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J6zef Pituch

SUR UNE CLASSE DE FONCTIONS CONVEXES VERS L’AXE REEL

1. Introduction

Désignons per S° la classe des fonctions holomorphes
et univalentes dans E, ou &, = {z t [zl < r}, E, = E.
Soit K, 1la classe des fonctions presque convexes dans E.
Une fonction non constante £ est dite presque convexe dans
E s'il existe une fonction convexe h, holomorphe et uni-
valente dans E, telle que

(1.1) Re £ (2 50, zeB&E

La classe K  a été introduite par W.Kaplan [4] qui a démon-
tré que les fonctions de la classe Ko sont univalentes.
R Introduisons les notations suivantes:
oy =CU{°¢] s ou (C désigne le plan complexe,
1+[w03 ={w:w=wa aef05e)}, H={1,2,...),
R =4{x ¢ -oo<x<°6}.

Le domaine DcC , D #C , est dit convexe vers ltaxe
réel négatif si pour tout point fixé w,€ D la demi-droite
l+[wb] est contenue dans D. La classe des domaines convexes
vers l'axe réel négatif sera désignée par T et la classe des
fonctions fe S, telles que f(E) € T sera notée T, . La
classe To a été, entre autres, étudiée dans [2], ou l'auteur
a utilisé la notion d'extrémité simple caractéristique pour
tout domaine D e T, définie de la maniére suivante: étant
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2 J.Pituch

donné W, € D, 1l existe un R,](w ) >0 tel que les circon-
ferences 0, (w) { |w-w | = %(Wo)} Rn(wo) = R,](wo) +
+n -1, n = 1 125e¢s 3 oOnt des points en commun avec la fron-
tiére 3D, Par C,(w,) on désigne le plus grand arc de la
circonférence On(wo), contenant le point W, + R, (w,),
n'=1,2,e4s, Qqui appartient & D. La suite’ {C‘ (w )} est
une chafne de coupures du domaine D dans le plan é doué
de la métrique sphérique, déterminant l'extrémité simple Pp
du domaine D. Dans [2] 1l'auteur a établi le Théoréme 4 et le
Corollaire 4 gue l'on peut énoncer comme il suit.

Théoréme 1.1. Une fonction £, holomorphe dans
E et non constante, satisfait & l'inégalité

(1.2) Re {ei“(‘l - e—iaz)zf'(z)} >0, z¢e8B.,

si et seulement si fe I, ot Pe(p) = £(e™®), axeR .

La notation Pf(E) = f(e1%) indiqg: que l'extrémité sim-
ple Pf(E) correspond au point 2z = e .

Dans un autre travail plus étendu, préparé pour la pdbll-
cation, K.Ciozda étudie les sous-classes de la classe Lo
p.ex. la classe L C Lo des fonctions £ telles que £(2) =

=2 + a5z 2, seey ainsi que les sous-classes L(x)CL des

fonctions qui satisfons au Théordme 1.1 pour xe [— = é-r] N
Avec ces notations on a L = U L(a), tandis que du
e [-335

Théoréme 1.1 découle ce qui suit.
Coroliaire 1,1. Une fonction £, f£'(0) =
molomorphe dans &, satisfait & la condition

Re[em(’l - e—laz)Ff'(z)} =0, 2z €85,
. . i
51 et seulement si f e L et Pf(E) = f(e), %€ [_ -2-; 2

Dans ce travail j'établis le Théoréme 3.1 qui fournit une
condition nécessaire et suffisante pour gqu'une fonction £
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Classe de fonctions convexes 3

appartienne & la classe L,. Je termine par l'étude d'un
probléme géométrigue dans la classe I

2. Considérations auxiliaires

Lemme 2.1. {[1]. Pour tout +t elﬁq;taj fixé soit
$(z,t) = aq(t)z + az(t)z2 + +oo une fonction holomorphe et
univalente pour =z € E, admettant pour tout 2z € E fixé une
dérivée §'(z,t) continue dans l'intervalle [tq;tz]. Si
pour tout couple de points, t,t e [tqsta} tels que t <t
on a ¢ (E,t) c $(E,t'), 1'inégalité suivante a lieu:

R @It(z,t)
z$,(2,t)

>0 pour teﬁﬁ%} z € E.

Remarque . L'énoncé donné dans [1] avait admis
comme hypothése la condition aq(t) > 0; la démonstration
donnée ici prouve que cette hypothése est superflue.

Lemme 2.2 81 g est une fonction holomorphe
dans E telle que ke q(z) >0 pour z ¢ E,

. 2
(2.1) a(z) # 152, zeB,
il existe pour tout r e (0;1) exactement un point z, € E
tel que
1 - zs
(2»2) q(I‘Zo) =__Z;_—’.

ol l'on a évidemment zo'=-zo(r).
Démonstration. Désignons par 4 1la fonc-

tion définie par la formule: d(z) = 2—%—5— , 2 €& E. On voit
aisément que

sgn Re d(z) = sgn Fe 2 z e EN 01,
(2.3) { ’ to

Re d(2) = Ow== "= : = O.
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Ltapplication & est univalente dans E et représente
E sur le plan C dépourvu du segment {ti: —251:5'2,}. De
1thypothése et de (2.3) il résulte que q(B) c aE"), on
Et = {z :2¢e¢ EARe 2> O}; il s'ensuit qu'il existe une

fonction w holomorphe dans E, |w(z) <1, Rew(z) >0

2
pour 2z e E, telle que q(z) = %ﬁ ; de l& on tire

1 -w2 Tz . = N
q(rz) = —w(_l(‘gl » ZEvidemment w (E,) C E, donc & plus
forte raison w ( I_) c E. Par conséquent w (rz) représente
le cercle E sur son sous-—ensemble., Bn vertu d'un théoréme
de Brouwer, il existe un point 2z e E tel que w (r3,) = 2.
Des propriétés de la fomction w 1l résulte que Re z. > 0,
z, € E.

Nous allons maintenant montrer qutil n'existe qu'un seul
point Zg si r est donné et jouit des propriétés mention~
nées. S'il existait un autre point z, tel que w (rz;) = 20,
alors pour la fonction h : h(z) =w(rz), |h(z)l<1,

Re h(z) >0 pour 2z € E, on aurait Q (h(zo)i,h(zé))) < Q(zo,zé)
(en vertu du Théoréme 3 [3] y P+322), ou @ désigne la distan-
ce hyperbolique et on 4i'égalité n'a lieu que si h(E) = E

et s1 h est une fonction univalente. Puisque dans notre cas
h(E) ¢ E¥, 1'égalité est impossible, donc ¢ (zo,zc’)) =

= ?(h(zo),h(zé)) <9 (zo,z(')). La contradiction ainsi obtenue
achéve la démonstration du lemme.

Supposons gque la fonction ¢ satisfasse aux hypothéses
du Lemmev 2.2 et soit rn}, n=1,2,..., T, € (C;1) une suite
croissante telle que 1lim r, = 1. Le nombre n e N étant

Il-—=o0o
0

[¢]

donné, désignons par z, le point unique de 1l'ensemble ET

pour lequel a lieu 1l'égalité

o 1
(2.4) a(rpz) = —2- .

Pour tout n e AN l'existence d'un tel point zg résulte du

Lenme 2.2.
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Classe de fonctions convexes 5

Lemme 2.3. Tous les points d'accumulation de la

suite {zg} sont de la forme z = ele, 6 e [} % H %] .

Démonstration. Supposons qu'il existe une

sulte partielle {zgk}, K=1,25¢00, de la suite {zg ,
n=1,2,+0., telle que lim zgk = 2% e E. En vertu de 1'hypo-
koo
thése (2.4), on a
2
1 - zg
. k
(r, ,202 ) = —%,
a2 oy 20
k
Comme 1lim r 2z° = z_, on obtient & la limite
koo Pk Tx °
(2) 1 - z§
q(z.) = —= .
) Z,

Cette égalité étant en contradiction avec la propriété de la
fonction q, le Lemme 2.3 se trouve établi.

Désignons par P (ajb) la classe ‘des fonctions p holo-
» morphes dans E et telles gue p(a) =b et Re p(z) >0
pour z e E. On a le théoréme suivant.

Théoréme 2.1. Pour tout ze E fixé, |zl =r,
a lieu l'inégalité

. . ; 1 2.2 2
lim min Re{ — [.’I-r z=-rTp(r z)]]a
1“0 1-z2 elq(q_e 1«2)2 0 0 o]

Z ~€ [¢]
o) pd?(zd;——z-o—>

V

1-
?+_31:"°°S %or X € [' %; _er]’ «=a(zy), 2z, =T4e %

Démonstr ait ion. Considérons, pour 2z € E,
=} . . .
jzl = e% Z, = I',e O fixés, la fonctlomnelle
2
oA 1-2
1 —i,2 o
JQb:Re{Hu”qﬂ%,j>2B~wu-monﬂqﬁﬂ}a pe?Gm; 5>>'
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6 J.Pituch

On sait (voir p.ex. [5], pP.13T, th. 7.3) que la fonctionnelle
T(p) = Re F(0(3)4ens0™ (31,30, 5B, 0b F(Xyyeeeydy,,) est
une fonction analytique dans ie volsinage de tout point
(p(;),‘..,p(m)(g),g), définie sur la classe 2 (031), n'admet
un maximum et un minimum dans cette classe que pour la fonc-

i n 1tk ltk
tion 7 (2) = kz’]" a (e “+z2)/(e %-z), ol n<guw#l, oy >0,

n
g},uk = 1.
Dens notre cas m = O, donc on peut mettre la fonction
Yy Sous la Torme
—-it

1 + ze
Q.(z2) = ————.
s} 1 - Ze—lt

Entre les fonctions des classes P(0;1) et P(ajzb) a lieu
la simple relation:

- a

p®®) = Q(%%)Re b+ iImb,

p e P(a3b), Qe 2(031);

i1 en résulte que pour la fonctionnelle J(p) le minimum et
le maximum sont réalisés par la fonction

2

2 1 - zg
3 € <Zo; Tz,

de la forme

z - Z
T+ Tz 2 e—lt 1 - 22
~ %o . s e L 0
a,(2) =& A S +pi, ou §+pi=3%-= et
1 - -
1-2,2
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Ciasse de fonctlons convexes 7

Un simple calcul fournit

2 -2 2
1-2 Z . 1-2 . 1~2
z 0o __o (1—22)e'1t +.< _0 1t _ - ) Eé) z
(Z) [e] Zo o zO [o]
q = - Z —
° 1+ z4e 1t -.{e %, zd)z

2
1-2
Par conséquent,le minimum de J(p) sur la classe @<zo; °>

\

est égal a

. 1
min Re { —
te[0;2¥] {el.d(’l - e'mz)2

o
-1t = -1t

1+ 2z, - (Zg + e ),z

Désignons par A(z,zo,t) ltexpression qul figure sous le

signe Re. Prenant le commun dénominateur et faisant la réduc-

tién on trouve que le numérateur est divisible par z~e +%

et on obtient ainsi 1l'égalité

L(z,zo,t)

(r +roe e—lt 3 —1ae—1t g 210()Z _

-it, -icx
- (roe +6 )y

M(z,y2,,%) = e"]‘c’((z-e:"c")a[’Hro«aw‘e'lt - (e-lt+roe_la)roz].

Apreés un simple calc:l, om a
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8 , J.Pituch

A(Z,Zowt> =

Q2

[4 -ia,2 (r? 2 21cx)z —e .Lq-] !_r 10_1,::38-1q)z_r0]e—1t
e~ z—em) [(1—rce'l°‘z)+(ro 1°‘—ro a)-e"lq

En passant 4 la limite, on obtient

1+ 2iz sin«, ~ 22 io —1%,
: . 0 0z + e
lim  A(z,2_,%5) = - - —e —_—,
iar o -1 1o 2 1o,
7w © e (z—e 7)) 2 - e
)
dfou 1l résulte que
. -ia
le o
lim  Re A(z,2,,%) = Re |e ° Zl: £ =
i )
z—e © e -z
o
2
cos a (1-]217) 4 _ L T
—locolf 1+ r o} 0 212
1 - ze

et le Théoréme 2.1 se trouve alnsl &habli.

3., Théoremes fondamentaux

Nous allons maintenant énoncer et démontrer 1 important
théoréme suivant. \

Théoréme 3.1. Pourque fe I il faut et il
suffit que l'inégalite suivante soit satisfaite

2
(3.1) Re 12 - ] 1;0, z € E.
_ zf (z}J
Démonstration. 1° Nécessité. Soit f € L;
- z +3(%) . N
posons F(z,t) = f -']——_-; -t, te|0;o0), ou la fonc-
P \ + 7 2

tion g, 740 = 0, | #(t)] <%, est choisie en sorte que
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Classe'de Functions convexes 9

F(O,t) = O. Cela est possible, puisque‘[F(O,t) = O] <=
<==[t[z(t)] = t]; il sutfit d'admettre () = £71(t),

te Bht»). La fonction 3 est vien définie, car f e L en-
traine 1+[0]Cf(E).

A cause de l'univalence 3'([0;00)) représente un arc de
Jordan dont l'origine est 2z = O, Des propriétés géométriques
de la classe L 1l résulte que l'on a F(E,t) = £f(E) -t et
F(E,t) C F(E,t’) pour t<t', te[0;oe). En vertu du Lem-
me 2.1 on en tire

F;(z,t)
(3.2) Re ———— >0, ze€ E.
zF,(z,%)
D'autre part, on a
F;(z,t) =

=. f'(Zﬂ'Ct) ) 7))+ FF()z - F (822~ 2 (8) 7 (6)z _ .,
1+7(%)z [ + 72

oF’ (2,%) = of’ (Z +3(8) \ 1 - I_a'(t>l§
2 : 1 +_§"(t) EI + a‘(t)z]

De ltidentité fEf(ti] =t 1l résulte que 2'(0) = 1; tenant
encore compte de 1l'égalité F(0) = 0 on déduit de (3.2) la
condition

F%(z,t)

‘ N
ze(z,tJ

Re

2
= Re{ ] - z_ - ,1 , Z € R,
120 zf" (z).

Avec (3.2), cela é%ablit la :wexiére partie du Théoréme 3.1.
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2° Suffisance. Evidemment f£'(0) = 1. Supposons que
1'inégalité (3.1) ait lieu pour la fomction f holomorphe
dans. E. Oonsidérons deux cass}- .

A) I1 existe dans E des points pour lesquels 1l'égalité
a lieu dans (3.1). En vertu du principe de l'extrémum pour
les fonctions harmoniques on obtient '

1 - 22 1

- — = ci ceR
_Z zf (2) ’ ’

ctest-a-dire

(3.3) £ = 1 .

1 - 2° - ciz

Comme f est une fonction holomorphe, le dénominateur
ne peut s'annuler dans le cercle E; par conséhuent, les zé-
ros du dénominateur dans le second membre de (3.3) sont né-
cessalrement situés sur la circonférence unité. De 1la on tire
que ¢ e[—2;2]. Intégrant l'équation (3.3) et tenant compte
de la normalisation £(0) = O on trouve

: 2 . 2
(3.4) £_(2) = 1 (1n 2z+ci+Y4—c _ In ci+Va-c® \.

V4-02 2z+ci—V4—c2 ci—V4—02

Pour tout c¢ e (-2;2) 1la fonction £ représente le cer-
cle E sur une bande dont lés bords sont paralléles & l'axe
réel, Pour ¢ = -2 ou ¢ = 2 la fonction f oreprésente E
sur un demi-plan dont le bord est paralléle & l'axe réel,
donc T e L.

B) Dans le cercle E 1l n'existe pas de points pour les-
quels ait lieu 1'égalité dams (3.1}. Par conséguent, on a:

z ¢ E.

2
1 -z |
. R - >0 c E.
(3.5) | e{ Z zf'(z)] y 2 ¢

Il existe, de plus, une fonction q holomorphe dans E +tel-
le que Re g(z) >0, 2z €eE, et
- 982 -
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1
zf’ (z)

'1-22

(306) - q(z) = s, 2 € &,

Comme f'(2) # oo (f étant holomorphe) il s‘*ensuit que

2
(3.7) az) 15, 2 e

Considérons les points r, et zg qui interviennent dans

le Lemme 2.3 et posons }5(2) = q(rnz). Avec ces notations
on a

Q-

h (20) = —"—, 2z =r1pe 2, o e (031
z
n

Soit 2z° un des points d'accumulation de la suite {zo }.

n
Il existe une suite {nk}, k=1,25000, nk’“ s de nombres
naturels telle que

lim zg = 2%, Izol s1, Re2°>0

K=o k
(Lemme 2.3). ZEn posant z, = zg peur un ny fixé et
p=h on tire du Théoréme 2.1

k
. 1
k]._:l;mm Re r“n 'i°‘n > [’I—r —r th1 (rnkz:l >
e k(’I.--e kz)

- 983 ~



iD .J.Pituch

Cépendant hnk(z) = q(rnkz) ev rnk—--’l, en passant donc

a4 la limite on obtient l'inégalité

il 2 i . 1~-2
Re{ .Tho -i'xo 5 [1 -2 - zq&z)J > A+ cos &, > 0,
e (’l-e z)

Si 1'égalité y avait lieu pour z e¢ E, on aurait

1 = 22 - 29(3z)
T lo -1 _\2
e °<‘1 -e °z\)

=¢i, ceR,

-icx
d'oﬁe °=ci,c=¢1,a=i%.'si°< =-g:, on a
¢ = -1 et on obtient

1—22-zq_(z)_ .
: vy B )
1(1 + 132)

2 2

ctest-a-dire 1 - z° -~ 2q(2) =1 ~ 21z - 2, donc q(2z) =
= ~21i. De méme, si &y = - "Z—T y Ona ¢ =1, donec q{z) =
= 21, en contradiction avec l'hypothése que Re q(z) > O
pour z € E, Par conséquent, on a

(3.8) Re i 1-2% - zq(z)] >0, z e E,
ix

1o -1 2[
e °(’l -8 '°z)
0

Lla suite {zg}, n=1,2,..., converge vers le point e .

Sinon il -existeralt un autre point d'accumulation de cette
1o

suite, soit e 1 et, par un raisonnement analogue au pré-

cédent, on obtiendrait

1

1
lo -lo 2[
e 1(’1 - e 1z)

(3.9) Re - 22 - zq(z)] >0, zeE.
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Classe de fonctions convexes 13

Des inégalités (3.8) et (3.9) il résulte que la fonction

—ia\2

EACHECPY o
g(2) = e 1 :L_e_,__—Z_m , zeB&E,
1 - ze 1

admet ses valeurs seulement dans l'ensemble C"\(-oo;o] . La
fonetion g est constante et égale & 1 pour Ay =Xy
tandis que pour & ;écx,]' elle effectue la représentation uni-

valente de E sur le domaine C \[o,co) Par conséquent,
&, =0y Les inégalités (3.6) et (3.8) impliquent la suivante

o]
e [+ - )T )] >0

De 1la on'conclut, en tenant compte du Lemme 1.1 que f e LG&O),
donc f € L. Le Théoréme 3.1 se trouve ainsi démontré.
Supposons maintenant que F € L o? P(z) = &

~i.arg a
F(;e & 13
a
! qrﬁ—ioarg a4 ~learg a,
fel et £ (z) = |a1| (ze e « Pro-

fitant de l'inégalité (3. 1) pour la fouction f, on obtient
par un simple calcul

O+aqz+ see

et posons f£(z) = , 2 € E, Evidemment

oy Sy }30, 3 = e a," z ¢ E.
SF'(0) F'(0) SF'(5)

On obtient ainsi le théoréme suivant.
Théoreme 3,2, Pourgque f e L, 1l faut et il
suffit que soit vérifiée 1l'inégalité

Re j - _,Z - ? =20, z e =,
2f’ (0) £ (0) zf! (2)
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4, Remarques finales

On pourrait se demander s'il y a besoin de démontrer le
Théoréme 3.1 qui est éyuivalent au Théoréme 1.1. L!'introduc-
tion du Théoréme 3.1 est légitime du fait méme que la démon-
stration de cette équivalence est non triviale. Le caractére
de ces deux théorémes est, en outre, bien différent. Si 1l'on
remplace dans (2.1) l'expression qui figure sous ‘le signe
Re par son inverse, l'inverse de la dérivée de la fonction f
et d'une certaine expression dépendant de 2z présente dans
(1.2) un caractére multiplicatif. Au contraire, dans la con-
dition (3.1), l'inverse de la dérivée et d'une certaine ex-
pression dépendant de 2z figure additivement.

En outre, le Corollaire 1.1, qui correspond au Théoréme
1.1 pour la classe L, présente un caractére différent de
celul du Théoreme %.1. GComme nous l'avons vu, on a L =

= U ]L(u) et la conclusion du corollaire se rapporte

aux différentes couches de la classe L et ne présente pas
de caractére global. Au contraire, la conclusion du théoreéme
se rapporte globalement & la classe I tout entiére.
Certaines propriétés des fonctions de la c¢lasse L, qui
ne sont pas directement mises en‘évidence‘par le Théoréme 1.1,
sont aussi une conséquence immédiate du Théoréme 3.1. Par
exemple, comme l'a montré K.Ciozda dans [2], 1l existe une
fonction F € L, telle que F(Er) n'est pas un domaine con-

vexe ‘'vers l'axe réel pour re(v—g; 'l). ‘D'autre part, du Théo-
réme 3.1 résulte directement ce qui suit.

Corollaire 4.1. 8i feL, le domaine f£(E))
.est pour tout r e (031) et pour toute fonction £ € L pres-
que convexe, Er étant 1l'ensemble E; = {z: |z|<1/\Rg z <:0}.

Démonstration. Comme f est univalente,
f(E;)v est un domaine borné par une courbe de Jordan composée

des arcs:
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£(3), 3= I'eie, Gel:iar-;i-%zr:l,

Ry
=
§]

£(), 5= ti, te[—r;r].

m“i
-]
I}

De la condition (3.1) il résulte que le vecteur normal a
la frontiére du domaine f(E;) sur l'arc g, a une partie
réelle non positive; par conséquent, l'arc ¥4 est-un arc
analytique ne se réduisant pas & un segment de droite et il
coupe toute droite paralléle & l'axe réel une fois au plus.

Soit z(t) = £(t1), te [7r;rﬂ. Il stensuit que z'(%) =
= i’ (it), domc -iz’(%) = f'(ﬂt) est un vecteur normal. De
1'inégalité (3.1) il résulte que ~t Im £'(it) <0 pour
te[-rsr]\ {0} et Im£'(ti) =0 pour t =0, £(0) = 1.
Dans 1l'intervalle [-rjr] la partie imaginaire du vecteur
normal & la courbe 7o dirigé vers l'extérieur du domaine
f(B.), change de signe exactement une fois.

I1 en résulte que ¥, coupe toute droite paralléle a l'axe
réel deux fois au plus. Donc f(E;) est presque convexe.
Quant aux autres propriétés des classes L et Lo, et aussi
de certaines de ses sous-classes, qui découlent du Théoréme 3,1
et du Théoréme 3.2, elles ne sauraient &tre traitées ici, le
présent travail n'ayant qu'un caractére préliminaire. Elles
feront 1l'objet d'un mémoire plus étendu, consacré a 1l'étude
des fonctions de la classe L.
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