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AN APPLICATION OF DIAGONAL OPERATION:
DIRECT DECOMPOSABILITY OF HOMOMORPHISMS

The decomposition of homomorphisms of direct products of
algebras was investigated in a number of papers dealing with
the necessary or sufficient conditions for the direct decompo-
dability of homomorphisms (see, e.g., [1], [2], [3] and [10]).
However, as far as we know, the complete characterization of
this phenomen appears comparatively rarely in the mentioned
bibliography. The aim of the present paper is to fill this
gap by giving necessary and sufficient conditions for the di-
rect decomposability of homomorphisms (section 2, Theorem 1).
Further, by applying this theorem, some concrefte conditions
for directly décomposable homomorphisms are derived.

1. Basic notions and preliminaries

(i) Directly decomposable homomorphisms

Let &,, B,, Q,, 52 be algebras of the same type. It is
a trivial fact that the direct product of homomorphisms
£y, ra,—a, and fp :$1—-—32, i.e. the mapping f,x fy :
PO XB TN 32 defined by £,x fB(a,b) = (fA(a),fB(b))
for every (a,b) e Ay x By, is the homomorphism of algebra
a1 X 181 into the algebra a, x 182.

Conversely, we introduce the concept of directly decompo-
sable homomorphisms as follows:

Definition 1. The homomorphism f: a1x31—‘-
-—*-azx 32 is called diyectly decomposable if there are ho-
momorphisms fA: a,—a, and ;‘Bg .‘81——182 such that f= fAXfB’
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2 . J.Duda

Let &, & be algebras of the same type. Then the symbol
Hom{(tx, ) denotes the set of all homomorphisms of & into
3.

(ii) Diagonal operation :

Definition 2 (J.Ponka [9]). 4n algebra
<4,d> 1is called an n-dimensional diagonal algebra if the
n-ary operation d: A" =4 satisfies

(D1) d(a,ess,8) = a for every aeAj;

(D2) d (d(ayqseeesagp)yeee,dlapgyece,ay)) =dlaggen,ay,)

nn

for every aijeA, 1<i,j<n.

Every operation satigfying conditions (D1) and (D2) will
be called a diagonal operation (see [5], [9] and also [4]).
It is well-known that on the Cartesian product AXB of non-
empty sets 4,B a diagonal operation d: (AXB)2—> AXB can
be defined by d((a,b), (&’ ,v’ )) = (a,b’) for every (a,b),
(a' ,b" ) e AXB., Following S.Fajtlowicz [5], the operation d
will be called the canonical diagonal operation and the 2-di-
mensional diagonal algebra <AXB,d> will be called the ca-.
nonical diagonal algebra. One easily checks that x = d(y,x)
if and only if pr,x = pr,y and, dually, x = d(x,y) 1if
and only if prpX = prgy hold for every elements x,y of
the canoniocal diagonal algebra <AXB,d>.

(iii) Nonindexed product

The concept of nonindexed product of algebras (of varying
similarity type) was introduced by W.Narkiewicz (unpublished),
and investigated or used by S.Pajtlowicz, 4,.Goetz [7], G.Gréatz-
ner, W.D.Neumann, W.Taylor and others, For the sake of comple-
teness, we recall

"Definition 3e By the nonindexed product
X® B of algebras (*, B is meant the algebra whose universe
is the Cartesian product of the sets A,B, and which has an
n-ary operation g corresponding to each pair of n~ary po~
lynomials p snd g of & and B, respectively, where

is defined b
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Application of diagonal operation 3

g((a1,b1),.,.,(an,bn)) = (p(a1,...,an), q(b1,...,bn))

for every n~-tuple (ai'bi)lisne (axB)"8,

‘The following two statements are easily verified:

If a1,' 31, a,, 32' are algebras of the same type then
a1o:B is of the same type as @, @3.

If ef denotes the i-th trivial operation, 1 = 1 2, then

the operation 4 of a® B corresponding to the pair (e1,e )
is the canonical diagonal operation on the set AXB,

(iv) For any mapping f: A ——B and every equivalence re-
lation & on A the binary relation {(f(a1),f(a2));
(a.l,ag)ee € B° is denoted by f£xf{e). Further details of
fxf(68) can be found in [12]

2. The deeomposition theorem

Theorem 1. Let a1, 31, a2’ 32 be algebras of
the same type. Then for any homomorphism feHom(a1X£1,
a,x 32) the following conditions are equivalent:
{1} £ is.directly decomposable;
(2) fe Hom(at1 ® 31, a,® :32);
{3) fe Hom(<A1x B,,d>, <A2XB2,d>); _
(4) f£Xxf (Ker pr, )€ Ker pr, - and £Xf(Ker prB1)QKer png.

Proof. 1(1)@(2)3 Assume f = f,Xx fp for homo-
morphisms fA :a1—~a2 and 'fB : $1—--32 (notice that £y
and fB are uniquely determined whanever they exist). Ob=-
viously, fA preserves every polynomial of algebra &, and,
independently, fB preserves every polynomial ‘of 31. Summa~
rizing, the mapping f = fo fB preserves every operation
of the nonindexed product a1 ® 31.

(2) = (3) It follows directly from the remark in sec=-
tion 1(iii).

(3)=> (4) Apparently, it suffices to prove the first
inclusion. Thus, assume {a,b) € £xf (Ker prA1). Then the-

re are elements u,v e A1X B1 such that a = f(u), b = £(v)
and (u,v) € Ker pr, . By section 1 (ii), we get u = d(v,u)
1
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and thus, using the hypothesis, f£(u) = d(f(v),f(u)). This

means that a = d(b,a) and hence pr, a = pry b or, equiva-
2

2
lently, (a,b)e Ker pTy which was to be proved.
2
(4)=> (1) Choose arbitrary element (r,s)e AXBye By
applying the hypothesis, one easily checks that the following
two assignements a =T, f(a,s), for every ae.A1, "and

b »—--prBzf(r,b), for every beB,, repriesent mappings fA(a) =
= pr, f(a,s) and fr(b) = pry f(r,b). Since elements =r,s
A2 B B2 :
were chosen arbitrarily, we have also fA(a) = pr, f£(a,b)
2
and fB(b) = prBzf(a,b) for any (a,b)e AXB,, proving that

f(a,d) = (£,(a), fB(b)), i.e. £ = £yxfpe It remains to verify
that fA and fB are homomorphisms; we omit the easy proof.
An immediate consequence of the preceding theorem is the

following
Corollary 1. Let o, B be algebras of the sa-

me type. Then the'following two conditions are equivalent:

(1) Every endomorphism of the product wWxB is directly de-
composable;

(2) The congruence relations Ker pr, and Ker prp are fully
invariant.

Combining Theorem 1(2) with, e.g.ﬂ([1ﬂ];Lemma 1.12), we
obtain the following connection tetween directly decomposable:
homomorphisms and directly decomposable congruence relations
{see [6] for this concept).

Corocllary 2e The kernel of directly decompo-
sable homomorphism is a directly decomposable congruence., '

Notice that the converse is false, see the example below.

3. Applications to some concrete classes of algebras

Firstly, we apply Theorem 1 to the class of algebras in-
vestigated by G.A.Fraser and A.Horn [6] and, independently,
by H.Werner [12].

Corollary 3. Let a,,3d,,a,, B, be algebras
of the same type with two binary polynomiels + and -+, and
constants 0 and 1 such that the identities x¢1 = x+0 = O+x = X
and x.0 = 0 hold in 611, 31, az, 32. Then a homomorphism
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fe Hom(a1x 31,a2x .‘82) is directly decomposable if and only
if £(1,0) = (1,0) and £(0,1) = (0,1).

Proof. The "only if" part being trdivial, assume now
that £(1,0) = (1,0) and £(0,1) = (0,1) hold. Then, thanks
to the expression of the canonicai'-diagonal operation {see
[12]), we get

F(xe(1,0))+(3+(0,1) ) )=(£(x) - £(1,0) )+(£(y).£(0,1) )=
(£(x)+£1,0) )+(f(y)'(0,1))=(prA2f(X) ,0)+(0,pr32f(y))=

f(a{x,y))

(prA f(x),prB f(y)i=a(£(x),£(3))
2 2

for every x,yeA1xB1. By applying Theorem 1(3), the coneclu~
sion follows.

Remark., Apparently, Corollary 3 gives us necessa-
ry and sufficient conditions for the directly decomposable
homomorphisms of

(i) lattices with O and 1 : A homomorphism fe
€ Hom(a1x 31, a5 X 32) is directly decomposable if and only
if f£{(1,0) = (1,0) and £(0,1) = (0,1);

(1i) rings with 1 : A homomorphism feHom((ll1x B, a,x ﬁz)‘
ig directly decomposable if and only if £(1,0) = (1,0) or
f(0,1) = (091)0

The following example shows that for arbitrary homomor-
phism of direct product of rings with 1 the condit:ﬂon
*£(1,0) = (1,0) or £(0,1) = (0,1)" need not be fulfilled.
Consider the Galois field GF(2) with two elements O and 1,
and let f be the mapping f: GF(2}xGF(2) —=GPF(2)XxGP(2)
defined by f(0,0) = (O’O)’ f(1,0) = (0,0), f(0’1) = (1’1)!
£(1,1) = (1,1). Clearly, f 4is the homomorphism of
GF(2)xGF(2) into GF(2)XxGF(2) such that £(1,0) # (1,0)
and £{0,1) £ (0,1).

Nevertheljess, in the case of integral domains, it can be
easily seen that £{1,0) = (1,0) or £(1,0) = (0,1) is true for
every homomorphism onto, i.e., every surjective homomorphism f
is directly decomposable or the composition 7eof, where s is
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the‘permutation :rr(az,bz) = (b2,a2) for every (a2,b2)eA2xB2,
is directly decomposable,

In the case of arbitrary lattices, the directly decomposa~
ble homomorphisms are characterized by the following

Corollary 4. Let a1,£1,a2,:82 be arbitrary
lattices. Then a homomorphism fe Hom(az1x£1, a,x 32) ig di-
rectly decomposable if and only if f preserves the operations
(v,A) and {(A,V].

Proof. It follows directly from the fact that the
csnonical diagonal operation d on the product a® 3B of lat-
tices & , B can be expressed as follows

di((a,b),(a',b’)) = ((a,b)A{ava’ ,bAb’ }}v((a’,b’ )JA(ara’ ,bvb’})

for every elements (a,b), (a’,b’ )e AXB.

How we turn our attention to the directly decomposable ho-
moxorphisms of unitary R-modules. Let & be a unitary R-modu-
le over a ring R with unit element 1, and let {Ar:A-—-A;reR
be the set of fundamental unary operations of @ . Obviously,
the nonindexed product a ® B of two unitary R-modules & , B
has unary operations An s:AxB——---AxB, r,s eR, defined by
Ar’s(a,b) = (;\r(a),zs(b)i for every ({(a,b)e axB. Using the~-
se operations we characterize the directly decomposable homo-
morphisms of unitary R-modules. ,

Corollary 5. Let a1,31, 2,32 be unitary
R-modules., Then for any homomorphism fe Hom(011x B,, d,x .‘B~2)
the following three conditions are egquivalent:

(1) f 4is directly decomposable;

(2) f preserves the unary operations AL g for every r,seR;

:)
{3} T preserves the unary operations 7\1’0 and 7\0,1.
Proof. The canonical diagonal operation d on the
product of two unitary R~modules @&, B can be expressed in
the form d((a,b),(a’,b’)) = 21,0(a,b) + A (a',b') for every

| 0,1
(a,b),(a’sb) e AXB; the rest of the proof is trivial. Finally,
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Application of diagonal convexes 7

the following "classical" theorem can also be derived from
Theorem 1 or, better to say, from the preceding assertion.
Corollary 6., Lot @, 3,,a,, 3, be vector

spaces with bases {a},...,al }, {b},...,b; }, {a?,...,aﬁ },
1 1 2

{b%,...,bgz}, respactively. Then a homomorphism fe

€ Hom(a1x ﬂ1,a9x 32) ig directly decomposable if and only

if the matrix representation (fjk) of f in the bases

{(a%,o),...,(ai',o), (O,b%),...,(o,b;_)}, i=1,2, has two
i

1

blocks, i.e. fjk=0 if jsnz, k>n1 or j>n2, kén.].
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