X—=X and X, € X, then we denote the set
{xo,fxo,...,fmxo} by the symbol (xo)?.

Definitions:

Definition 1. A transformation f:X—=X is
called k-cyclic (k-periodic) if £ - e, where e 1is the
identity.

Definition 2. We shall say that a projective
transformation ¢: Pn-”'Pn has property 1, if every point
of Pn' lies in 1l~dimensioasl subspace of Pn invariant an-
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2 E.Witczynskl

der ¢ . Assume that projectivity ¢ has property m, and
at the same time ¢ has not property k for all O<ks<n-1,
Then m will be called the characteristic

of ¢ (in symbols, m = char ¢).

Notice that every projectivity of Pn has_property n,

Definition 3. .\ normal cyclic
collineation of Pn is an n+1 - ¢yclic projec-
tivity of P, having characteristic n.

We shall write NCn(F) for the set of all normal cyclic
c¢ollineations of Pn(F).

Definition 4. If for each x belonging
to field F there exists yeF such that yk = x (yk =X
or yk = -x}, then F will be calleda k-closed
{(k ~semiclosed) field, The set of all k-closed
(k-semiclosed) fields will be denoted by Ck(SCk). Clearly,
Cx€8C, and C, =8C, if k 1is odd. Note also that if k
is even and Fe SC . \C,, then F can be ordered. Hence
char F = O, _

Pirst, we shall strenghten Lemma 2 ([1]). The notation
from the proof of the lemma will be preserved, Choose an
allowable coordinate system in « 1in such a way that the
points Pos Pqs Po have the coordinates pij = 62 i,j =
= 0,1,2. For each point er(po,p1) there exists the point
y = Z(x,x’)n1l,. Conversely, if y is such a point on 1,
then there may exist the second point 2z # x such that
Z e Z(po,p1) and y = Z(z,2°)n1l,. This can be checked by
easy calculations, We should exclude at most n+1 positions
of such a point y on 1y, Similarly, we ought to exclude
at most n+1 positions of analogous point y on 1lg. The-
refore if the line Z(po,p1) contains at least 4n+5 diffe-
rent points, then the lemma is true, Hence it is true, if
| Pl > 4n+4.

Similarly, Theorem 1 [1] ie also true, if |F|=>4n+4.
Let us consider Theorem 5 [1] now. The intention of the thep-
rem was to find a decomposition of an arbitrary projectivity
on two cyclic projectivities.
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On generators of the group 3

Thai is why the field F has been assumed to be alge-
braically closed.

Now we shall apply the proof of this theorem to receive
an another result,

The matrix of an arbitrary projectivity of P, may be
written in the form as in the mentioned proof (see [2]).
Choose numbers p;, 1 # 0,04ye004Pg_4» in Buch a way that
?i’é?j for i # j, and pf # 1, all i. Since 1gs<n+l,
we can do it, if |F|>n+2. Then char h = n., Thus, we have
obtained the following result:

Corollary 1. Every projectivity of Pn(F),
where IFI;>n+2, is a composition of a normal cyclic colli~
neation g and a projectivity h of charactsristic n.

The above corollary and Theorem 1 [1] strengthene¢ here imply.

Theorem 1. If |IFl>4n+4 and f is a projecti-
vity of Pn(F), then f 1is a composition of at most three
normal cyclic collineations.

Similarly, with respect to Corollary 1 and Theorem & [1]
we obtain

Theorem 2, If |[Fl>nt2 and f is a projecti-
vity of Pn(F), then f 1is a composition of two normal cyclic
collineations and one involutive collineation (being & harmo-
nic homology, or arn elation if char F = 2),

Theorem 1 states that the set NCn(F) generates GPn(F),
when |F|> 4n+4. This result is analogous to the well-krown
property of the group of isometries in Euclidean space which
is generated by symmetries.

It should be noticed here thet in the case n = 71 normal
eyeclic collineations ag well as symmetries are 2-cyclle trans-
formations.

In this work we shall consecutively restrict the class of
generators of GPn(F). Two distinct classes of generators will
be obtained with respect tc start from Theorem 1 or Theorem 2,
We are begining from Theoram 2,

First of all, we shall divide the set Jn(F) of all in~-
volutive projectivities of Pn(F) onto two subsets Jl(F)
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4 K.Witczyniski

and Jﬁ(F}. The first of them will contain the transforma~

tions having at least one united point, the second will con-
tain the remaining elements of Jn(F). The set of harmonic

homoiogies we shall denote by JS(F). Evidently, Jg(F)C

c J;(F). Although e = e, we shall assume that e¢}Jn(F).

Lemma 1. Let char F # 2, - and let fe J;(F).
Then there exist exactly two fundamental subspaces F1, F2 of
f such that dim Fj + dim F2 = n-1 (i.e. Z(FT,FQ) = Pn(F).

Explanation. Fundamental subspace of f 1is a subspace
every point of which is a united point of f,

Proof. The lemma is trivial, when n = 1. Assume
its genuineness for n = k. Consider n = k+1. Let a be
a united point of f. We may assume that H is not a funda-
mental hyperplane of f. In fact, if H were a fundamental
hyperplane, then f would be a harmonic homology, since
char F # 2. Therefore the lemma would be true. Obviously,
f/H has a united point. In fact, if bé¢H is a such point
that fb # b, +then the point ¢ = Z(b,fb)NH is a united .
point of f. According to fthe inductive assumption, there
exist in H 1two fundamental subspaces F1 and F2 such
that dim F1 + dim F2 = n-2. The point ¢ mnust belong to
F1 or F2. But on the line Z(b,fb) there is a second uni-
ted point d¢H, since f/Z(b.fb) is an involution and
char P # 2, Assume that e.g. dim F,> dim F,. *Let next FJ
be a subspace conftained in F1, and let dim F.l = dim Fi-1e
Obviously, dim H, = n-1, where H, = Z(d,F],F,). It is imme-
diately seen that H1 is irnvariant under f. Hence, by the
inductive assumption, H1 contains exactly two fundamental
subspaces of f. So, one of subspaces Z(d,F:) or Z(é,Fz)
must be a fundamental subspace of f, Thencs, Z(d,Fi) or
Z(d,Fz) is a fundamental subspace of f. Since dim Z(d,F1) =
= dim F,+1 and dim Z(d,Fz) = dim F,+1, the lemma is
true, qg.e.d. :

Remark, The assumption char F # 2, 1is necessary. If
char F = 2, then there are involutive elations in P (Fj.
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On generators of the group 5

Lemma 2. If n 1is even, then every involutive
collineation of Pn belongs to Jl.
Proof. Suppose that a # fa for every point
ae Pn.v Then each line Z(a,fa) is invariant under £, Tet

Byseees8y be such points that a,¢ Z(a1,fa1), a3¢.Z(Z(a1,fa1),

Z(az,faZ?), etce Then H = Z(a1,...,a£, fa1,...,fa£) is
2 2

a hyperplane invariant under f, ILet b be a point not be-
longing to H. Then the point Z(b,fb)nH is a united point
of f, contrary to our supposition,

Lemma 3. Let n Dbe even., If every normal cyclic
collineation of Pn(F) is a composition of a finite number
of involutive collineations, then F must belong to C

n+1
Proof. Let geNqﬁm. The matrix of g has,

in some coordinate systeam, the form

- -
0O 0 . 0 ¢
1 0] o« o . .
(0] C1 . .

(1) G= . . . . . Py O#cieF
(0 0 .+ cp ., O

(see [1]). n
liote that o = det G = (-1)2 T cj. Assume that
=1

g = £,f, «oo £}, where f.e J;(F}. Denote by F; the ma-

1
trices of 5, i=1,400yk In view of Lemmas 1 and 2, it
follows that det F, = ¢; ai'!, where a;eF, and €5 = 1,

i= 1'000,1{. The equaJ.ity AG = F1’F2‘ sse * Fk implies

k
y S 1 a§+1 €;. This ends the proof.
i=1

Lemma 4. Let n be odd. If every normal cyclic
collinestion of Pn(F) is & ccmposition a finite number in-

volutive collineations, then Fe SCn+1.
2
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6 K.Witczynski

Proof. If fe Ji(F), then the determinant of its
h¥l

matrix is equal to a 2_, where aePF. Let ge'NCn(F), and

let g = f1_,f2,c..,fk. Where f1,...,fi€ J;(F) and

2 . )
f1+1,...,fke Jn(F). 4s in the proof of previous le%ma we ob-

tain the equality An+1c = a{:‘l+1'ooo'a§+1'al+1‘otc'ak 9 q.eodo

Remark, It is not necessary to be 1l<k in the above,

Lemma 5. Let n be even. If Fe=0n+1, then every
normal cyclic collineation of P, (F) is a composition of two
involutive collineations.

Proof. Let feNC (F). Let -(ao)§, br,bry be

such points that fa, = &, fby = byy and L% (a ,...,a,,b0).
Thus £ 1is determined by the following polnt system:

. [ao ces 8 4 8, by ]
a1 e e an ao bII

The points in the second row of the above matrix are images
of the respective pbints of the first row. In the sequsl, we
shall simplify the notation by writing the indexes only. Then

0 LR 3 n-1 n I
f: .
T e a O II

Assume that a; = (6¢,...,87), by = (1,...,1), by = (¢, 1,
c1,...,cn_1), where &; 1is Kronecker d.

Then (1) is a matrix of f. Take into account the following
matrices:
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On generators of the group

o 0 p1 0 e o e s s s 0 e s e e e e 0O
0 P, 0 . e ¢
1 0 . . e o s e e e e e e e e e . 0
0 . . . e s e e e e o o 8 e o .. P,
A= . . . . e o o o e o v s e o P ’
n
3+
. . . . 5 - .
p1pn1
. . . . §+1 .
2n=1
s e . 0 PIPL_4 .
2,~1
_O 0 0 pip, o ... e 0 e e e .. c_
— -
2
o] O ¢ 4t v s o6 o o o v v oo e O
qn+1
1 0 e e e e e e ¢
0 . « o e e s . . . . . . . qn
B = . . .
E
. . 5 , 2%
qE+1.qﬂ+2
. . 2 2
2 -1
0 0 an,, 1 0 .« e e e 0
| -2+1n _J
< . ol n
py #0 for 1 =1, %+ Tyeesyl; 95 #0 for J =35+ 1,...,n
2 2 2

One can see easily that &7 = p%J and B~ =4 Jd, where

1
is the unit matrix. Hence the projectivities y = 4X and
¥y = Bx are involutive.

e require non-zero values for p.

iv 93 which sstisfy

the ecuation
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8 K.Witczyhski

(3) AG = A B.

(3) is equivalent to the folyowing equation system:

2
q = p,C
n 171
2+
q2 p, = p4Q.,.C
. g+1 n 1°n~2
q2 p = p,q c
n n 1°n n
=+1 §+2 §+2 5
P49y , = Pp %n
—2-+1 —2'+2 ?1-1

P1%n-q = Ppnq

One can see egasily that all values of the indeterminates
Pis G4s exce'pt Ay s can be found with the help of powers

J §+1
1
of q . However qn+ = C,%Ch®see*C Qe.e.d.

Lemna 6. Let n be odd., If PFe SCn+1

2
normal cyclic collineation of Pn(F) ig a composition of two

involutive collineations,
Proof. Let the matrices A, B be as follows:

then svery
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10 K. Witczydski

pi,qj;‘O’ fer i=1,nT+5,oo', n, j=1,‘£11‘2-"3',o-0, Ne

The equation AG = A B 1leads us to

$1Pn45 = P1%n45 “n-t1
2 2 2
194 = qgig Cn+1
2 2
P19n+3 = Pn+5 ®n+3
2
P4%pn = Cp*
As previously, all Ps qj, except 9, can be found with
n+1 n-1 n-1 . 4
th 2 2 2 =1
e help of powers of q,. But q,° =4 ¢;° +c, TT ef
i=2

This ends the proof.
From Lemmas 3 and 5 it follows
Theoren 3 Let n be even. The following are
equivalent:
(i) FeCn+1;
(ii) every normal cyclic collineation of Pn(F) is a compo~-
gition of two involutive collineations.
Similarly, from Lemmas 4 and 6 it follows

Theorenmn 4. Let n be odd. The following are
equivalent: :
(i) Fe SCn+1;

2
(ii) every normal cyclic collineation of P (F) is a compo~
sition of two involutive collineations.
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On generators cf the group 11

With respect to Lemmas 5, 6 and Theorem 2 we arrive at
the following theorem.

Theorsnm 5, If IFI;SCm_1 and |F|>n+1, then.
every projectivity of Pn(F) is a composition of at most five
involutive collineations.

Remark. If n is| odd, then it suffices to assume that
Pe SCn+1.

2
Thus, we have shown that GPn(F) is generated by thse

class of involutive collineations. Next we shall show that
it suffices to use 'a small subset of Jn(F) in order to ge-
nerate GPn(F).'

Lemma 7. Let n be odd. If every element of
Jg(F) is a composition of a finite number of elements of

Jl(F), then F must belong to SC,.

Proof. Iet geJi(F), let f,,...,f,eJ)(F), and
let g = f1...fk. Write G,F1‘,...,Fk for the respective
maftrices of g,f1,...,fk. By the assumption, there is aeF

n+1
such that det G = a e # ™71 for each bePF. Since
det F; = eibf+1, where b;€ F and eg = 1, the equality
Kk n+1
AG = [T P, implies AR*1 a?l = TT oM lee., q.e.d.
i=1 1 il 0

Lemma 8, If n is odd and F‘eSCz, then every
element of Jﬁ(F) is a composition of two elements of JA(F).

Proof. Assume that fe Ji(F). Hehce we can choose

5%1 straight lines 11""’1n+1 in such a way that 11/’\12 =
2

= ¢, 13” Z(11,12) = ¢,.oo, ln+1nZ(11,...,ln_1) = ¢’ and
2 2

f1, = 1; for i=1,...,21 . Iet a, be a point belong-

ing to 1;, all i. Call by = fa; for i = 1,...,%7,

Obviously, LJn+1(a1,...,an+1,b1,...,bn+1). Assume that
2
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12 K.Witczyndski

a1 = (1’0"..’0), b1 = (0,1,0,'..,0),.0-,b = (0,...,0,1).

n+l
2
Then f has the matrix of the form
C = diag(C.i,Cz,...,Cn_’_.l),
o 1 0 ¢ ' 0 cAC
where C.] = ’ C2 = 2 y CB = |_1 204 gese
€ycy O ¢y O | ©3%4
0 €2%n43
Cnyq = i
2 -1
°3°n+3 0
-

0 # c;€ P, and CyCy # ¢® for each ceP.

Take into account the n+ixn+t matrices

P = diag(?1’P2,ooo,Pn+1) and Q = diag(Q1,Q2,...,Qn+1),

h P R 0 P, =P
where = ’ = = = =
Volef o] B lo -] t®
R 1 -
= oo‘o.- Pi = g fOI.‘ i = 3,5,.-.;
) = = = Q = eew Q: = )

for J = 2,4,444,0 # pi’Qje F, all 1i,j.

It is easily seen that LEZ p?J and Q2 = J, Hence the
projectivities y = Px and y = [Qx are involutive. As in
the proof of Lemma 5, we require non-zero values for Py qj

which satisfy the equation

AC = P'Qo
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On generators of the group .13

This is equivalent to the following system of equations:

{(1') . p? = '°2°3
(2") . P1Q2 = =Cy
’ -1 _
(37) Pydp = C5
(4°) Py = CoCy
(5") 93951 = -03021
(n-1") P19049 = ~®2%n43
2 -
’ -1 -1
(] Priper = ©3°pe3 -
2 2

Note that (2°)«(3') = (4')+(5") = v = (n-1")+(n’) = {17).
Hence we may eliminate the equations (3'),(5),+..,(n’) from
the system, By the assumption €yC3 # c2, we can count Py
from (1'). From (2°) we count 94, etec.

FProm Lemmas 6, 8 and Theorems 2, 5 it follows

Theorem 6, If |F|l>n+2 » FeSC 4,
projectivity of Pn(F) is a composition of at most seven
projectivities from J!(F).

Ilore precisely, if n 1is even, then every projectivity
of Pn(F) is & composition of at most five elements of JA(F).
If hovever r 1is odd, then every projectivity of Pn(F) is
2 composition of at most seven eleaents of Jl(F), since

then any

the transformation y = 4x <froam Lemua 6 belongs to Jl(F).
Jexma 9. If char F£# > cnd fe Jl(F), then
c.iposition of at azost 5(%4 of hsrmonic homolegises,

-
[
n
Q)
0

Proof. Since fe Jl(F), the metrix of £ mey be
"mitten, in some coordinste system, in tae form
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14 K.Witczyhski

X
= diag(=1,e0es=TyT900ey1)e
i
Bvidently, A = By*Bye.ee+By, where By=dig(1yeeeyly=1y150m1)
ge.e.d,

From Lemma 9 and Theorem 6 we obtain

Theorem 7. If char F #pR, Fe SCp,q @nd
| Pl> n+2, then any projectivity of P, (F) is a composition
of at most '6E n+1)+1 transformations from J (F).

Let now Biseeey8y be fixed linearly independent points
in P,. Write Qi for the set of harmonic homologies ha-
ving the center a; s i=1,2. Similarly, we denote by ¥,
the set of all harmonic homologies the fundamential hyperpla-
nes of which belong to the pencil Z(e,,e«s,a,) '(L.e. all these
hyperplanes contain Z(a,,eees8,))s iCall §=¢,Ud,, y= §,UY,.

In what follows, we shall write fa JH for the harmonic
homology with the cenfer a and the fundamental hyperplane H.

Lemma 10. Every harmonic homology of P, (n>2)
is a composition of at most seven (three distinct) trans-
formations from y.

Proof. Assume that faJ1¢§h We distinguish two
‘cases:

°a ¢ H. Let 841 be such g point that
(a1,...,an+1) and ‘a, ,€H. Call a3'= fa,, H, =
= Z(az,...,an+1), by = HI1Z(aﬁ,ai) for i = 2,.e.,041.
Let us define ga1’§ and hE,H2 as follows

g . 5.1 82 b2 ese an bn n+1 B ) 32 cse an+1 b 31
a0l b b » Bgg, ’
a 1772 |a a a, b

Bq Do 8p v Op 8p Bpyg D see 8p.q 84

LJn+1

where b = g, ﬁag. Certainly, f = ghg.
1

0 o
2 a € H. Then it suffices to take such points Cqs 8Bniq

that a # ¢, ¢H, an+1¢I{, and LJn+1(a1,...,an+1). Write

H, for Z(ay,eeeya As in 1°, we can construct g, g

n+1)‘ 19
and hE H such that f = ghg. It is obvious that a1¢‘H.
"2
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On generztors of the group 15

Hence, by 1°, there exist such gqe @1 and h1e 9, that
g = g1h1g1. This ends the proof.

From the last lemma and Theorem 7 it follows

Lemma 11, If char F# 2, FeSC,,, and | Fl > n+2,
then the group GPn(F) is generated by ¢ .

Lemmas 12. If the center of a harmonic homology £
lies on Z(a,,a,), then f is a composition of at most three
transformations from 6.

Proof,., Assume that fa,H¢ ¢. Evidently, a,¢H

or a,¢H, say a1¢ H, Call a% = fa,. Let 83ye00s8 be

n+1
such points that LJn+1(a1,...,an+1) and ajeH for i =
= 3,..0,n+1. Let next I, be such a hyperplane that

H 82 = 8 and aie H1 fOI.‘ i = 3,.00,n+10 Let us define

n+1 a1 b

a,,H ° ’
2! a2 33 cee an+1 b a1

é a se 0 a
h 2 73

where b =g, 4 a’ One easily checks that f = ghg, g.e.d.

oH, 710

With respgct1to Lemma 12, the question arises whether it
is possible to generate the set of all harmonic homologies
with the help of harmonic homologies with given centers. The
answer will be contained in two following lemmas,

Lemma 13 Let §i be the set of all harmonic
homologies with the center 85 i=1,e0.,ke If every harmo-
nic homology of Pn is a composition of a finite number ele-

k
ments of ¢1k = ik)1 ¢, then there must be k=n+1,

Proof. Suppose k <n+1, and suppose fa H=
. ’
= £,f, «oo £, where a¢Z(a1,...,ak)¢1{ and fie §qy
i=1,.0.om Clearly, Z(a1,...,ak) is invariant under
f1f2 cee fk’ and consequently it is invariant under fa g
This is a contradiction with the assumption a¢13(a1,...:ak)¢

¢ H.
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16 . K.Witczyhdski

Lennma 14, Let Apseeesdy be fixed linearly in- -
dependent points in Py» and let \g‘o,...,én be sets of all
harmonic homologies having as centers 8 seeesdpy respecti-~

vely. Then every transformation fa,H of Py is a composi-

. n
tion of a finite number transformations from ¢ = U ¢,.

Proof. We may assume that a # a; for i=0,...,n.
If we had ae Z(al,aj), then, by Lemma 12, we would obtain
the thesis, Hence we may assume that a¢Z(ai,aJ) for all
i1#J. Write b for Z(a ,a)nZ(a1,...,a )., If boez(ai,aj)
i,J = 1,40e4n, then we can construct, as in Lemma 12‘, the set
of all harmonic homologies having the center b . Next, sinoce
an(bo,a1), we can construct f, . If Db ¢Z(a s85 ), then
we take into account b, = Z(a.l,b 5nz(az,...,a ) etc.

Thus the following theorem is true.

Theorem 8, -If char F # 2, escn+1 and
| Pl > n+2, then GP,(F) 1is generated by ¢,

Now we shall, stlll restrict the set g of generators
of GPn(F). Let H,,...,H 4 be linearly independent hyper-
planes such that HnDZ(a2,...,an) = G,CH , and a1¢ Hy,

all i, Write % for the set {fa N }. Let
1084 1Hn-1

us denote ‘y1u§;‘ vy ¢*

Lemma 15, Every elsment of Jg is a composition
of a finite rumber elements of the set @*.

Proof. 1° ILet us call H_ = Z(ayseeesap),
o = £,G,. Naturally, Hj = Z(G1,G2). Take into

account ga1,Z(G1,5') =gelp1U-§1, whera yeH1\G1. Clearly,

the transformation f1gf1 belongs to §1 and its fundamental
hyperplane is Z(G,,y). Thus we have obtained the set @,
of all elements of §1 in fundamental hyperplanes of which
is contained G

2% Let GO be a hyperplane contalning G-3 = G1n G2. Ta-
= fo. %We shall show fthat f0 can be
obtained as a composition of elements of W1L)T2‘ Clearly,

ke into account fa,G
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On generators ol the group 17

we may asSsume that G1¢G # Hye ILet p be such a point that

T * e -

peGo N rIo. Call G” = f I (G O)G1. et F>3p be a hyper
. . E.3 . -

plane containing G". Then gb,F = fhf, where f= fa1,Z(G2,pg)’

¢ = fb, and h=hc,Z(G ,p)° Clearly, heW1, fe\pz. Thus

we can construct, with the help of elements of \IJ1UW2, any
harmonic homology with the fundamental hyperplane containing
G*. Let H be the harmonic conjugate of z(G,,p) with res-
pect to G0 and Z(G",p), and let x # a be a point belong-
ing to H\Z(G3,p). Let next y be the harmonic conjugate of
a with respect to x and Z(G1,p)nz(a,x). One can check

easily that fo = x,Z(G1,p)hy,,Z(G*,p)fx,Z(G1,p)'

Thus we have constructed the set b 45 of all harmonic
homologies with fundamental hyperplanes passing through G3.

3% cal1 G4 = f H 3 We can construct, as in 1°, the

1)

set \p4c §1 of all harmom.c homologies with fundamental hy-
perplanes containing G4 and having a, as a center,

4° As in 2°, we can obtain the set W of all harmonic
homologles. containing G5 = G30G4 in thelr fundamental hy-
perplanes.

Since dim G1 = n-2, dim 63 = N=3,e00, dim G2n-1 = -1,

we arrive at the set ‘P2n-1 = Jg, ge.e.d.
Hence we have obtained the following lemma:
Lemma 16, If char F # 2, |Fl>n+2, and FeSCp ¢
then the set ¢* generates GP,(F). ‘
Let now b1’b2""'bn+1 be fixed linearly independent
points in P, such that b, = a; and Z(bi,b )ﬂG =¢,

all i, jJ. Let I’y denote the set of all elements of ¥,

having b; as a center, i = 1,...,n+1. CallT = 'L-'-)‘I ry
and I =F°U§;. .
Lemma 17. Every element of ‘P1 is a composition
of a finite number .elements of I"
Proof. - Assume that fb Be T1 and at the same time
fb,B¢ P,e Pirst will be considered the case beZ(bi,bj) for

PO
et .
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some i, j. ILet e.g. be2(b,,b,). Let b denote the har-
monic conjugate of b1 with respect tn b and b2. Similar-
ly, let 'd be the harmonic conjugate of ¢ with respect to
b, and b, where ¢ = z(b,,b,) NB. Take into account har-
monic homologies 5b1,Z(G b') =8 and hb2,Z(G1,d = h.

It is easy to see that fy,8 = ghge If b¢z(by bj) for

all i, j, then we take into account the point b1 = Z(b,b1)n
nZ(bg,..., n+1). 1f now b1e Z(bi,bj) for some i, j, then
we can construct, as above, any harmonic homology belonging
to ¢, and having 51 as a center. Next, also as above, we
can construct fy p. If S1¢ Z(bi,bj) for all 1, j, then

we take 5'2 = Z(B1,b2)nzf(b3,...,bn+1) ete, Q.e.d.

From the above and Lemms 16 there follows

Lemma 18, If char F # 2, |Fl>n+2, and Pe

neqe then GP (F) 1is generated by I,

Let now H¥ be such a fixed hyperplane that G1CH and
bi¢_H i = 1y0esyn+1, Call £, = fbi,H», w1_- { 1,...,fn '

€ SC

and [*= §1Utp1 ne1r 1= Teeee,ne
Lemma 19. Every element of Yy is a composition
of a finite number elements of yjur
Proof. Assume that h:hb

n+1*

n+1 H

=H*nz(b, 4,b;), i=1,ee.,n. Let b] be the harmonic
1=1'ooo,n0

conjugate of bn+1 with respect to bi and Cy
Let next hyperplane Ti be the harmonig conjugate of H with
respect to H* and 2(Gyyby)y & = 1,000,n, Naturally, the
harmonic¢ homology fihfi has the center bi and the funda-
mental hyperplane Ti' i=1,eeeon. Hence, for given 1‘13 G.I
there exists a hyperplane I-I:)C‘r1 such that £, hb

el Cal e =.

n+1°*

n+1’H i~

= gb T . Thus we can obtain each harmonic homology from 74

hav:.ng the center bi. Notice that if Z(bi,bj)ﬁG‘| =@,
then Z(bl,b )nG = ¢ Hence, by Lemma 17, we can construct

eadh alement of \y1.
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According to Theorem 7 and the above lemma we obtain

Theorem 9., If char F # 2, |Fl>n+2, and:
FPeSC, 4, then GP (F) is generated by r*, ‘

This is the last theorem from the series. The set /% of
generators of the projective group GPn(F) is a one-parans-
ters set only.

Now, we shall construct another set of generators of
GP (F), with the help of normal cyclic collineations,

By Nc°(F) we will denote the set of all normal- cyclic
colllneatlons which have at least one united point.

Lemma 20, If each element of NCn(F) is a compo-
sition of a finite number elements of NCS(F), then F must
belong to SCn+1.

Proof. Let us assume that fe NCn(F) £ = ff,...
cosfy, £, €NCOF), 1 = 1,000,k Write AyAysees,yby  Tor the
matrices of f,f,,...,f,, respeotively. By {1), the charac-
teristic polynomial of f is (—x)n+1 + det A, We distin-
guish two cases:

n+1

1) n even. Then det A; = a;” ', where a;e€F,

i =k1,...,k. By QA = A4ceesthy, 1t follows that ?n+1 det A =
FT n+1

l
i=1
2) n odd, Then det A; = -al*!, a.e P, 1= 1,...,ke

k
Hence Qn+1 det & = (-1)¥ rT a§+1, g.e.d.

Lemma 21. Let f Cn(F). Then a coordinate sys-
tem can be chosen such that f has the matrix of the form (1)
satisfying the following equalities: Cq = Ch ees = 1, c, = C.

Proof. We may assume that {1) is the matrix of f.
Take into account the matrix T = diag(to,...,t }, where
t, = ty, t, = t1c11, ty = tho 5 yenasty = th_q0nlqs g # O
It is immediately seen that the matrix rGT=1 satisfies the
required conditions.

Lenma 22. If Fe SCn+1, then every element of

NC,(F) is a composition of at most two elsments of Nc, °(F),
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Proof. First of all, notice that if n is even,
then NCE(F) = NCn(F), since FeSC 4. If however n 1is
odd and FeCp, ., then also NCB(F) = NC,(F). Hence we may
assume that n is odd and FE.SCn+1, but F‘¢Cn+1. Then F
may be ordered by a choice of the set of positive elements
(x is positive if x = ™', yeP). ILet feNC (F)\NC2(F),
and let A denote the matrix of f, By Lemma 22, A may be
written in the from (1) with the additional conditions
=1#c=c

01 = .oo.= cn_1 no
Since f¢NCJ(F), det 4 = -c>0. Denote a, =
(1,0,.0-,0),-00'an = (O,oo.,0,1), bI = (1""11)’ lbII =

(cy1y0e0y1)s Then f is determined as follows
0O ¢eenl
h i .
1 LR ¥ 3 l0 II

[ 0123 ...n0-101 |

Let us define

IIn12.0. n-2In-1J

[II n 12 4oo n-2 I n-1]

1234... n 0 II]

Clearly, g,heNCn(F) and f = gh., Hence ¢A = G*H, where
G, H are the matrices of g, h. Note that

c 0 0 0 .«eu =¢]
1 0 e¢-1 O N
o 0 c-1 .
H=|. o . .
o . .
. . c-1 =~c
. o -C
|1 ¢c-1 10 SR 0 -C |




On generators of the group 21

Since c¢<0, det H = -c(c-1)"<0. Hence, since cet A>0,
det G< 0., Thus we have shown that g,he NCE(F), g.c.de
In view of Theorem 1 and the above lemmas it follcws
Theoremm 10, let i‘eGPn(F), let TPe 50n+1’
let |Fl>4n+4., Then f is a composition of at most six
(three if n 1is even) elements of NCE(F).
Let us denote by ‘Tn the set of all fields satisfying
the following condition:

and

(i) Pn(F) contains such.a point system Bosesss@ 5 that
LIn+1( ) n-+n
a L N ] a L]
o’ *“n%en
Assume now that F e F . ILet a_,bB.,cee,b be fixed
n o*1 n2+n
points of P _(F) such that II™7(a ,b,,ese,b , ). Lot
n 0’1 n2+n

Zlo k}:i) denote the set of all elements of NCE(F) having

a (b,) as a united point, i = 1,...,n°+n. Call ), =
2

o!
n=+n Z

=0 1
Lemma 23. Every element of NCE(F) is a composi-
tion of at most three elements of J,

Proof. Assume that fe Ncg(F)\ Y. . Obviously,

+

e

at least one from relations LI™*'((a )2), LIn+1((b1)§+1),...

2
oo, I ({p , )27*2%) holds. Let e.z. LI™'((a )}). call

‘ n%+n
ai = fai_1, i-= 1,...,11. Then

0 sese n n+1
£ .
1 LR N ) O n+1

Take into account the following transformations:
. [0 1 2 <o n-2 n-1 n n+1
i
B 1 2 ... n-2 n#1 0 n-1)
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n 1 2 coe n~2 n+1 0 n=- I
gy ¢ .

1 2 3 ‘..l n"1 n 0 n+1

It is easy to see that f = g i, g e }., and i.eI;(F).

Now, we distinguish two cases:

1° The velation LI% (ao,an,b1,ib1) holds. Then we may

agssume that also LIn+1(ao,an,b1,ib1,a1,...,an_1), since
otherwise points 8yseees@) o MDAY be replaced by other united
points aq,...,aé_z of 1 satisfying this condition. Call

b

0 = b1, bgk = qb1. Let us define

r-O 1 " eee N=3 n-2 n 1" 2

Ny

1 2I 2 3 LI n"2 n O 1 1

L. i

222 3 vo. =2 n 0 1 1

n 1 2 ... h=3 n-2 0 2" 171

One can easily see that h_ e Z:O, hy e Y4, i=hjh, and

consequently f = gomoh1.

2° The points a b,, ib, are linearly dependent.

o’ 2n» ™
Then we take b2 = (qo,..-,qn), b3 = "(I‘O,...,I'n),.-. . f,

for some j, LI%(a b, ibj), then, as in 1%, we can

o* &n’ 3
decompose i onto elements of ),
Suppose the ralation LI4(ao, ag, bj’ ibj) does not hold
for § = 1,...,0%h. Put a_ = (1,0,...,0),000,8,= (0,004,0,1),
8ppq = {(14000,1) and b, = (po,...,pn); It is easily seen

that the matrix B of 1 1is as follows:
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[0 0 « oo 0 1 =1]
0-1.-0 O 1 0

B3 = . . . - .
-1 1
0 6] 1 0
_"1 0 e o o 0 1 OJ

Then, by the supposition, we arrive at the following equali-
ties: '

= =1 .
Pnoq =0 O® Py =Pg =73 Phqi
= 1 .
Opoq =0 OF Ay =0Qy =39, 45
jgk= XK -
I‘n_1 = 0 or I'j = rk =-;—rn-1;’ J, 1,2, ,n 2,

which contradict the assumption LIn+1(b1,...,b > )y de.e.d.
n“+n

Thus we have obtained the following theorem,

Theorem 11, If Fe¥,, Fesc [F| > 4n+4,

a+1’
and f‘eGPn(F), then f 18 a composition of at most eighteen
(nine when n is even) transformations from }, .
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