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Izabela Foltynska

ON THE OSCILLATORY SOLUTION
OF CERTAIN NONLINEAR INTEGRAL EQUATION

In this paper we will consider the oscillatory properties
of a solution of the integral squation
%
(1) () -f K(t,8)x%(s)ds = £(t,x(t)),

tO

where

f <t°,oo)x R~-—R
K:<ty,)?—R

are continuous functions and K(t,s) >0 for t =8 ato,
and K(t,8) < K(r,s) for t 3>, c=1; mn=1,3,5...
By a regular solution of the integral equation (T) we un-

derstand every solution x : <%, o) — R for which

mes {t : x(t) = O} = O,

We will consider only the regular solutions.
A regular solution of the integral equation (1) we call:
a. nonoscillatory, when it has a constant sign for

ta>t,,
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2 I,Foltyiska

b. oscillatory, when it has at least one zero point for

t>fw
¢. bounded, if there is such a constant ¢, that

[x(t)< ¢ for t>%,,

d. tending to zero when t——e , if 1lim x(t) = O,

oo

Furthermore we introduce the following assumptions:

x f(t,x)>0 for x #0
{2)

£{t,0) = C,
(3) If x,<x, then f(t,x1)<f(t,x2).
There exists a sequence of numbers Ln gsuch that
(4) L, = min ,f(t,Ln_1)l>0 for nz1,
=1
0
where
L = #1
o X
and

lim L _ >0,
n=w =2

There exists a positive constant N, such that

(5) l£(t,x7) ~ £(t,x")| < N]x' - x”
Upnder these asspmptions we get the following theorem.
Theorem. The divergence of the integral
t

limf K(t,s)ds =0

e ¢,
tb
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Oscillatory solution 3

is a necessary and sufficient condition of oscillation of a
bounded solution of the integral equation (1).

Proof of sufficiency. Let us suppose that the so~
lution x(t) of the equation (1) is nonoscillatory. For the
proof we accept that x(t)>0 for T2t

From the assumption that the solutlon is bounded it fol-
lows that

t
¢>x(t) =f K(t,8)x"(s)ds +-f(t,x(t))>f K(t,8)x*(s)ds
% %
that is, that
t
x(t)af K(t,s)x%(s)ds
t
and 0
8 I
He)z{ [ xls,m(vIav .
t
)

We multiply both sides of the last inequality by
K(t,s)

p K(s,v)x™ (v!)va]

and next we integrate it over <t°,t> « Hence for o(=-%‘-;£ 1

¢ %
f K(t,8)x%(s)ds a>f K(t,s)ds .
£ E(av)x®(vlay %,

Because K{t,s) 1s a nondecreasing function of the first
variable, then

t

_ t

f K(t,8)x*(8)ds f K(t,s)ds
{J‘ K(t,v x"‘(v;dv} %o
L%
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and
% t
1 o7 -;f K(t,8)de.
(1—0:){,2 K(t,V)x“(v)dv] L

0

The left side of this inequality is finite, when t-—=—oo,
However, the right side is, from the assumption, divergent.
Hence, we get a contradiction,

Similarly for « = %— = 1, it follows from the assumption
that the solution of the equation (1) is bounded, that

t
e>x(t) =f K(t,s)x(s)ds + f(t,x(t)))] K(t,s8)x(s)ds
t t
o 0

that is, that

8
x(s);f K(s,v)x(v)dv.
%
)

Next we mnltiply both sides of the above inequality by

_ K(t,s)
7‘ K(s,v)x(v)dv
t

(o]

and we integrate it from to to t. Henoe

% t
_ K(t,8)x(s)ds >'/‘ _ K(t,s)x(s)ds >j’ K(t,8)ds
to_{ K(t,v)x(v)dv to{ K(s,v)x(v)dv t,

o o
and 8 £ t
lnj K(t,v)x(v)dv )f K(t,s)ds,
to .'to ‘to

leads also to a contradiction for t-—oco |,
- 930 -



Oscillatory solution 5

In this way, we show that in the case when « # 1 and
when o« = 1, the bounded solution of the integral equation
(1) 1s oscillatory.

Proof of necessity. We show, that when

£
lim f K(t,s)ds < oo ,
Tt
)
then 'the equation (1) has a bounded nonoscillatory solution,

The existence of a bounded continuous solution is estab-
blished by the method of succesive approximation., We consider
the sequenaqe {xn(t)} defined in the following way

' xo(t) =L, =1 for te <t°,oo)

t

x,(t) = 26,5, ((8)) + [ K(t,8)2%_ (e)és  far n>1.

o

The slements of the sequence {xn(t)] may be estimated from
below. By induction we get

x5 (t)>2(¢t,1)> min £(t,1) = L
t;to

1

(AN AN EENEENENEFNEENNENNENNNXNERXNENNENX)

t
x,6t) = £(t,x,_(t)) + [ K(t,8)x%_ (s)as>
tO
2£(t,L,_4)> g: £(t,L,_4) = Lpe
o)

Henae
xn(t)>Ln fOI‘ n= 1’2,000

what proves that the elements of the seguence of the succesi-
ve approximation are nonoscillatory.
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6 I.Foltyhiska

We have now to show thaf there is a limit of the sequen-
ce {xn(t)]

{6) x{t) = lim xn(t) for te <t°,00)

n—=oo0

and that this limit satisfies the eguation (1).
To show the existence of the limit (6) of the seguence
{xn(t)} it is enough to prove the convergence of the series

(7) Xo(t)+’}:1(t)-xo(t)] + [x2(t)-x1(t)]+...+-[xn(t)—xn_1(t)]+...

We estimate the absolute values of terms (7)

%
x.l(t)—xo(t)ls lf(t,xo(t))-xo(t)l +|f K(t,s)xg(s)ds <M

%o

for a sufficient large t.

lxz(t)—x1(t) < N max x1(t)-xo(t}l +

tzto
t
+a ™1 nax x1(t) - xo(t)’f K(t,8)dss
t>to : 1
o
< M(N +otc°"’1K) for® t-—=eo

€60 e 0300000000000 SARILSIOIDDTIIDTDIE

o-Tgyn=1

|, (83=x,_1 ()] < 3(¥ +ac

In the case when « = 1 we get the estimation of the se-
ries (7) in the form

|x1(t)—x°(t)l < I, sz(t)-x1(t) < M(N+K), ceu,

| (t)-x,_,(8)] < m(wer)™1, Lo,
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Every element of the series (7) (without the fimst element
xo(t)) is in absolute value smaller than or squal to the
adequate element of the numerical series with positive ele-
ments:

(8) M+ M(N+ac® 1K) + M(F+ac® 'K)2 + ..o + M(Neac® TK)P V4o,
It is a geometrical series where the quafient q = N + aca'1K.
If now N +<xc“'1K<<1, then the numerical series (8) is con-
vergent.

Similarly in the case when « = 1, every element of the
series (7) is in absolute value smaller than or equal to the

elements of the geometrical series

(9) Mo+ M(N+K) + M(N+K)2 & oo + M(NK)EY 4 L,

where the quatient gq = N+K, If in this case N+K < 1, then
the numerical series (9) is also convergent.

The elements of the series (7) are smaller than or equal
to, in absolute value, the elements of the numerical conver-
gent series, hence the series (7) is on the basis of Weier-
strass ‘s criterion uniformly convergent.

Hence when N+ac™ 'K<1 and N+K<1 there is a limit
(6). Every element of series (7) is a continuous function of
the variable +t. Therefore the limit (6) is also a conti-
nuous function of the variable t.

We shall prove that the function =x(t) catisfies the in-
tegral equation (1), Prom the uniform continuity of the func-
tion f(t,x{(t)) it follows,that for arbitrary € >0

| £0t,x, () - £(¢,x(t) |<¢ .

for sufficient great n.
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Furthermore

_Ixn(t) - f(t,x(t).) -]. K(t,s)x“(s')dsls

0

t
< |2t6,x,_y (6))-2(s,x(80) |+ K(8,8)[x2_ K8)-2%(a)] as|<
. t

0

t
<e+| [ xit,m)[5 4 (0)2%(s)] as|.
' to

Now if n——o , we get

t
lx(t) - £(t,x(%)) -f K(t,s)x“(S)da|se .
%
From the arbitrarineas of the number ¢ it follows that x(t)
is the solution of the integral equation (1).
The proof of our theorem in the case when x(t)<0 is
analogous,.
. We furthermore remark that in the special case when
a%r
at2
for the differential equation x” + £ x
Similar results were obtained by Izjumowa [2] for the
differential equation u” + f(t,u) = O,

K(t,s) =t - 8, and = 0 we get Atkinson’s results [1]

2n-1 = 0.
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