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Zygfryd Kominek

ON THE FUNCTIONAL EQUATION ¢(x)=h(x, ¢[f(x)])

1. We shall consider the system of functional equations

(1) @(x) = hy(x,p,[£(x]] ,...,¢m[f(x)] )y i=1,ee.,m,

Rm+1

where the functions hi and f of the type —=R and

R%—=R", respectively, are given and g; are unknown func-
tions. The fundamental theorems regarding the uniqueness and
the existence of solutions of the class C* in the case m=1
ara due tb B.Choczewski ([1], [2]). This theory has been
further extended by J.Matkowski [6]. Our theorem (see §3)
genseralizes also some result of the author obtained in the
case of functions of real variable [4]. On the other hand,
the system {1) may be treated as a generalization of Schroe-
der s equation, Therefore the results of this paper corres-
pond to others contailned in [3] ’ [5] and [8].

Let [ai],[,sg], i,k=1,e..,m, 8,j=1,...,n0 be arbitrary
real matrices., By fthe right Kronecker product of the matri-
ces [ali(] and [ﬁg] we mean the matrix

[#3].... ,a%[ﬁ?] ]

@ i - -

[« 5{85]s - a5
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Z.Kominek

It is well known that if 91""’9m and Mqsenesply denote

the characteristic roots of the matrices [cx i] and [,’3 g],
respectively, then O 3Mgs iz1,e0eym, 8=1,...,0 are the cha~
racterigtic roots of the matrix (2).

Lemma 1. If o(li{>o,p§>o, 3,KeTy 000,

9;lleglT<1 (r is a positive integer con-

k >0,
1,0.0, r
k=1yeee,m, s1,...,sr=1,...,n gatisfying the following sysfem

of inequalities

ir}
(3) Z Z L kﬁ1 "'ﬁ‘r kq,...,s 31,-u.ar

k=1 s -1 8,=1

S’J=1’.ll’n and

gtant), then there exists a system of numbers v

1=1,000 M, j1,...,jm=1,...,n.

Proof., This follows from Lemma 1.2 in [7], because
thg modulusg of every characteristic root of the matrix
ExiJXEﬁi]x see x[ﬁ?] is less than one.

r-times
In the space RP we introduce the norm

p
{4) Izl = 2:; lqus x=(x1,...,xp).

e say that the function h defined on GxH, GCR®, HcR®
with values in R® is of the class €T in GxH, iff there
exist a function h and open sets G and ﬁ,cacﬁ, HcH
such thet F is of the class C° in GxH and the restric-
tion K to the set GxH is equal to h,

Let f£: Gcr?—=R", h: GxHc RTR = g"
T

C- in G and GxH, respectively. Ve denote f=(f1,...;fn),

be of the class

- 6 _
b= (hyseeehy) end 37 = (-Vw,l,...,v‘“’3’1,1,...,n""
[

G

" " on -

“"3m,n”..,n,1“"’3mﬂh...,n)eR for 6=1,s..,F« In
N Bt ek I Ak Il Sl

G G
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On the functional equation 3

the sequel, the following sequences of functions will be
very useful:

of

. m n

1 1 oh; 2 3h, 1 54
hi,j (x,5,5 ) Ll T (x,5) + Z. a—y;@"y) Yk,s '5x—_-(x).
1 I = ye 13,

o] 3
G 6 e Al - P 1 G-1
h, . N (x.y.y1----,y ) = ) (xiy’y yeoes ¥ ) +
1l31""’36 ij
m n an‘i'; 3 ot_
10400 2Y61 1 G-1y 1 1
+ (x’yly yeeesy )y c @ (x) +
oy k,s, 0x_
k 1 J6
k=1 s,]=1
(5)
G-1 n n Bhi_’! .
S sdqrecesds_y ( 1 51,
+ ayi WKy YsY 9eeesy ) ¢
4 S 9+004S
V=1 k=1 5400008548, 471 '7q 'y
afs
. yv‘f'] Y+1 (x)
’
k,s,!,...,s,,spm 5xj6
. . mnG
J,‘,...,JG =1,es04n, 06=2,,..,r, xeG, yeR .

We have the following simple lemms.
Lenmma 2. If f: GCRP—~R"?, h: Gx BcRMR__o 5"

are of the class Cr, then the functions h. . .,
13319"'!33

i=1,e00ym, B=1,000,y Jqyeeeyde=tse0s,n are of class cr-S6,

Tow, we suppose that g 1is a function defined and of the
clese C¥ in s neighbourhood GCR® of zero and with the
veluee in R® and let

3[f(x)] € H Tor every xeG.

Lemma 3. et £ an? b scetisfy the sssumuntions
ot lem=a Z, The function

- 1033 ~



4 Z.Kominek

(6) v (x) := hix,z[£(x)]), xeG

is of the class c® in G and also we have

a(elvi 6

. G
m(x) = hi,j '...’je(x,?[f(x)] ,.oo,?( )[f(x)])’ XGG,
PR 1
i=1,ooo,m’ 31,...,je=1,-..,n,6=1,...,1‘.
Proof, Differentiating (6) with raspect of the
variable zz'.‘_j we obtain
1

af
) 3n 3n
a“'; ()= 73, (x,a'[f(x)])+z 2 ﬁ(x.a'[f(x)])-r—(f(ﬂa—-(x)-

1. 1 k=1 5,=1

= b} p (xp[2(x)], 7' [e(x)]),  1=1,...0m, 321,000,
|

which proves our assertion in- the case 6 =1, Assuming that

@-1) '
o] vy 6~ G-
axj ...axi (x) = hi’g1,000’36_1(x’z[f(X)] 9'.0’3( 1)[f(x)])’
44 6-1
Xe€e G, 6\<I‘, i=1,ooo,m, j.],ool,je 1=1,0.0,n’ Similarly as
(6) ang~]
9 Vi ’31’°"’JG-1
above, we have s————=—(x) = 3 (x,7[£(x)] , e
3xJ ...axJG x:16
m n ahG ?] j
- Ly yeeey :
s g ]+ ) 1ay 01 (x,3[E(x)] 500
k: s :
af

...,3‘(6 1)[f(x)]) T—[f(x)] g (X) +
Jje

n n an‘”

G-1 m '
’31"“’36 1
+ E ) B > o (x,0[£(x)],00s
P=1 k=1 81,000,8,=1 8, =1 Jk,s1,...,s,,



-On the functional equation 5

a0 +1)y af,
--.,3'(6'1’[1’(::)])- PR zk_ (£(x)) —a—x‘t—”- (x} =
84 5y +1 36
= (x,3[£(x)] ,...,3‘(6)[f.(x,)] )e

i!j1l""jc

Thus the proof of this Lemma is finished.

Lemma 4. ‘The functions hg;j1,...,js defined

by (5) can be written in the form

s 1 6y_,0 1 6-1
(7 hi,j1,...,j6(x’y’y yeeesy )'Zi,j1,“.,js(x’y’y se0eeyy )+
) G
+Qi,j1,""jc(x’y’y ),
where 2% | . are of the class CT~° and
19319'-°s36
m n n
3h.

6 . 6) - Z_ 2 2 i 6 .
Qi,j1’..',ao(x!y”y ) °°t ayk(x,y)yk,s1,a-|,sa
k=1 S1=1 8g=1
3fs1 afse
*Ax. (x) "‘Tx—.—-(x)°
31 J6

We omit a simple proof of this lemma,

2. Necessary conditions
We assume that

(i) the function f of the type R® into R® is defined and
of the class CT in some neighbourhood GCR™ of zero znd for
every neigabourhood E1C G of zero there exists a nsighbour-
hood G1C G1 of zero such that f(G1)C G1;

(ii) the function h of the type R™R® into R® is
defined and of the class CT in the set GxH, where H is
open, OeH and h(0,0) = 0,

Prom Lemmas 3 and 4 we have

Lemma 5. If (i), (ii) are fulfilled and @:G—H
is & solution of the eguation ¢(x) = h(x,p[f(x)}) in G
fulfilling the condition ¢(0) = 0, then the rnumbers

- 1035 -



6 Z,Kominek

3(6)91

8 ¢ — ———————5———(0) B=1,e00,T
gatisfy the system of equations

6

€ . o= g8 -1
Q1,311---s36 19311-00,30 )+

(9) (0,0,71,...,9

*Q (0,0,9%),

131!"':33

i=1,nao’m, 31,.co,js=1,ono,n’ Where

V.o Vv » »
(10) Q = (91,1,00.,1’."’21’1,00-,nJ...,?m,n,ooo,n,1’.'.

v
""?m,n,...,n)

P=1,.4.,6. lloreover, for every permutations (jq ""’jus)
of the system (31’°":36) the equalities !

G _ 6
(11) Qi,j1,.-o,je —.?i’ad1’°"’j“6
hold,
The existence and the uniqueness of the numbers

o . satisfying the conditions (9) result from the

21131""’36
following assumptlons: 91"‘81"'4“80 .;4 1, i=1,¢..,n,

G=1,00.,T, sj,...,q,=1,...,n, where P35 denote the characte-
ristic roots of the matrix [g—? (0,0)] and Mq,ee.,p, - the

characteristic roots of the matrix [g% (0)]. This follows
from Cramer s theorem, because the system (9) can be written

in the form

9’: ZG(O,O,Q1,...,9°-1) +{[g—§ (0.0)]"
3 0] % ... [;%(o)]f}w’ :

§ -tlmes
- 1036 -




On the functional equation 7

G=1,es0.,', where the symbol [-]T denotes the transpose
of [.], In the sequel the system of numbers satisfying con-
ditions (9) and (11) will be called admissible (see [3]).
G 5 .
Now, we suppose that y15,31’...,36 is an admissible sys

tem., Without loss of generality, similerly as in [2], we can

assume that ?ek = 0, 6=1,ouo,r, k=1,uoo,n, 31’000

,j1r°°°v36‘
eeedp=1seee,ne By (9) and l.emma 4 we get

G

(12) zi,j1’...'36(o,o,...,o) =0
and

. e
(13) hi,j1,...,36(°v°"°"°) = 0,

i=1,oo-,m, 31,...,.’]6=1,.-.,n, 6=1’0'l0'r.

3. The .existence of a solution of the class et
Put -

Gi =

ahi ] afs
E‘y_k‘ (0,0) ’ ﬁj = E‘; (O)l ’ i’k=1,o.-,m, S,j=1,o.o,n,

and let, as above, Q1100049 and Mgrees iy denote the cha-

racteristic roots of the matrices [0( li‘] and [pg]. respec-
tively.

PTheorem. If (i), (i1}, (12) and (13) hold and
for i=1,e0s,m, j=1,eee,n

T
(15) | oaf [ @] <1,
then there exists a solution ¢= (p1,...,¢m) of the class

c® of the functional egquation

9 (x) = h(x,o[f(x)]),

- 1037 -



8 Z.Kominek

in ? neighbourhood of zero such that ¢,(0) = 0 and
G)
3 ey . . .
a——'—'—_(o) 0 for l=1,..0’m, 31’000,36=1’.oo,n,
31...3x36
5=1,...,r.
Proof., Onaccount of (i), (ii), (14), (15) and

Lemma 1 there exist neighbourhoods U,cR®, V.CR®, 0eU,c

1 1 1
Cﬁ1CG, 0eV,cV,CH and a constant ¢>0 such that

.
1] n n
(16) Z E 5 b, 1., brvk . <
—= = = 3 dp "84se-es8y
1 T
<yl

31,0.-,jr, i=1,o-.,m, jﬁ'onu,jr=1,ooc’n,

where
i ah
(17) a, := sup ’ (x,y)| +¢; (X:S’)GU X V
8 afy =
{18) bj t= sup —a-q(x) +e xel,f.
The continuity of Z 3 ip and (12) imply the exisfence
’ 1,"" _ =
of neighbourhoods U.2 and V2, 0euzce_02c U1, OeVZCVzC\T1
such that for all xel,, yeV,,; 3% vg = VX waa 2V,
G .
6=1,...,0~1 the inequalities n” ~times
r -1 i
oo < . -
(19) |23 i,3q0ee00dp (£,3,3"5005,5" ) (P
2:; E g al by 1...b T gk .
ey Jr SqseeesSy
hold.

- 1038 -



On the functional equation 9

0f course, we may assume that

(20) {3er™ Isl<eun {Ixl; xeTl}cv,

as well as

m n n
( Z LN ) \’ls{ s <1’
- - - 1,...’ r
k=1 s1-1 sr-1
(21) « m n n n n
S e v L L
s1,...,sr dJd
| k=1 8= s,=1 8=1 j=1

because the system (16) is homogeneous.
Let 83:1!'0"jr>0, i=1,40.,m, j1’000,jr=1’.oo,n be ar-
bitrary numbers fulfilling the system of the inequalities

m n

o . 8 s .
(22) E E ees E at bj1...b.r cls{ g <¢ .
= & & 1 Jr q2¢*°95n 31’-0'93r
= 1= =

. r ahi S
The functions Z.iaj1,---ojr and W{ 3% ‘°* 3%~ 2are
r-1

uniformly continuous on the sets ﬁzx sz \7121 X eoe xvg and

U2X V2

+ + ) such that for all x,feﬁz, 3,5 eV, ¥°,7%
317"'sur 2

resgectively. Hence there exists a &>0 (depending

on ¢

—nG —_ -
3 Vg satisfying the inequalities [ x-Xl|<é, ||y-Jl<6,

||ye-5’6||s é we have

- 1039 -



10 Z.Kominek

_r-1
i (xvy;y peocey )ISE
1, 1:---:3

m n n
1 i 54 5r k
< =€ . - - b, seeby € ,
2[31.....31, ZZ , 2 %k 3Py Es s,

k=1 sd=1 sr=1

' r-1
I 1 j1’- -n] (IX.y.y “”'y )Zr

n af 3f_
n " hi _ s,
e XL Lot |t o st 0 -
k=1 s,=1 5,51 1 r 1 Ir
af 3af
3h s s i
i - — 1 - r v <:1. 1
- ——ayk (x,y) axj (x)...ax (X) =2 [831'....3
1 r '
m n n
$ 5 a e
k Jq Ip SqreccrSy
{ k=1 51.-.1 sr=1

Let UcR™ bve a neighbourhood of zero such that

(24) f(ﬁ)cﬁc{xeRn; ||x||$1]

and let Xi, i=1,..so,m denote the family of all real func-
tions ¢, of the class ¢ in U fulfilling the conditions:

(25) p;(0) = 0;
(6)
9 P .
(26) 3% ;X. (0) = O, l=1,uuo,m, j1,ouo,je=1,uoo,n’
3100' Js
6=1,u-o,r;
a(r)9°i i . : .
(27) axj "‘axj (X) 6;031,---,jr’ 1—1,0.0,m, 31,000,Jr—
1 r =1ye0e 403
(28) if 531,“”3 >0, i=1ye0eyly Jiyeeeydp=lyees,n fulfil (22)
r

- 1040 -~



On the functional equation 11

and x, e U, [x-Xll<8, where & is chosen so that (23)
holds, then

a(r)¢i al(r)

P4 — i
s (x) - 5———————53L—— ()| < €5 .
a S ...a 3 LK ) 2 L N 2
x31 xjr XJ1 xar 31) ’jI‘

In the vector spaces xi (with the usual operations "+"
and ".") we define the norm
r
oy
9 eeed
x31 xjr

n

(29)' | 4] := E sup

:31,00-,31‘:1

(x)

;s xelU

and in the space X := x1x e me we put

m
(30) CIEINTATL
=

Note that X is a convex and compact subset of the space of
all functions defined and of the class C° in U with the
values in RrE (the compactness of X follows from the con~
ditions (25)-(28) and the theorem of Arzela). For ¢ =

= (p1,...,¢m)ex we put

(31) 2, (9)(x) s= hy(x,0[f(x)]), i=1,..0,m,

(32) T{p)(x) := (T1(¢)(x),...,Tm(¢)(x)).

It follows from (25), (26), (i), (ii) and Lemmas 3 and 4 that
for @€ X we have

(33) Ti(?)(o)r’o’ X. .'.ix. (0)=o, i=1,000,m,j1,-o.,j6=1,o--,n
J1q d6

G=1,oo.’r.

- 1041 -



12 Z.Kominek

By (24) and the mean-value theorem we get

. m m
lefex)l =) lo[ex)]] <) su { pylx)] s xeT} <
k= k:
. 3¢k -
Z Sup{ I (x), I=ll; er]s <
=1 j J1

a(r)

B

n

< § sup

k=1 j1,oo-,jr=1

1xlT; xeU

ax

whence, in virtue of (27), (24) and (21),

(34) | o[2(x]l< =l

which implies that

(25) o[f(x)] e 7,

Moreover, similarly as above, we can prove that
(36) go(e)[f(x)] evzn"', G=1y0ee,T=1.

Differentiating the equality (31), along the same lines as in
Lemma 3, we get

3{7)n

(37) 2% ’...J;-ax. (X, = hl 31’.."3 (x,¢[f(x)],.,.’¢(r)[f(x)])
31 Jdp

and using Iemma 4, (35), (36) and (19), (17), (18}, (27) we
have

- 1042 -



On the functional equation 13

axj ceeOdX. (x)|<

1 Jp

(38)

31""’31‘

Suppose that the antecedent of the condition (28) is fulfilled.
It follows from {37) and Lemma 4 that

2(®)y 2(*)y
(39) . ;.x (x) - dx, ...;x. - (%)
1 Ip Jq Ir
5ty (1 et rce)) -
-z @Eo[t@)], ...V 2]

' 1,,]1,...,.]

+Zm’ E - <ah (x,¢[f(x

k=1 51,...,Sr=1

3f
(x)... 3%

T (x)
Jr

(r)
N[ - aza...az ol s oo (5]
1 r
3fs af
T——(x) ,——(x> a__<x,,[f(x>]> -
s

afs afs
1. r

5% (x) ... BT—(X)
i in

).

Putting y = f(x) and J = f£f(X) and applying a reasoning
similar to that we have used to obtain the condition (35),

ah
- Ti%‘ (xvaq’[f(x)] )

we get.

- 1043 -



14 Z.Kominek

n

m
” w(G)(y) - ¢(6)(3’-)”$”y - 3’” Z_ : ,'__. \’13{1,...,31‘

k=1’s1,...,sr=1
6=0,1,00U,r—10

Hewever,

n
Iy - 50 = et - 2@l <) Y o8 e - =]
whence, in virtue of (21),

| ¢/ etx1]) - o' [eizl <l - 7l 6, 6=0,1,000 01

and, on account of (39), (22), (17}, (18) and (27) we infer
that

a(r)Ti(p) Ty T, (p)
(40) ax ek, (%) - o "...Sx"'_( x)| < 53 seoesd

Conditions (33) (38) and (40) show that the transformation T
mans the space X info itself. It is not difficult to check
that T 1is continuous. Now, the assertion of our theorem|
results from Schauder’s principle.
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Grazyna Pankiewicz

ON THE UNIQUENESS AND THE NUMBER
OF THE SWITCHING POINTS OF OPTIMAL CONTROL

1. Formulation of.the problem
We shall consider the time-optimal problem for the linear
equation

(1.1) ax{t) _ 4 x(t) + B alt)

with the initial value

{(1.2) x{(0) =

where x{+) is a function defined in the interval [0,T]
with values in a Banach space X1; u{«) - control - is a fun-
ction defined in the interval [O,TJ with values in a Bansch
space X2; 4, B - linear operators and:

B:X2——--X1 a bounded operator and the image of the unit
ball by the operator B has non-empty interior,

A:X1—>X1
continuous semigroup S(t) of linear, bounded operators,
s(t) = e (see [2]).

The time-optimal problem consists in finding the minimal
time of a transfer in which the final state is attained.

Let Uc:x2 be & set obtained from the open, strictly
convex set by cutting off the n planes, bounded and wesakly
closed. The functions wu(.) such that for all + : u{t)eU

a bounded operator which generates a strongly

- 1047 -



2 G,Pankiewicz

will be called the admissible controls and fthe set of such
controls we denote by U.

Let u, and Uy be the controls passing from the zero
point, Oe X, toa certain side RcU (U has n sides).
Obviously, the vector w = u, - u, is placed on this side.

We shall assume that the generalized princinie of genera-
1ity of placing is satisfied, It consists in the fact that

the system
{1.3) Bw,ABw,Ang,...,éan,...

where w 1is any contrel placing on any side defined above,
is a complete system in Banach space X1 (i.e. the linear
gpace spanned by these elements is dense in the space X1).
This condition has been called a generalized principle of ge-
rnerality of placidg with respect to the infinife dimension
of the space X1, ‘
ciple of the generality of placing for the finite dimensional
space (see [3], 3.17).

Let H = H(y(t),x(%),u) be Hamilton s function in Pon-
triagin’s maximum principle. For the problem {1.1), {1.2) this
function is of the form

in contradistinction to the classical prin-

H = H(y(t),x(t),u) = (y(t),ax(t)) + {y(t),Bu),

where y(t) 1is the sclution of the equation adjoint to the
equation (1.1)

(1.4) SwlE) o p* y(e),

Obviously, the function H (of the variable u) atfains the
maximum together with the function (y(t),Bu), which we de-~
note by M{y). From Pontriagin’s maximum principle, which is
fulfilled for such problems (see [1]), it follows that if
u(t) is the optimal control transformed the system from the

- 1048 -



Uriigueness of optimal control 3

state x, to the stete x,, then there exists a solution

yit) of the equation (1.47 such that
(1.5) (y(t),Bu(t)) = H(y(t)).

Since the equation (1.4) does not contain the unknown func-
tions x(t) and u({t), it is eessy to find all its solutions,
and next the solutions of the equation (1.5) among which the-
re will be all optimal controls for the equation (1.1).

We come to the guestion: On how much uniquely does the
condition (1.5) determine the control u{t) by the function
y(t)?

Theorem 2.1 quoted below gives the answer on this ques-
tion.

2. Theorem about the number of the switching points

Theorem 2.1. For each non-trivial solution y(t)
of the equation (1.4) the relation (1.5) uniquely determines
the control wul(t).

Proof. The function (y(t),Bu) is linear, so it
is constant or it attsins his maximum only on the edge of the
get U. The same concerns to ecach side of the set U (remem-
ber that U has the finite number of sides). So this function
attains its maximum in one vertex only of the set U or orn
whole side of this sect, "e shall show that by the completeness
of the system (1.3) the last thesis (the achievement of maxi-
aum on the whole side of the set U) is possible only for the
finite number of the values of t,.

Let J denote an infinite set of values t e[0,T], for
which the function (y(t),Bu), where uelU, attains its ma-
ximum on the wall R of the set U. We cen find such a
et T Dbecause the set U has a finite number of sides.

By the ascumption of the strong continuity of the semi-
aroup S(t) = et“, i.2. of the coptinuity of the function
(tix, = e” X, the sclution y(t) of the equation (1.4)
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therefore it is analytic with respect to t (remember that A
is a bounded operator).

Tor any t € T the function (y(t),Bu) = (e wo,Bu) of
the variable u is constant on the wall R. So we have

~t A"

»*
Bw) = (et Yo Blus-uy)) =

- (e-tA*

‘ Bu,) - (e'tA* Bu,) = 0
WO, 2 WO, 1 = .
) »*
Note that if (e”*%y ,Bw) = 0 for tes, then from the
analyticity of this expression it follows that it is identi-
cally equal to zero on the whole segment ¢ e[b,Tq. So we
have

-t

*
(e A wo,Bw) = 0,

Differentiating successively the above relation with respect

*
to t and using the fact that y(t) = e A v, 1is the solu-

tion of the equation (1.4) we obtain

((A?w(t),Bw) =0

(£%2y(t),Bw) = O

(8*Py(t),Bw) = 0

i.e. by the equality (x,Ay) = (4*x,y) which is true for
any x, Jy:
.
(W(t)9ABW) =0
(w(t),4%Bw) = 0

(2.1) teeecescennacss

(y(t),a%Bw) = 0O

Ces s 0 s0000s0s000s 0

t
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By the assumption of completeness of the system Bw,ABw,Asz,...
in the Banach space X1 the relations (2.,1) denote that the
vector v (t] orthogonal to the vectors: ABW,A°Bw,... 'is
the zero-vector: y(t) = 0., This contradicts to the assump-
tion about nontriviality of the solution y(t) = e'tA*wo of
the equation (1.4). Hence there must be: w = Uy = w4 = 0.
Therefore Uy = 4y = W

Thus for all except the finite number of the values
t e[O,T] the function (y(t),Bu) attains on U the maximum
only in one point, which is the vertex point of the set U
(because U is the strictly convex set). Thus, by the rela-
tion

(y(t),Bu(t)) = max (y(t),Bu),
uel

there follows the unique determination of the function u{t),
G.e.d.

Definition 2.1. The discontinuity points of
the optimal control are called switching points. Precisely,
if Q 1is an discontinuity point of optimal control u(t),
and if u(Q_) = a;, u(Q+) = 8y (a;, ay - different points)
then we say that for t = Q the change-over of optimal con-

trol u(t) from the point a; to the point a; haa been

achieved.

From the proof of Theorem 2,1 it follows that the points
of segment t <t<t,, in which the control u(t) is not
uniguely determined, divide the interval tos;t4:t1 into a
finite number of the segments.

By the analyticity of the solution y(t) of the equation
(1.4) "~ (which follows from the proof of Theorem 2.1), the
following result is true

Theorenmn 2.2, On each finite segment of time the
control - function wu(t) has a finite number of switching
pcints. )

Thus, Theorem 2.2 can be characterized shortly as a theo-
rem ebout a finite number of switching points.
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Observe that the above result can be obtained with the
assumption that the set U has a counftable number of sidss,
Tt is necessary only to note that the sum of the countable
number of sets of the zerc-measure has the zero-measure, which
follows from the relations

oo hiad
o<| () &)<Y |44
i=1 i=1

where |4,] = 0 for each 1=1,2,... . Obviously, |4;] de-
notes here the measure of the set Ai.
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