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SUR UNE CLASSE DE FONCTIONS CONVEXES VERS L'AXE RÉEL 

1. Introduction 
Désignons par S0 la classe des fonctions holomorphes 

et univalentes dans E, où Er = jz : |z|< rj, E^ = E. 
Soit KQ la classe des fonctions presque convexes dans E. 
Une fonction non constante f est dite presque convexe dans 
E s'il existe une fonction convexe h, holomorphe et uni-
valente dans E, telle que 

(1.1) Re f' W >0, ζ 6 E. h (z) 

La classe KQ a été introduite par W.Kaplan [V] qui a démon-
tré que les fonctions de la classe KQ sont univalentes. 
^ Introduisons les notations suivantes: 

C =C U |ββ] » où C désigne le plan complexe, 
l+[w0l = {w : w = w0+*, λ £ [θ; ®o)j , Jf= ,2,. · ·} > 
3L = |x : - oo < x < ooj . 

Le domaine DcC » D ¿ C » est dit convexe vers l'axe 
réel négatif si pour tout point fixé wQ 6 D la demi-droite 
1 +[wj est contenue dans D. La classe des domaines convexes 
vers l'axe réel négatif sera désignée par Τ et la classe des 
fonctions fe SQ telles que f(E) e Τ sera notée TQ. La 
classe TQ a été, entre autres, étudiée dans Q2] , où l'auteur 
a utilisé la notion d'extrémité simple caractéristique pour 
tout domaine D e T, définie de la manière suivante: étant 

- 973 -



2 J.Pituch 

donné wQ β D, il existe un S/|(w0) > 0 tel que les circon-
férences 0 n(w o) = {w : |w-w0| = \(w 0)}, E n(w 0) = R 1(w 0) + 
+ η - 1, η = 1,2,... , ont des points en commun avec la fron-
tière 3D. Par C n(w Q) on désigne le plus grand arc de la 
circonférence 0n(wQ), contenant le point wQ + Rn(w0), 
η'= 1,2,..., qui appartient à D. La suite {^n(w

0)} 
une chaîne de coupures du domaine D dans le plan Ô doué 
de la métrique sphérique, déterminant l'extrémité simple P¡) 
du domaine D. Dans [2] l'auteur a établi le Théorème 4 et le 
Corollaire 1 que l'on peut énoncer comme il suit. 

T h é o r è m e 1.1. Une fonction f, holomopphe dans 
E et non constante, satisfait à l'inégalité 

(1.2) fie {eio<(1 - e ^ z ) 2 ^ (z)} > 0 , ζ ς E, 

si et seulement si fe L Q et EfQg) = f(θ 1 α) » oce.£ . 

La notation Pf(]¡¡) = ί(β 1 α) indique que l'extrémité sim-
ple Pf(E) correspond au point ζ = e1C(. 

Dans un autre travail plus étendu, préparé pour la publi-
cation, Κ.Ciozda étudie les sous-classes de la classe L Q, 
p.ex. la classe L c L des fonctions f telles que f(z) = 

2 · 
= ζ + agZ + ..., ainsi que les sous-classes L(a)c L des 
fonctions qui satisfont au Théorème 1.1 pour α € ^ ; · 
Avec ces notations on a L = U L(o»), tandis que du 

Théorème 1.1 découle ce qui suit. 
C o r o l l a i r e 1.1. Une fonction f, f'(0) = 1, 

hioloinorphe dans E, satisfait à la condition 

Re[eio((1 - e~iocz)pf/(z)] ^ 0 , ζ 6 E, 

si et seulement si f 6 L et PfQ¡¡) = fíe""), °< e "§» ·§•]· 
Dans ce travail j'établis le Théorème 3.1 qui fournit une 

condition nécessaire et suffisante pour qu'une fonction f 
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Glasse de fonctions convexes 5 

appartienne à la classe L . Je termine par l'étude d'un 
problème géométrique dans la classe L. 

2. Considérations auxiliaires 
L e m m e 2.1. <[l]. Pour tout t è [ ^ î ^ ] 

$(z,t) = a^(t)z + a2(t)z2 + ... une fonction holomotfphe et 
univalente pour ζ e E, admettant pour tout ζ ë Ε , fixé une 
dérivée φ (z,t) continue dans l'intervalle [fcjitJ. Si 
pour tout couple de points, t,t' e [t/j }t2] tels que t < t ' 
on a φ (E,t) c$(E,t'), l'inégalité suivante a lieu: 

$'t(z,t) r -, 
R e — τ » 0 pour t e , ζ e E. 

-

R e m a r q u e . L'éînomcé donné dans [l] avait admis 
comme hypothèse la condition a^(t) > 0; la démonstration 
donnée ici prouve que cette hypothèse est superflue. 

L e m m e 2.2. Si q çst une fonction holomorphe 
dans E telle que Re q(z) > 0 pour ζ 6 E, 

1 - ζ 2 
(2.1) q(z) ¿ \ z

 Z „ ζ 6 E, 

il existe pour tout r 6 (0;1) exactement un point zQ e E 
tel que 

ι - 4 (2.2) g(rz ) = 0 , 
o 

où l'on a évidemment zQ = zo(r). 
D é m o n s t r a t i o n . Désignons par d la fonc-

1 - z 2 

tion définie par la formule: d(z) = — - , ζ e E. On voit 
a¿sément que 

(2.3) 
sgn Re d(z) = sgn Po ζ, ζ e Ε\{θ), 

Re d(z) = 0<·=ζ : - 0. 
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4 J .P i tuch 

L 'app l ica t ion d e s t univalente dans E et représente 
E sur le plan C dépourvu du segment - 2 t í t « 2 , j . De 
l 'hypothèse et de (2 .3 ) i l r é s u l t e que q(E) c d (E + ) , ομ 
E + = Iζ ; ζ e E A Se ζ > θ } ; i l s ' e n s u i t q u ' i l e x i s t e une 
fonction ω holomorphe dans Ε, | ω ( ζ ) | < 1 , Εβω(ζ) > 0 

2 
pour ζ e Ε, t e l l e que q(z) = ^ ^ ( z ^ » à e o n 

q(rz) = 1 " " ( r z f ^ ' Evidemment ω (Ep) C E, donc à plus 
f o r t e ra i son ω (E r ) c B. Par conséquent ω ( rz) représente 
le cerc le E sur son sous-ensemble. En vertu d'un théorème 
de Brouwer, i l ex i s te un point zQ e E t e l que ω (rz|.ö) = zQ . 
Des propriétés de l a fonct ion ω i l r é s u l t e que Re zQ > 0 , 
Zo 6 E. 

Nous a l lons maintenant montrer q u ' i l n ' e x i s t e qu'un seul 
point zQ s i r e s t donné et ¿jouit des propriétés mention-
nées. S ' i l e x i s t a i t un autre point z'Q t e l que ω ( r z p = z'Q, 
a lor s pour l a fonction h : h(z) = w ( r z ) , | h ( z ) | < 1 , 
fie h(z) > 0 pour ζ e E, on aura i t Ç (h(zQ) , h ( z p ) < ç(zQ,z£) 

(en vertu du Théorème 3 H » Ρ ·322) , où ç désigne l a d i s tan-
ce hyperbolique et où l ' é g a l i t é n ' a l i e u que s i h(E) = E 
et s i h e s t une fonction univalente. Puisque dans notre cas 
h(E) C E + , l ' é g a l i t é e s t impossible s donc ç ( z 0 » z Q ) = 
= ç ( h ( z Q ) , h ( z ^ ) ) < ç (z0 ,ZQ). La contradiction a i n s i obtenue 
achève l a démonstration du lemme. 

Supposons que l a fonction q s a t i s f a s s e aux hypothèses 
du Lemme 2 .2 et s o i t j r n ] , n = 1 , 2 , . . . , r n e (0 ;1) une su i te 
cro i s sante t e l l e que lim r = 1. Le nombre η e J f étant 

n—oo 
donné, désignons par z° le point unique de l 'ensemble E 
pour lequel a l i eu l ' é g a l i t é 

o 1 » 
(2 .4) q (r n z£) = — I L . . 

η 

Pour tout n e JC l ' e x i s t e n c e d'un t e l point r é su l t e du 
Lemme 2 .2 . 
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G l a s s e de f o n c t i o n s c o n v e x e s 5 

L e m m e 2 . 3 . Tous l e s p o i n t s d ' a c c u m u l a t i o n de l a 
s u i t e | z ° | s o n t de l a forme ζ = e l ß , θ € [ - § > § ] ] * 

. D é m o n s t r a t i o i l . Supposons q u ' i l e x i s t e une 
s u i t e p a r t i e l l e { z n } ' ' k = 1 i 2 > · · · » l a s u i t e | | , 

n = 1 , 2 , . . . , t e l l e que l i m z ° = z° e E . En v e r t u de l ' h y p o -
k—oo n k 

théíse ( 2 . 4 ) , on a 

k — n k 
Comme l i m r ^ z^ = z n , on o b t i e n t à l a l i m i t e 

1 - Í 
l ( Z n > = 0 / 

C e t t e é g a l i t é é t a n t en c o n t r a d i c t i o n avec l a p r o p r i é t é de l a 
f o n c t i o n q , l e Lemme 2 . 3 s e t r o u v e é t a b l i . 

D é s i g n o n s p a r ^ ( a ; b ) l a c l a s s e de s f o n c t i o n s ρ h o l o -
morphes d a n s E e t t e l l e s que p ( a ) = b e t Re p ( z ) > 0 
pour ζ e E . On a l e théorème s u i v a n t . 

T h é o r è m e 2 . 1 . Pouit t o u t ζ e E f i x é , | z | = r , 
a l i e u l ' i n é g a l i t é 

l im min Ee j ^ ^ [ ~ 1 - r ^ z 2 - r ^ p ( r ζ) f s» 
i « 0 / 1 ζ 2 χ I e ( 1 - e ~ z ) L 0 0 ^ J 

z o 

ι α ο > ^ - c o s % , oc0 e [ - \ i f ] , <x = o i ( z 0 ) , z 0 = r 0 e 

D é m o n s t r a . t i o n . C o n s i d é r o n s , pour ζ e Ξ , 
I 10<r. 

I zi = r e t z o = r 0 e f i x e s , la f o n c t i o n n e l l e 
2 

J ( ï | ) = Re ^ M _ ^ . i o ( ) 2 [ l ^ ^ 2 - r 0 z p ( r 0 z ) ] } , ρ β 
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6 J.Pituch 

On sait (voir p.ex. [5] » Ρ·137, th. 7·5) que la fonctionnelle 
J(p) = Ke ),...,p(m)(5),^), 56E, où Ρ ^ , . , . , Σ ^ ) est 
une fonction analytique dans le voisinage de tout point 
(p(?) » · · · >Ρ^(5) > ζ) » définie sur la classe á?(0||1)f n'admet 
un maximum et un minimum dans cette classe que pour la fonc-

n it, it, 
tion ;i,(z) = °<v(e +z)/(e <-z), où n^m+1, cxi, >0, 

0 k = 1 K 

η 

Dans notre cas m = 0, donc on peut mettre la fonction 
•c¿ sous la forme 

Entre les fonctions des classes 0;1) et í'Cajb) a lieu 
la simple relation: 

p(ç) = Q ^ - l n ^ R e b + i In b, 

p e í (a;b), Qe5>(0;1); 

i l en résulte que pour la fonctionnelle J(p) le minimum et 
le maximum sont réalisés par la fonction 

/ 1 -
1 0 V o ' z 0 

de la forme 

1 + I — 2 - e - i t 2 1 + 1 - z z e 1 - zo qo(z)=^ - + ? i , où = 
1 °JL· β " " * 

1 - z Q z 
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Glasse de fonctions convexes 

Un simple calcul fournit 

1 -z 2 « i * Λ - ζ 2 -4. 1 - z 2 
" o o - 2 s - i t / ' " o - i t o -
— - ( 1 - O e " + e - ζ, 

η Ζ0 20 0 V Ζ0 20 ° 
q 0 ( z ) = „ . „ „ - i t 77=IÇ 

ζ 

1 + zQe~ - (e~ + ζφζ 

ί 1 " ζ ο > 

Par conséquent,le minimum de J(p) sur la classe ^(ZQJ-j— 
est égal à \ 0 / 

min Re 
te[0j2Jr] l e l 0 , (1 - e " l c , z ) 2 

r o z 

1 - r 2 z 2 -
- , 0/0 z„ z„ \ zn ΖΛ ' 0 0 0 0 

Désignons par A ( z , z Q , t ) l 'expression qui f igure sous le 
signe fie. Prenant l e commun dénominateur et faisant la réduc-
tion on trouve que l e numérateur est d iv i s ib le par z-e~xa 

et on obtient ainsi l ' é g a l i t é 

L ( z , z 0 > t ) 
A ( z , z 0 , t ) = M ( z , z 0 , t ) ' 

L ( z , z 0 > t ) = ( z - e i w ) ( r 5 e - i t + r j e - i « ) z 2 -

- Cr2+r e ^ e - ^ - r J e - ^ e - ^ - r ^ e - ^ i z -0 0 0 0 

- ( r 0 e - l t + e - · * ) , 

M ( z , z o , t ) = e - i o t ( z - e i o ( ) 2 [ l + r 0 e i o ( e - i Î ; - ( e " ^ « ^ " 1 « ) ^ 

Après un simple calc':.I, on a 
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Α(ζ,ζ0,·σ) = 

[ r Í e - i « z 2 - C r ^ r 2 e - 2 i « ) 2 - e - H + ¡ r 5 z 2 - ( r n e i c , -Pe - i f l , ) z - r r 
L o v c o _ J L o o o c 

e - l a ( z - e 1 < x ) ] 7 l - r 2 e - 1 « z ) + ( r 0 e l a - r 0 5 v : T ^ ' 

- i t 

En passant à l a l imi te , on obtient 

1 + 2ïz sin « , 
lim A(z,z , t ) 

io,o 
V e 

d'où i l résulta que 

lim Re A(z,z , ΐ ) = Re 
io,o z - e 

xoc 2 
β (z-e 

- -e 
io,o ζ + e""00 

1«, 
z - e 

4 
ζ + β i 

10(o e - ζ . 

cos o(0(1-la|?-) η _ r 

~loio r Ϊ~·Γγ "0Β "ο* ao e 

|1 - ze 

et le Théorème 2.1 se trouve a insi é t ab l i . 

[" 2 i 2 ] 

3. Théorèmes fondamentaux 
Nous allons maintenant énoncer et démonbreir l'important 

théorème suivant. 
T h é o r è m e 3.1 . Pour que f € L i l faut et i l 

s u f f i t que l ' i n é g a l i t é suivante soit s a t i s f a i t e 

(3.1) Re 1 - z£ 

Zf ' (2) ] 
.0, z. 6 Β. 

D é m o n s t r a t i o n . 1° Nécessité. Soit f 6 L; 
posons g ( z , t ) = f ( z + ) - t , t é [ 0 j o o ) , où l a fonc-

; \ 1 + 3"(t)z ' 
tion y , 3τΟΦ = 0, I y ( t )| <.1, est choisie en sorte que 
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Glasse'de fonctions convexes 9 

F(0,t) = 0. Gela est possible, puisque [>(0,t) = 0 ] 
<s=>[f[y(t)] = t]; il suffit d'admettre y(t) = f~1(t), 
te [ θ ; ο ο ) . La fonction γ est bien définie, car f e L en-
traine l+[o]cf(E). 

A cause de l'univalence <Γ([θ;«>)) représente un arc de 
Jordan dont l'origine est z = 0. Dee propriétés géométriques 
de la classe L il résulte que l'on a F(E,t) = f(E) - t et 
F(E,t) C F(E,t') pour t<t' , te [θ; œ). En vertu du Lem-
me 2.1 on en tire 

FlCz.t) 
(3.2) Re ^ 0 , ζ e E. 

zFz(z,t) 

D'autre part, on a 

ï^Cz.t) = 

f'(z+T(t) \ y'(t)+ ar'(t)y(t)z - p(t)z^-y'(t) r çt)z 
\1+y(t)z / [1 + ?(t)zp 

zF;(z,t) = zf' (* - Î r w l g . 
z V1 + ar(t)ç/[i + ar(t)z]2 

De l'identité f [y(t)] = t il résultei que y'CO) = 1; tenant 
encore compte de l'égalité γ (0) = 0 on déduit de (5.2) la 
condition 

Re 
zF'(z,t) 

Re 1 - ζ 

t=0 zf'(z) 
Z 6 E. 

Avec (3·2), cela établit }.a y verni ère partie du Théorème 3.1. 
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2° Suffisance. Evidemment; f'(0) = 1. Supposons que 
l'inégalité (3.1) ait lieu pour la fonction f holomorphe 
dans- E. Considérons deux cas; 

A) Il existe dans E des points pour lesquels l'égalité 
a lieu dans (3.1). En vertu du principe de l'extrémum pour 
les fonctions harmoniques on obtient 

1 - z 2 1 = ci, c e je, 
zf'(z) 

c'est-à-dire 

(3.3) f'(z) = J 
1 - z - ciz 

Gomme f est une fonction holomorphe, le dénominateur 
ne peut s'annuler dans le cercle E; par conséquent, les zé-
ros du dénominateur dans le second membre de (3·3) sont né-
cessairement situés sur la circonférence unité. De là on tire 
que c e[-2;2j. Intégrant l'équation (3·3) et tenant compte 
de la normalisation f(0) = 0 on trouve 

(5.4) f û ( z) = L . l n ci+AfcgV Z 6 E . 

V ^ - c 2 V 2z+ci-V4-c2 ci-V^-c2/ 

Pour tout c e (-2;2) la fonction f représente le cer-
cle , E sur une bande dont, les bords sont parallèles à l'axe 
réel. Pour c = -2 ou c = 2 la fonction f représente E 
sur un demi-plan dont le bord est parallèle à l'axe réel, 
donc f e L. 

B) Dans le cercle E il n'existe pas de points pour les-
quels ait lieu l'égalité dans (3.1). Par conséquent, on a: 

(3.5) He >0, ζ s E. 
2 zf'(z) 

Il existe, de plus, une fonction q holomorphe dans E tel-
le que Ee q(z) > 0 , ζ 6 E, et 
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(3.6) 1 ¡ Z - a(z) = J , N , ζ 6 Β. zf'(z) 

Gomme f'(z) ¿ <x> (f étant holomorphe) il s»ensuit que 

(3.7) q(z) ¿ 1 - ζ , ζ e Β. 

Considérons les points rn et z° qui interviennent dans 
le Lemme 2.3 et posons ĥ C'z) = q(rQz). Avec ces notations 
on a 

1 - ζ! la 
V z n > ô ^ ' zn = Γηθ *> β (0;1). 

Soit z° un des points d'accumulation de la suite jzn}· 
Il existe une suite {nk}> k=1,2,..., » de nombres 
naturels telle que 

lim z° = z°, 
k—<» nk 

|z°| =; 1, Re z° > 0 

(Lemme 2.3)« En posant zQ = zQ pour un n^ fixé et 
ρ = h_ on tire du Théorème 2.1k 

k 

lim Re 
k—oo 

χ , ^ χ ) 2 

1-r° z2-r° zh (r z> ûk nk X nk 

^ Ύ Ύ Ύ c o s«o' 

I z| = r, α e 2 ' 2 ]' 
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Cèpendant h_ (ζ) = q(r_ ζ) βτ r_ -
k k _ k 

à la limite on obtient l'inégalité 
1, en passant donc 

Re 1 ¡- z - zq(z) ^ T T r 0 0 8 «ο > 0 · 

Si l'égalité y avait lieu pour ζ e E, on aurait 

1 -. 7T - zq(z) · Φ 

e °(1 - e °z) 

-ία 
d'où e 0 = ci, c = +1, α η = ± -ττ . Si « 0 = ̂  » 
c = -1 et on obtient 

on a 

1 - z - zlC z) = _i 
i(1 + iz)2 

2 2 c'est-à-dire 1 - ζ - zq(z) = 1 - 2iz - ζ , donc q(z) 
= -2i. De même, si « Q = - ^ , on a c = 1, donc q(z) 
= 2i, en contradiction avec l'hypothèse que Re q(z) > 0 
pour ζ e E. Par conséquent, on a 

C3.8) 1 - ζ - zq(z) > 0, ζ e E. 
(l - e °z) 

La suite |z°|t n=1,2,..., converge vers le point 
1« 

Sinon il existerait un autre point d'accumulation de cette 
îor. 

suite, soit e et, par un raisonnement analogue au pré-
cédent, on obtiendrait 

(5-9) Re· 
- z 2 - z q ( z ) ] 

> 0, z 6 E. 
Z) 
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Des inégalités (3.8) et (3.9) il résulte que la fonction 

S(z) = β 0 1 ( 1 - Z9_iq j , ζ e E, 
\1 - ze 1/ 

admet ses valeurs seulement dans l'ensemble C\(-<»jo]. La 
fonction g est constante et égale à 1 pour q Q = , 
tandis que pour <xQ ¿ elle effectue la représentation uni-
valente de E sur le domaine C \(o;oo). Par conséquent, 
cx̂  =0^. Les inégalités (3.6) et (3.8) impliquent la suivante 

Re [ > ( l - M-4·*)2*'«')] » «• 

De là on conclut, en tenant compte du Lemme 1.1 que f fc L(o(o)^ 
donc f e L. Le Théorème 3.1 se trouve ainsi démontré. 

Supposons maintenant que F e L , F(z) a + a<-z + ... 

et posons f(z) = 
F^ e-x.ar g a ^ _ 

, ζ e E. Evidemment 
T ^ f l Γ 

Λ / —1·arg aA —ι·arg a^ 
.f 6 L et f'(z) = j a/|j · F ' ̂  ze Ί)·β Pro-
fitant de l'inégalité (3.1) pour la fonction f, on obtient 
par un simple calcul 

Re 
ζ F'(0) F'(0) 5F'(Ç) 

-ι·arg a* 
>0, $ = ze z e E. 

On obtient ainsi le théorème suivant. 
T h é o r è m e 3.2. Pour que f e LqI il faut et il 

suffit que soit vérifiée l'inégalité 

Re 
zf'(O) f'(0) zf (z) 

z 6 E. 
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Remarques finales 
On pourrait se demander s'il y a besoin de démontrer le 

Théorème 3.1 qui est équivalent au Théorème 1.1. L'introduc-
tion du Théorème 3·1 est légitime du fait même que la démon-
stration de cette équivalence est non triviale. Le caractère 
de ces deux théorèmes est, en outre, bien différent. Si l'on 
remplace dans (2.1) l'expression qui figure sous le signe 
He par son inverse, l'inverse de la dérivée de la fonction f 
et d'une certaine expression dépendant de ζ présente dans 
(1.2) un caractère multiplicatif. Au contraire, dans la con-
dition (3.1)> l'inverse de la dérivée et d'une certaine ex-
pression dépendant de ζ figure additivement. 

En outre, le Corollaire 1.1, qui correspond au Théorème 
1.1 pour la classe L, présente un caractère différent de 
celui du Théorème 3.1. Comme nous l'avons vu, on a L = 

= u 
«e[-f,| 

,L(«) et la conclusion du corollaire se rapporte 

2j 
aux différentes couches de la classe L et ne présente pas 
de caractère global. Au contraire, la conclusion du théorème 
se rapporte globalement à la classe L tout entière. 

Certaines propriétés des fonctions de la classe L, qui 

ne sont pas directement mises en évidence par le Théorème 1.1, 

sont aussi une conséquence immédiate du Théorème 3.1. Par 

exemple, comme l'a montré K.Ciozda dans [2], il existe une 

fonction F e L Q telle que E(Er) n'est pas un domaine con-

vexe vers l'axe réel pour 1)· D'autre part, du Théo-

rème 3·1 résulte directement ce qui suit. 
C o r o l l a i r e 4.1. Si f e L, le domaine f(Er) 

est pour tout r e (0|1) et pour toute fonction f 6 L pres-
que convexe, E r étant l'ensemble E~ = |z: |z|<1ARe ζ < oj·. 

D é m o n s t r a t i o n . Comme f est univalente, 
f (E~) est un domaine borné par une courbe de Jordan composée 
des arcs: 
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τΛ : w = f(5), 5 = r e i e , 

t 2 : w = f(Ç), 5= ti, t € [j-r jrJ. 

De la condition (3.1) il résulte que le vecteur normal à 
la frontière du domaine f(E~) sur l'arc grvj a une partie 
réelle non positive; par conséquent, l'arc γ^ est un arc 
analytique ne se réduisant pas à un segment de droite et il 
coupe toute droite parallèle à l'axe réel une fois au plus. 

Soit z(t) = f(ti), te[-r;rj. Il s'ensuit que z'(t) = 
= if'(it), donc -iz'(t) = f'(i|t) est un vecteur normal. Le 
l'inégalité (3.1) il résulte que -t Im f'(it) ¿S0 pour 
t e [-n;r] \ {θ} et Im f (ti) = 0 pour t = 0, f'(0) = 1. 
Dans l'intervalle [-r;r] la partie imaginaire du vecteur 
normal à la courbe 3*2» dirigé vers l'extérieur du domaine 
f(E~), change de signe exactement une fois. 

Il en fcésulte que y g coupe toute droite parallèle à l'axe 
réel deux fois au plus. Donc f(®r) est presque convexe. 
Quant aux autres propriétés des classes L et L Q, et aussi 
de certaines de ses sous-classes, qui découlent du Théorème3.1 
et du Théorème 3·2, elles ne sauraient être traitées ici, le 
présent travail n'ayant qu'un caractère préliminaire. Elles 
feront l'objet d'un mémoire plus étendu, consacré à l'étude 
des fonctions de la classe L. 

BIBLIOGRAPHIE 

[ i ] a . B i e l e c k i , Z. L e w a n d o w s k i : 
Sur certaines classes de fonctions ex -étoilées. Ann. Univ. 
M.Curie-Sklodowska, Sec.A, 15 (1961) 45-55« 

0 i o ζ d a : Sur la classe des fonctions convexes 
vers l'axe réel négatif, Bull. Acad. Polon. Sci. 27 
(1979) 255-261. 

- 987 -



16 J . P i t u ch 

J Γ·Μ. Γ o a y 3 h h : TeoMeTpHiecKaa τβορΗΗ $yHKiçn8 kom-

njieKCHOro nepeMeHHoro, Mockbs 1966» 

Κ a ρ 1 a 11 : Close-to-convex s ch l i ch t funct ions , 

Michigan Math. J . , 1 (1952) 169-185. 

r i a t i o n a l method f o r c lasses of meromorphic funct ions , 

J . Anal. Math. 24 (1971) 101-150. 

INSTITUTE OF MATHEMATICS, PHYSICS AITD CHEMISTRY, TECHNICAL 

UNIVERSITY, LUBLIN 

Received A p r i l 28, 11980. 

P f a l t z g r a f f , B. P i n c h u k : A va-

- 9 8 8 -


