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1. Introduction 
In the present paper, the author has defined and studied 

Einstein-Kählerian conharmonic recurrent spaces and Einstein-
-Kâhlerian spaces with recurrent Bochner curvature tensor. 
Several theorems have been establ i shed. The necessary and su f -
f i c i e n t condition for an Einstein-Kählerian conharmonic r e -
current space to be Kahlerian recurrent has been invest igated. 

An n(= 2m) dimensional Kählerian space i s a Riemannian 
space which admits a tensor f i e l d s a t i s f y i n g 

( 1 . 1 ) 
i 

( 1 . 2 ) 

and 

(1.3) 

'id 

where the comma(,) followed by an index denotes the operation 
of covariant d i f f e rent i a t ion with respect to the metric ten-
sor g ^ of thè Riemannian space. Let 

D 

i k 
:1.4) R1?.. = a . i j k ι 

t y h í h Í 1 í h 1 
• a. 

' + -J i k U i | là k] i k 
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R j k = R i t ik a û d a - H j k e 3 k 

be the Riemannian curvature tensor, the R icc i tensor and the 
sca la r curvature» r e s p e c t i v e l y . 

Recently, Tachibana [3] has define'd the Bochner curvature 
tensor (with respect to a r e a l coordinate system) by 

( 1 . 5 ) * ì 3 k = R i j k + 5 ÌT ( R i k s j - E
á k s Í + * ik R ¿ -

- *¡A  s±A¿ -  a¡A + p i k s 3 -

- +  2S±i*ì- 2 P i ó s k J -

- (n+2)fn+4) ( g i k 6 j " g j k 6 i + ^ i k ^ ~ 

where 

The Kählerian conharmonic curvature tensor [2 ] i s given 

by 

< 1 · 6 » ^ j k * + ÏÏÏ4 ( E i k 5 t - V i + S ik R 5 - 6DkRi + 

+  s±A -  s¿A+ p i k s 5 - + + 

+ 2F i ( j s£) . 
Let us suppose that a Kählerian space i s an Eihste in one. 

Then the R i c c i tensor s a t i s f i e s 

( 1 . 7 ) 3 - | e i a . Η ρ « « 0 

from which we obtain 
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(1.8) R i j . a ^ , S.. > 0 (=ü and S l j - f P ^ . 

If a Kählerian space is an Einstein one, then the Bochner cur-
vature tensor and the Kählerian conharmonic curvature tensor 
reduce to the forms: 

<1·9> - ^ J k + ΈΤΈΤ2Τ 

and 

t1·10' Eíok - Riók+ A ^At^-^^i/ki· 
In view of equations (1.9) and (1.10), we have 

(1.11) Ufjk = - ( n + 2f( n + 4) (gik¿· - + 

+
 -

 + 

We shall use the following 
D e f i n i t i o n [i]. A Kahler space is said to be 

recurrent if we have 

(1.12) jk,« - = 0 

for some non-zero recurrence vector and is called Ricci-
-recurrent if it satisfies the relation 

(1.13) Rij '« - = 0. 

Multiplying the above equation by g1·', we get 

(1.14) R - ^„R = 0. ,Ot 
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2. Blnstein-Kählerian conharmonic recurrent apace 
D e f i n i t i o n 2 . 1 . An Einstein-Kähler space sa-

t i s fy ing the r e l a t i o n 

(2 .1) E ^ - > Ü, 

v.-here i s a non-zero recurrence vector, wi l l be called an 
Einstein-Kahlerian conharmonic recurrent space or b r i e f l y an 

τr * 
ώ - Κ space. 

D e f i n i t i o n 2 . 2 . An Einstein-Kähler space sa-
t i s fy ing the re la t ion 

( 2 · 2 > u W - ° 

where λ β i s a non-zero recurrence vector, wi l l be cal led an 
Einstein-Kahlerian space with recurrent Bochner curvature 
tensor. 

We have the following 
T h e o r e m 2 . 1 . A necessary and suf f i c ient condition 

for an Ξ-Κ* space to be Η Kählerian recurrent i s that the sca-
l a r curvature be equal to zero. 

P r o o f . Suppose that an Ε-K* space i s Kählerian r e -
current. Making use of equations ( 1 . 7 ) , (1 .8 ) and (1 .10) in 
(2 .1 ) we obtain 

< 2 · 3 ) - * o [ a ì a k + u í l ! ^ - g j k s £ + 

+ hìfì - *¡A + ' 

Since, an Ε-K* space i s Kählerian recurrent , equations (2 .3 ) 
reduces to 

i*·» toït - *iA+ - = ° · 
which gives R = 0. 
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Conversely, i f an Ξ-Κ* space s a t i s f i e s R = 0, then equa-
tion (2 .3 ) reduces to 

R i j k , « " * « R i j k = ° · 

which shows that the space i s Kahlerian recurrent . This com-
pletes the proof. 

Similarly in view of Theorem 2.1 and equations ( 1 . 7 ) , (1.8) 
and (1 .11) we can prove the following theorem: 

• T h e o r e m 2 .2 . A necessary and suf f i c ient condi-
t ion for an Einstein-Kahlerian space with recurrent Bochner 
curvature tensor to be Kahlerian recurrent i s that the scalar 
curvature be equal to zero. 

We have the following (See. [4] and [ 5 ] ) . 
L e m m a 2 . 1 . The curvature tensor R b i j k s a t i s f i e s 

the identi ty 

(2 .5 ) \ i j k , l m " R h i j k , n a + R j k l m , h i " R j k l m , i h + R l m h i , jk" R lmhi ,k j = 0 · 

where 

R d e f R h i j k , l , m hi jk, lm* 

L e m m a 2 . 2 . I f , a ^ , by are quanti t ies sat is fying 

( 2 . 6 ) ao<£ = aßct and &afib7 + + a ^ b ^ = 0 

for α , μ , γ = 1 , 2 , . . . , Ν , then e i ther a l l the aaj3 are zero 
or a l l the by are zero. 

With the aid of above Lemmas, we shal l prove the follow-
ing 

T h e o r e m 2 .3 . In an Ε-K* space, e i ther recurrence 
vector i s gradient or the space i s of constant holomorphic 
sect ional curvature. 
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P r o o f . D i f f e r e n t i a t i n g ( 2 . 3 ) covar iant i^ and using 
equations ( 1 . 3 ) , ( 1 . 7 ) , ( 1 . 8 ) and ( 2 . 3 ) , we obtain 

( 2 ' 7 ) E i ; jkh ,ab = ( * a , b + * a V E i ; j k h ' 

where 

E i j k h = R i j k h + η(n+41 ( ë i k ê h r 8 i k ê h i + P i k P ô h ' P j k P i h + 2 P i 3 P k h ) · 

Prom ( 2 . 7 ) and the i d e n t i t y ( 2 . 5 ) , we get 

( 2 ' 8 ) W i j k h + * i j E k h a b + *khBabi; j -

where 

def 
A ab * b , a " * a , b * 

Equation ( 2 . 8 ) i s of the form ( 2 . 6 ) s ince = Ekh.i j* 
Thus, from Lemma 2 . 2 , we have Theorem 2 . 3 . This completes the 
proof. 
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