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ON THE FUNCTIONAL EQUATION p(x)=h(x, ^[f(x)]) 

1_. We s h a l l cons ide r the system of f u n c t i o n a l equa t ions 

(1) - h ^ x . j j ^ f f x f l t . . . f J ^ [ f ( x ) ] ) , i = 1 , . · 

where the f u n c t i o n s h^ 3m+1 and f of the type R —— R and 
R d — * R n , r e s p e c t i v e l y , are given and φ^ are unknown func-
t i o n s . The fundamental theorems r ega rd ing the uniqueness and 
the ex i s t ence of s o l u t i o n s of the c l a s s C r i n the case m=1 
are. due t o B.Choczewski ( [ l ] , [ 2 ] ) . This theory has been 
f u r t h e r extended by J.Matkowski [6], Our theorem (see §3) 
g e n e r a l i z e s a l so some r e s u l t of the au thor obtained i n the 
case of f u n c t i o n s of r e a l v a r i a b l e [ 4 ] . On the o ther hand, 
the system (1) may be t r e a t e d as a g e n e r a l i z a t i o n of Schroe-
d e r ' s e q u a t i o n . Therefore the r e s u l t s of t h i s paper c o r r e s -
pond to o the r s contained i n [ 3 ] , [5] and [ ß ] . 

L e t [ a k ] ' j ]» »·•· · !m» s , j = 1 . . ,n be a r b i t r a r y 
r e a l m a t r i c e s . By the r i g h t Kronecker product of the m a t r i -
ces [a £ J a n d ^ j J we mean the matr ix 

( 2 ) 
[ « Μ 

' « M - i [ * î ] 

- M « M . 
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Ζ.Kominek 

I t i s w e l l known that i f ç 1 > . . . , ç m and μ^,»..,μα denote 

the c h a r a c t e r i s t i c r o o t s of the m a t r i c e s ¿ J and 
r e s p e c t i v e l y , then ?.¡/í8> i = 1 , . . . , m , s = 1 , . . . , n are the c h a -
r a c t e r i s t i c r o o t s of the matr ix ( 2 ) . 

L e m m a 1 . I f i , k = 1 , . . . , m , 

s , 3 = 1 , . . . , η and | 9 J \/u j 1 ( r i s a p o s i t i v e i n t e g e r con-

s t a n t ) , then there e x i s t s a system of numbers > 0 , B 1 > · · · » s
r 

k = 1 , . . . , m , s 1 , . . . , s r = 1 , . . . , n s a t i s f y i n g the f o l l o w i n g system 
of i n e q u a l i t i e s 

< » L L - L · ^ ; - ^ . . . . . < » } k=1 s l = 1 s r = 1 ' 

i = 1 , . . . , m , j ^ , . . . , 3pr>-1, · · · » ß· 

P r o o f . This f o l l o w s from Lemma 1 . 2 i n [ 7 ] , because 

the modulus of every c h a r a c t e r i s t i c r o o t of the matr ix 

[ a k ] x j ] x " • x [ ; 3 j ]
 i s l e S S t i i a n o n e · 

r - t i m e s 
I n the space r P we int roduce the norm 

(4) ||x|| = | x q | , χ = ( Σ ν . . . , Χ ρ ) · 
q = i 

7,'e say that the f u n c t i o n h d e f i n e d on G*H, G C R n , HCR m 

m γ» 

with v a l u e s in Η i s of the c l a s s C i n GxH, i f f there 
e x i s t a f u n c t i o n h and open s e t s G and H , C G C G , H CH 
such that h i s of the c l a s s C r i n GxH and the r e s t r i c -
t i o n h to the cet GxH i s equa l to h. 

Let f : G C H n — h : GxH C H11"1"01 —~H m be of the c l a s s 
C r in G and GxH, r e s p e c t i v e l y . We denote f = ( f ^ , . . . , ' f n ) , 
h = ( h r . . . s h m ) and 7 1 t 1 , n , . · . 

' ^ <5 5 
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On the functional equation 

the sequel, the following sequences of functions will be 
very useful: 

m η o. 3f oh, ι— ν—• 3h. . s. 1 1 i Υ-1 —' 1 1 hitj/|(x,y,y ) (χ,y) + ^ ( x , y ) ^ ϊ5Γ(χ)· "i i—< -«Ir -1-Λ --J J1 k=M J1 

ah6"1 
.6 . 1 6, l»V'",Je-1, 1 6-1» h- i ,¡ (x.y.y ,....y ) — (x,y,y,...,y ) • 1 I J/] » · · · « J0 ° 

m η 3h?~1. . 3f 

L L· (x,y'y ·-·'' Κ ' , G Z k=1 s1=-l K 1 36 
00 + 

6-1 η η 3h. ! 
+ L L 1 — r (x,y'y J 

7Γ! k=i s,l8>+1=i K,S1 sv 

3f 
' yk s s s T í 

^.•••.¿6 =1 ® =2,..., r, χ 6 G, yeR™"'. 

We have the following simple lemma. 
L e m m a 2. If f: G C R n — - R n , h: Gx H C R m + n — - R m 

are of the class Cr, then the functions h. . . , 
i=1,...,m, 0=1,...,r, ,..., j6=1,... ,n are of class Cr~S. 

Kdw, we suppose that γ is a function defined and of the 
class Cr in a neighbourhood GCR n of aero and with the 
Vcluee in Rm and let 

y[f(x)J e Η for every χ e G. 

l e m m a 3. Let f and h satisfy the assumptions 
of lemxa 2. -he function 
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4 Ζ.Rominak 

(6) ψ (χ) h(x,y[f(x)] ), x e G 

is of the class cF in G and also we have 
(δ) 

Sx, ...ix, M - 4.a- *€g, «J·̂  Jar ' 

i=1 )·»• fiQf f · >· ι*í<y f ·»· 5=1y...)r. 
P r o o f . Differentiating (6) with respect of the 

variable x., we obtain 
J 1 

ir' - Τ̂ί, 3fs. 
^ («.yCfCxflJ+r Γ ^ («.?[*(«)] J - n r W ' f e 1 « · 

fei ίρΐ k S1 j1 

= h? . (*,y[f(χ)], ar'[f(x)]), 1=1.... 1=11 «· · »n» 

which proves our assertion in the case 5=1. Assuming that 
(<*-1) 

a β ...a*1 (χ) . (x,ar[f(x)] 3Γ(σ-1,0(χ)]), 
d'i Je-1 1 , 31 , ,"' ; |β-1 

6 í r , i=1,...fm, ^ ,..., j0_1=1,... ,η, similarly as 
(σ) 3h®"1 d ψ-4 <3(5 i Γ above, we have g^ (x) = r[f (x)J ,... 

jff D® 

k=1 s1=1 k 

3 f 
...,ar(c-1,[f(x)]) î^-[f(x)] T x ^ W + 

®-1 m η η 3h?~] 
+ Σ Σ y ' n 
V = 1 k— 1 s j · · · j Sy —1 = ̂  ->®*]>···» 
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On the func t i ona l aquation 5 

a ( v + 1 , r 3 f a 

Thus the proof of this Lemma i s f inished. 
L e m m a 4. The functions h? , . defined 

1 î J •j » · · · » J© 
by ($) can be written in the form 

(7) h® . i i í f ( x ,y ,7 1 . · · · . Ζ " 1 ) + 
•L » J ι » · · · » J<? 1J •]» · · · » 

! S I 

where zf . . are of the class C r ~ S and 
1 > «J1 » · · · >J f f 

πι ,n η 

Q i , 3 1 , . . . , d a ( x ' y ' » y 6 ) - L U — 
1 k=1 s 1 =1 Sg=1 K 1 

s1 s e 

• ( x ) · · · t f ~ ( x ) · 

We omit a simple proof of th i s lemma. 

2. Necessary condit ions 
'Ve assume that 
( i ) the funct ion f of the type Rn in to Rn i s def ined and 

of the c lass C r in some neighbourhood GCRn of zero and f o r 
every neighbourhood G^CG of zero there ex i s t s a neighbour-
hood G ^ fl1 of zero such that f l G ^ C G ^ 

( i i ) the funct ion h of the type Rn*Rm in to R"11 i s 
def ined and of the c lass C r in the set G*H, where H i s 
open, 06 H and h(0,0Í) = 0. 

Prom Lemmas 3 and 4 we have 
L e m m a 5. I f ( i ) , ( i i ) are f u l f i l l e d and φ-.G -H 

i s a so lut ion of the equation φ{χ) = h ( x , p [ f ( x ) ] ) i n G 
f u l f i l l i n g the condit ion <p{0) = 0, then the numbers 
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6 Z.Kominek 

a ( G V 
(8) 2Ì 1 '--Tí ( 0 ) , 6 = 1 , . . . , r 

sa t i s fy the system of equations 

(9) gì , ή = 4 1 1 ( 0 , 0 , ? 1 , . . . , ? β - 1 ) + 

+ Q i 1 i J 0 . 0 » ? ^ . 1 » J11 · · · » «Jo 

i = 1 , . . . , m , j 1 , . . . , 3 e = 1 f . . . , n , where 

(10) 2»:= ,n ' * * * . . . , n , 1 ' * * * 

φ ι 

9 = 1 , . . . , 0 . Moreover, for every permutations ( j a 

of the system ( D 1 , . . . , j ç ) the equal i t ies 

^ ^ ? i> » · · · » jag· 

hold. 
The existence and the uniqueness of the numbers 

2°. . . . sat is fying the conditions (9) resul t from the 
^»J-J»··*» οβ1 

following assumptions: Ç " · Μ β ^ 1» ί=1»···»πι, 
1 9 

e = 1 , . . . , r , s^ i , . . . , % = 1 , . . . ,n, where denote the characte-

r i s t i c roots of the matrix (0 ,0 ) J and ( « 1 , . . . , / u n - the 
charac ter i s t i c roots of the matrix ( 0 ) ] . This follows 
from Cramer's theorem, because the system (9) can be written 
in the form 

f . z » ( 0 , 0 , ? 1 f-U • { [ $ ( 0 . 0 ) ] . 

' [ n - H 1 ' " · · 
β -times 
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On the functional equation 

3 = 1 , . . . , r , where the symbol [ denotes the transpose 
of [ · ] . In the sequel the system of numbers sa t i s fy ing con-
ditions (9) and (11) w i l l be called admissible (see [ 3 ] ) . 

Now. we suppose that n\ ¿ . i s an admissible sys-<} 1 > · · · » JG 
tem. Without loss of general i ty , s imilar ly as in [2], we can 
assume that n\ . Λ 1 K»iJi>···» JÇ 

= 0 , 6 = 1 , . . . , r , k=1, . . . ,n , j 
. J , · . I 

. . . j r = 1 , . . . , n . By (9) and Lemma 4 we get 

(12) 

and 

Z? Λ * ( 0 , 0 , . . . , 0 ) = 0 X»J-]»»»«»J<5 

(13) Κ Λ i ( 0 , 0 , . . . , 0 ) = 0, 

i=1, . . . ,m, S = 1 , . i . , r . 

3. The existence of a solution of the class Ĉ  
Put 

î ï i (0 ,0 ) Λ 
3f 

" (0) , i ,k=1, . . . ,m, s, ¡ j—1,..·,n, 

and l e t , as above, 9 1 f . . . , ç m and denote the cha-

r a c t e r i s t i c roots of the matrices [ a £ J and [ ^ j J * respec-
t i ve l y . 

T h e o r e m . If ( i ) , ( i i ) , (12) and (13) hold and 
for i=1,*. . ,m, j = 1 , . . . , n 

(15) f i l Ι ^ Γ -

then there ex is ts a solution ψ = ( ^ , . . . ,pm) of the class 
0 e of the functional equation 

?(x) = h(x ,p[f (x) ] ) , 
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8 Z.Kominek 

in a neighbourhood of zero such that φ.{0) = 0 and 
3(<5,α> Ο ψΐ 

^ (0) = 0 for i=1, . . . ,m, j 1 , . . . , j e = 1 , . . . ,n, 

6=1 , . . . , r . 
P r o o f . On account of ( i ) , ( i i ) , (14), (15) and 

Lemma 1 there exist neighbourhoods U^cRn , V.jCRm, Ο ε ϋ ^ 
C ÏÏ^ CG, OeV^cV^cH and a constant ε^Ο such that 

m n n s s 
Σ—ι ^ ι * * } · ^ j-t * * ϋ-ρ ^ 3 1 » · · · » 8 Τ . k=1 s l = 1 sr=1 1 r ι r 

1 » · · · » j p » i =1 , . . . ,m, j . . . , j r = 1 , . . . , n, 

(16) 

Ίί' 

where 

(17) 

(18) 

The 

a^ := sup 
3h. 

bj := sup· 
3f. 
ax. •(x) 

+ 6; (x ,y ) e y V1 

+ ε j χ e Ü1 

continuity of ΖΪ , Λ and (12) imply the exisJÇBce 
-»-»«^»•••f Jp 

of neighbourhoods U2 and V2, 0 e U2 C ÜgC U.,, oeVgCVgCV., 

such that for a l l x e U 2 , y e V 2 , ' A := V2* . . . * V2, 

6=1 , . . . , r -1 the inequalities nff-times 

(19) 

hold. 

Z? Λ 1 (x,y»71 7 r " 1 ) | ^ » Ì i » J-j » · · · » Jp ι J- j » · · · » « 

® α n 

V V Γ a15" b 1 b 
¿—è ( ι * ( ι k D-i' * 3τ> ε ι » · · · > ! 
k=1 s ^ l sr=1 1 r 1 
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On the functional equation 9 

Of course, we may assume that 

(20) { y e R m ; fly Ν sup j||x||. x e U 2 } } c V 2 

as well as 

m η 
<1, 

(21) 

< ^ ι * ^ • S 1 I ' " I ¡ 

k=1 s ^ l sr=1 1 

m η η 
¿ L ^ • *** Ε ^ 3 ι » · · · » 3 γ ι ' 

η η 

k=1 s1=1 sr=1 

because the system (16) is homogeneous. 
, , > 0 , i = l , . . . ,m , j 1 , . . . , j =1, — ,n be ar-
J -J I · · · > Jp 1 ± 

Let ε Ì 
ο 

bitrary numbers f u l f i l l i n g the system of the inequalities 

η 
i v.a1 ^ Λ i a. b . . . . b . f . <r t . .J 

m η (22) y y ...r ak bi1---bir cs β <«î ' ' ' J 1 Jp ö-]>«*»»ap J 1 Í · · · » 
k=1 s1=1 sr=1 

The functions Ζ. . 
1 »3-|» · · · » dp 

and 
ah 3 f o 

i S1 
3f. 

a y k 
are 

'-1 
uniformly continuous on. the sets U2* T^xT^x . . . xV" and 

U2XV2 respectively. Hence there exists a <5>0 (depending 

on ε ̂  a ) such that for a l l x . x e û , , y,y eV0, y® ,y°e 
J •]>·· · f Op <=-

— η® — -

£ V2 satisfying the inequalities ||x-x||^6, ||y-y||«;6f 

HyS-y5!! s <5 we have 
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10 Z.Kominek 

(23P 

ί ή , y r - 1 ) - z i 1 , ( (x.y.y1t..-,yr~1)|«£ 

m η 

k=1 sr=1 

I 3h 3 f s 3 f= m η 

'Sx. 00 -

3 f s r 

* Jj. 
«Ì I · · · »dj, 

-LL - - s 

k=1 s1=1 sr=1 

Let U c R be a neighbourhood of zero such that 

(24) f ( Ü ) c Ü c { x 6 R n ; ||x||^l} 

and let X^, i = l , . . . , m denote the family of a l l r ea l func-
t ions φ^ of the c l a s s C i n U f u l f i l l i n g the condit ions: 

(25) 9=^(0) = 0; 

<26> a»4 . . . ax . 
3σ 

(27) dx. . . . S x , 

(0) = 0, i=1, . . . ,m, , . . . , j e = 1 , . . . , n , 

6 = 1 

> i=1j . .« jO, 3ι»···»0 τ.= 
( x ) 

I -J » · · · » J j. } "J 1 * · " f 
=1 , . . . ,n; 

(28) i f e^ . > 0 , i = 1 , . . . ,m, =1,...,n f u l f i l (22) 
D -J » · · · » <3p 
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On the functional equation 11 

and χ, x e U , ||χ-χ||«£δ, where <5 i s chosen so that (23) 
holds, then 

3 <Pj 
3 χ . . . . 3 X J 

J 1 "r 
( x ) dx. . . .3 X . ( x ) ^ I 3 1 » · · · » dp 

In the vector spaces X^ (with the usual operations 
and " · " ) we define the norm 

(29) ||Vi|| Î= ) SUP 
.«j i » · · · » <3Γ=1 

3 
9x . · . « Î X J ( x ) ; χ e U 

and in the space X := X ^ . . . xXm we put 

(30) 
m 

M** H i m 
1=1 

Note that X i s a convex and compact subset of the space of 
a l l functions defined and of the c l a s s 6 e in U with the 
values in Rm (the compactness of X follows from the con-
dition's (25)-(28) and the theorem of Arzela). Por φ = 
= ( j o - j , . . . , ^ ) e X we put 

(31) ^ ( p H x ) := h ^ x . p t X x ) ] ) , i = 1 , . . . , m , 

(32) T(p)(x) := (T 1 (9>)(x) , . . . ,Tm (9>)(x)) . 

I t follows from (25), (26), ( i ) , ( i i ) and Lemmas 3 and 4 that 
for φ e X we have 

a«*) τ . 
(33) Τ±(5Ρ) (0)=0, d x t < J x (0)=0, i = 1 , . . . , m , j 1 f . . . , ò e = 1 , . . . , n 

V " 3® 
G = 1 , . . . , r . 
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12 Z.Kominek 

By (24) and the mean-value theorem we get 

I K M I eap { | 9 k ( x ) | , x e ü } 
k=1 k=1 k=1 

m η 

Σ Ι s * p 

k=1 d1=1 
Ml; 

m 

L I 

η 
sup 

k-1 j - ] » · · · » <jp_1 
ix, ...L· <*> «J-| ür 

llx||r; u U 

whence, in virtue of (27), (24) and (21), 

(34) | j » [ f ( x ) ] l k l l * ! 

which implies that 

(35) 9»[f(x)] e V2. 

Moreover, similarly as above, we can prove that 

(36) 9> ( e ) [ f (x ) ] €V2n(3r, <?=1,., . ,r-1. 

Dif ferentiating the squality (31), along the same l ines as in 
Lemma 3, we get 

(37) 
3 ( r ) T , 

= h ? i i ( * .? !> (*£] *> ( r , [?wJ) 
]1 Jr ' 

dx 

and using Lemma 4, (35), (36) and (19), (17), (1S), (27) we 
have 
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On the functional equation 13 

(38) 
3 ( r ) T . ( y ) 

Jr 
(x) 

Suppose that the antecedent of the condition (28) i s f u l f i l l e d . 
I t follows from (37) and Lemma 4 that 

(39) - f e — O O - s ; k — 0 0 3x. ...ax. j r 
3x. ...3x. 

J1 Jr 

' •*•» J/j » · · · « Jr "" 

m η 

L I 

3h. 
ay M 

3f 3f 

3x. • (* ) · . . ax r •(*) 
j, k=1 s1 , . . . ,s r=l 

3z ...8z S, Ξ 1 r 

' Η * 
dz ...dz [f(x)I 

s. s oh. r -, 
33-1 (X) . . . ^ ( x ) ^ ( χ ^ ( χ ) ] ) -

ôih 3f 3f ν 

k J. 3- / 

Putting y = f ( x ) and y = f ( x ) and applying a reasoning 
similar to that we have used to obtain the condition (35), 
we ge t 
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14 Z.Kominek 

m li 

S 1 ) " M S j > _i/ ' « ι 
k=1 s^ , . . . , s r=1 

6 =0 ,1 , . . . , r -1 . 

However, 
η η 

7 - y I = i|f(x) - f(x)|| ^ Γ Σ b? I|x " 
s=1 3=1 

whence, in virtue of (21), 

? ( e ) [ f ( x ) ] - φ(<ΐ,[>(χ)]||^||χ - 5 =0,1, . . . ,r-1 J G ) 

and, on account of (39), (22), (17), (18) and (27) we infer 
that 

(40) Tifi») 
dx. ...3x. ( x ) - dx. . . .Sx, 

Ί 
< ε : 

Ί 5 · · · » Jp 

Conditions (33) (33) and ( φ ) show that the transformation Τ 
maps the space X into i t s e l f . I t i s not d i f f i cu l t to check 
that Τ is continuous. Now, the assertion of our theorem/ 
results from Echauder's principle. 
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Vol. XIV No 4 1981 

Grazyna Pankiewicz 

ON THE UNIQUENESS AND THE NUMBER 
OF THE SWITCHING POINTS OF OPTIMAL CONTROL 

1. Formulation o f . the problem 
We s h a l l consider the time-optimal problem f o r the l i n e a r 

eq nation 

( 1 . 1 ) = A x ( t ) + Β u( t ) 

with the i n i t i a l value 

( 1 . 2 ) x ( 0 ) = x v 

where x( · ) i s a function defined in the in terva l C^f^] 
with values in a Banach space X^; u( · ) - control - i s a fun-
c t ion defined in the i n t e r v a l [θ»Τ] with values in a Banach 
space J.2't A, Β - l i n e a r operators and: 

BrX^—"-X-j a bounded operator and the image of the unit 
b a l l by the operator Β has non-empty i n t e r i o r , 

— X . J a bounded operator which generates a strongly 
continuous semigroup S ( t ) of l i n e a r , bounded operators , 
5 ( t ) = e t A (see [ 2 ] ) . 

The time-optimal problem cons i s t s in f inding the minimal 
time of a t r a n s f e r in which the f i n a l s t a t e i s a t ta ined . 

Let UCX2 be a set obtained from the open, s t r i c t l y 
convex set by cutt ing o f f the η planes, bounded and weakly 
c losed. The functions u( · ) such that f o r a l l t : u ( t ) e U 
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2 G.Pankiewicz 

w i l l be ca l l ed the admissible contro ls and the set of such 
contro ls we denote by U . 

Let u1 and u^ be She contro ls passing from the zero 
point , 0 e X 2 , to a cer ta in side R c U (U has η s i d e s ) . 
Obviously, the vector w = u2 - u... i s placed on th i s s i de . 

We sha l l assume that the genera l i zed pr inc ip le of genera-
l i t y of placing i s s a t i s f i e d . I t consists in the f a c t that 
the system 

(1 .3 ) B W , A B W , A 2 3 W A n 3w, . . . 

where w i s any contro l placing on any side def ined above, 
i s a complete system in Banach Space X1 ( i . e . the l i n ea r 
space spanned by these elements i s dense in the space X^ ) . 
This condi t ion has been ca l led a genera l i zed pr inc ip le of g e -
ne ra l i t y of placing Fjith respect to the i n f i n i t e dimension 
of the space X^, in cont rad is t inc t i on to the c l a s s i c a l pr in-
c i p l e of the genera l i t y of placing f o r the f i n i t e dimensional 
space (see [ 3 ] , 3 .17 ) . 

Let Η = Η ( ψ ( t ) , x ( t ) , u ) be Hamilton's funct ion in Pon-
t r i a g i n ' s maximum pr inc ip l e . Por the problem ( I . I ) , ( 1 . 2 ) th i s 
funct ion i s of the form 

Η = H ( v / ( t ) , x ( t ) , u ) = (ψ ( t ) , Ax( t ) ) + (ψ ( t ) ,Bu), 

where ψ ( ΐ ) i s the so lut ion of the equation ad jo int to the 
equation (1 ,1 ) 

( 1 .4 ) - ^ P - = -A* v ( t ) . 

Obviously, the funct ion Η ( o f the var iab le u) a t ta ins the 
maximum together with the funct ion ( y ( t ) , B u ) , which we de-
note by Μ(ψ). Prom Pon t r i ag in ' s maximum pr inc ip l e , which i s 
f u l f i l l e d f o r such problems (see [ l ] ) , i t f o l l ows that i f 
u ( t ) i s the optimal contro l transformed the system from the 
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state y, to the state χ 2 , then there exists a solution 
ψ ( ΐ ) of the equation (1.4) such that 

(1.5) (ψ ( t ) , B u ( t ) ) = H ( V ( t ) ) . 

Since the equation (1.4) does not contain the unknown func-
tions x ( t ) and u ( t ) , i t is easy to find a l l i t s solutions, 
and next the solutions of the equation (1.5) among which the-
re w i l l be a l l optimal controls f o r the equation (1 .1 ) . 

We come to the question: On how much uniquely does the 
condition (1.5) determine'the control u ( t ) by the function 
v ( t ) ? 

Theorem 2.1 quoted below gives the answer on this ques-
t ion. 

2. Theorem about the number of the switching points 
T h e o r e m 2.1. For each non- t r iv ia l solution ψ ( ΐ ) 

of the equation (1.4) the re la t i on (1.5) uniquely determines 
the control u ( t ) . 

P r o o f . The function ( y ( t ) ,Bu ) i s l inear , so i t 
i s constant or i t attains has maximum only on the edge of the 
set U. The same concerns to each side of the set U (remem-
ber that U has the f i n i t a number of s ides ) . So this function 
attains i t s maximum in one vertex only of the set U or on 
whole side of this set . "re shall show that by the completeness 
of the system (1.3) the last thesis (the achievement of maxi-
mum on the whole side of the set U) i s possible only f o r the 
f i n i t e number of the values of t . 

Let Τ denote an i n f i n i t e set of values t e [ θ , τ ] , f o r 
which the function ( y ( t ) ,Bu ) , where ueU, attains i t s ma-
ximum on the wall R of the set U. We can find such a 
set Τ because the set U has a f i n i t e number of sides. 

By the assumption of the strong, continuity of the semi-
group S ( t ) = e t n , i . e . of the continuity cf the function 
£ ( t ì x = e " ' x . the solution ψ ( t ) of the equation (1.4) 
i f of the form 
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therefore i t i s analytic with respect to t (remember that A 
is a bounded operator). 

Por any t e Τ the function (v ( t ) ,Bu) = (e~ t A vo,Bu) of 
the variable u is constant on the wall R. So we have 

(e- t A%0 ,Bw) = (e " t A*Y o ,B (u 2 -u 1 ) ) = 

= ( e " t A \ 0 ,Bu 2 ) - (θ~^Α*ψ0>Βα^ ) = 0. 

Note that i f (e~tA*\|/0,Bw) = 0 for t e r , then from the 
analyticity of this expression i t follows that i t is ident i -
cally equal to zero on the wholo segment t e [ o , T ] . So we 
have 

t i * 
(e τ Ά y0,Bw) s o. 

Dif ferentiat ing successively the above relat ion with respect 
—t A* 

to t and using the fact that y ( t ) = e ψ0 is the solu-
tion of the equation (1.4) we obtain 

' (A*y(t),Bw) = 0 

( A* 2 y { t ) ,Bw) = 0 

(A*nv(t),Bw) = 0 

i . e . by the equality (x,Ay) = (A*x,y) which is true for 
any x, y: 

(v(t),ABw) = 0 

(2.1) 
(ψ(t ),A Bw) = 0 

(y (t),AnBw) = 0 
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2 By the assumption of completeness of the system Bw,ABw,A Bw,... 
in the Banach space X1 the relations (2.1) denote that the 

? » vector ψ ( ΐ ) orthogonal to the vectors: ABw,A Bw,... i s 
the zero-vector: y ( t ) = 0. This contradicts to the assump-

-t A* 
tion about nontrivial i ty of the solution ψ ( ΐ ) = e ψ0 of 
the equation (1 .4 ) . Hence there must be: w = Ug - û  = 0. 
Therefore Ug = û  = u. 

Thus for a l l except the f in i t e number of the values 
t 6 [o , tJ the function (y ( t ) ,Bu) attains on U the maximum 
only in one point, which is the vertex point of the set U 
(because U i s the s t r ic t ly convex se t ) . Thus, by the re la -
tion 

(u/(t) ,Bu(t) ) = max (\»i(t),Bu), 
ueU 

there follows the unique determination of the function u ( t ) , 
q.e.d. 

D e f i n i t i o n 2.1. The discontinuity points of 
the optimal control are called switching points. Precisely, 
i f Q i s an discontinuity point of optimal control u ( t ) , 
and i f u(Q_) = a i , u(Q+) = â  (a^, â  - d i f ferent points) 
then we say that for t = Q the change-over of optimal con-
tro l u(t ) from the point a. to the point â  hae been 

¿J 
achieved. 

Prom the proof of Theorem 2.1 i t follows that the points 
of segment t ^ t « ^ , in which the control u(t ) is not 
uniquely determined, divide the interval t Q ^ t < t 1 into a 
f in i t e number of the segments. 

By the analyticity of the solution ψ ( ΐ ) of the equation 
(1.4) (which follows from the proof of Theorem 2.1), the 
following result i s true 

T h e o r e m 2.2. On each f in i t e segment of time the 
control - function u(t) has a f in i t e number of switching 
peints. 

Thus, Theorem 2.2 can be characterized shortly as a theo-
rem about θ f in i t e number of switching points. 
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Observe that the above result can be obtained with the 
assumption that the set U has a countable number of sides. 
It is necessary only to note that the sum of the countable 
number of sets of the zero-measure has the zero-measure, which 
follows from the relations 

0i£ U 
i=1 L 

1=1 

where ¡A.J = 0 for each i=1,2,... 
notes here the measure of the set A. 

Obviously, de-
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