

G. D. Awasthi

ON EINSTEIN-KÄHLERIAN SPACES
WITH RECURRENT CURVATURE TENSOR

1. Introduction

In the present paper, the author has defined and studied Einstein-Kählerian conharmonic recurrent spaces and Einstein-Kählerian spaces with recurrent Bochner curvature tensor. Several theorems have been established. The necessary and sufficient condition for an Einstein-Kählerian conharmonic recurrent space to be Kählerian recurrent has been investigated.

An $n (= 2m)$ dimensional Kählerian space is a Riemannian space which admits a tensor field F_i^h satisfying

$$(1.1) \quad F_j^h \cdot F_h^i = - S_j^i,$$

$$(1.2) \quad F_{ij} = - F_{ji}, \quad (F_{ij} = F_i^\alpha g_{\alpha j}),$$

and

$$(1.3) \quad F_{i,j}^h = 0,$$

where the comma(,) followed by an index denotes the operation of covariant differentiation with respect to the metric tensor g_{ij} of the Riemannian space. Let

$$(1.4) \quad R_{ijk}^h = \partial_i \left\{ \begin{matrix} j \\ j \ k \end{matrix} \right\} \cdot \partial_j \left\{ \begin{matrix} h \\ i \ k \end{matrix} \right\} + \left\{ \begin{matrix} h \\ i \ l \end{matrix} \right\} \left\{ \begin{matrix} l \\ j \ k \end{matrix} \right\} - \left\{ \begin{matrix} h \\ j \ l \end{matrix} \right\} \left\{ \begin{matrix} l \\ i \ k \end{matrix} \right\},$$

$$R_{jk} = R_{ijk}^i \quad \text{and} \quad R = R_{jk} g^{jk}$$

be the Riemannian curvature tensor, the Ricci tensor and the scalar curvature, respectively.

Recently, Tachibana [3] has defined the Bochner curvature tensor (with respect to a real coordinate system) by

$$(1.5) \quad K_{ijk}^h = R_{ijk}^h + \frac{1}{n+4} (R_{ik}S_j^h - R_{jk}S_i^h + g_{ik}R_j^h - g_{jk}R_i^h + S_{ik}F_j^h - S_{jk}F_i^h + F_{ik}S_j^h - F_{jk}F_i^h + 2S_{ij}F_k^h + 2F_{ij}S_k^h) - \frac{R}{(n+2)(n+4)} (g_{ik}\delta_j^h - g_{jk}\delta_i^h + F_{ik}F_j^h - F_{jk}F_i^h + 2F_{ij}F_k^h),$$

where

$$S_{ij} = F_i^{\alpha} R_{\alpha j}.$$

The Kählerian conharmonic curvature tensor [2] is given by

$$(1.6) \quad T_{ijk}^h = R_{ijk}^h + \frac{1}{n+4} (R_{ik}\delta_j^h - R_{jk}\delta_i^h + g_{ik}R_j^h - g_{jk}R_i^h + S_{ik}F_j^h - S_{jk}F_i^h + F_{ik}S_j^h - F_{jk}S_i^h + 2S_{ij}F_k^h + 2F_{ij}S_k^h).$$

Let us suppose that a Kählerian space is an Einstein one. Then the Ricci tensor satisfies

$$(1.7) \quad R_{ij} = \frac{R}{n} g_{ij}, \quad R_{,\alpha} = 0$$

from which we obtain

$$(1.8) \quad R_{ij,\alpha} = 0, \quad S_{ij,\alpha} = 0 \quad \text{and} \quad S_{ij} = \frac{R}{n} F_{ij}.$$

If a Kählerian space is an Einstein one, then the Bochner curvature tensor and the Kählerian conharmonic curvature tensor reduce to the forms:

$$(1.9) \quad U_{ijk}^h = R_{ijk}^h + \frac{R}{n(n+2)} (g_{ik}\delta_j^h - g_{jk}\delta_i^h + F_{ik}F_j^h - F_{jk}F_i^h + 2F_{ij}F_k^h),$$

and

$$(1.10) \quad E_{ijk}^h = R_{ijk}^h + \frac{2R}{n(n+4)} (g_{ik}\delta_j^h - g_{jk}\delta_i^h + F_{ik}F_j^h - F_{jk}F_i^h + 2F_{ij}F_k^h).$$

In view of equations (1.9) and (1.10), we have

$$(1.11) \quad U_{ijk}^h = E_{ijk}^h - \frac{R}{(n+2)(n+4)} (g_{ik}\delta_j^h - g_{jk}\delta_i^h + F_{ik}F_j^h - F_{jk}F_i^h + 2F_{ij}F_k^h).$$

We shall use the following

Definition [1]. A Kähler space is said to be recurrent if we have

$$(1.12) \quad R_{ijk,\alpha}^h - \lambda_\alpha R_{ijk}^h = 0$$

for some non-zero recurrence vector λ_α and is called Ricci-recurrent if it satisfies the relation

$$(1.13) \quad R_{ij,\alpha} - \lambda_\alpha R_{ij} = 0.$$

Multiplying the above equation by g^{ij} , we get

$$(1.14) \quad R_{,\alpha} - \lambda_\alpha R = 0.$$

2. Einstein-Kählerian conharmonic recurrent space

D e f i n i t i o n 2.1. An Einstein-Kähler space satisfying the relation

$$(2.1) \quad E_{ijk,\alpha}^h - \lambda_\alpha E_{ijk}^h = 0,$$

where λ_α is a non-zero recurrence vector, will be called an Einstein-Kählerian conharmonic recurrent space or briefly an $E - K^*$ space.

D e f i n i t i o n 2.2. An Einstein-Kähler space satisfying the relation

$$(2.2) \quad U_{ijk,\alpha}^h - \lambda_\alpha U_{ijk}^h = 0$$

where λ_α is a non-zero recurrence vector, will be called an Einstein-Kählerian space with recurrent Bochner curvature tensor.

We have the following

T h e o r e m 2.1. A necessary and sufficient condition for an $E-K^*$ space to be H Kählerian recurrent is that the scalar curvature be equal to zero.

P r o o f . Suppose that an $E-K^*$ space is Kählerian recurrent. Making use of equations (1.7), (1.8) and (1.10) in (2.1) we obtain

$$(2.3) \quad R_{ijk,\alpha}^h = \lambda_\alpha \left[R_{ijk}^h + \frac{2R}{n(n+4)} (g_{ik}\delta_j^h - g_{jk}\delta_i^h + F_{ik}F_j^h - F_{jk}F_i^h + 2F_{ij}F_k^h) \right].$$

Since, an $E-K^*$ space is Kählerian recurrent, equations (2.3) reduces to

$$(2.4) \quad \frac{2R}{n(n+4)} (g_{ik}\delta_j^h - g_{jk}\delta_i^h + F_{ik}F_j^h - F_{jk}F_i^h + 2F_{ij}F_k^h) = 0,$$

which gives $R = 0$.

Conversely, if an E-K* space satisfies $R = 0$, then equation (2.3) reduces to

$$R_{ijk,\alpha}^h - \lambda_\alpha R_{ijk}^h = 0,$$

which shows that the space is Kählerian recurrent. This completes the proof.

Similarly in view of Theorem 2.1 and equations (1.7), (1.8) and (1.11) we can prove the following theorem:

Theorem 2.2. A necessary and sufficient condition for an Einstein-Kählerian space with recurrent Bochner curvature tensor to be Kählerian recurrent is that the scalar curvature be equal to zero.

We have the following (See. [4] and [5]).

Lemma 2.1. The curvature tensor R_{hijk} satisfies the identity

$$(2.5) \quad R_{hijk,lm} - R_{hijk,ml} + R_{jklm,hi} - R_{jklm,ih} + R_{lmhi,jk} - R_{lmhi,kj} = 0,$$

where

$$R_{hijk,lm} \stackrel{\text{def}}{=} R_{hijk,lm}.$$

Lemma 2.2. If, $a_{\alpha\beta}$, b_γ are quantities satisfying

$$(2.6) \quad a_{\alpha\beta} = a_{\beta\alpha} \quad \text{and} \quad a_{\alpha\beta} b_\gamma + a_{\beta\gamma} b_\alpha + a_{\gamma\alpha} b_\beta = 0$$

for $\alpha, \beta, \gamma = 1, 2, \dots, N$, then either all the $a_{\alpha\beta}$ are zero or all the b_γ are zero.

With the aid of above Lemmas, we shall prove the following

Theorem 2.3. In an E-K* space, either recurrence vector is gradient or the space is of constant holomorphic sectional curvature.

Proof. Differentiating (2.3) covariantly and using equations (1.3), (1.7), (1.8) and (2.3), we obtain

$$(2.7) \quad R_{ijkh,ab} = (\lambda_{a,b} + \lambda_a \lambda_b) E_{ijkh},$$

where

$$E_{ijkh} = R_{ijkh} + \frac{2R}{n(n+4)} (g_{ik}g_{hj} - g_{ik}g_{hi} + F_{ik}F_{jh} - F_{jk}F_{ih} + 2F_{ij}F_{kh}).$$

From (2.7) and the identity (2.5), we get

$$(2.8) \quad \lambda_{ab} E_{ijkh} + \lambda_{ij} E_{khab} + \lambda_{kh} E_{abij} = 0,$$

where

$$\lambda_{ab} \stackrel{\text{def}}{=} \lambda_{b,a} - \lambda_{a,b}.$$

Equation (2.8) is of the form (2.6) since $E_{ijkh} = E_{khij}$. Thus, from Lemma 2.2, we have Theorem 2.3. This completes the proof.

REFERENCES

- [1] K.B. Lal, S.S. Singh : On Kählerian spaces with recurrent Bochner curvature, Acc. Naz. Dei Lincei, Rend, 51 (1971) 213-20.
- [2] B.B. Sinha : On H-curvature tensors in a Kählerian manifold, Kyungpook Math. J. 13 (1973) 185-89.
- [3] S. Tachibana : On the Bochner curvature tensor, Nat. Sci. Rep. Ochanomizu Univ., 18 (1967) 15-19.

[4] A.G. Walker : On Ruse's space of recurrent curvature, Proc. Lond. Math. Soc., 52 (1950) (2nd series), 36-64.

[5] K. Yano, S. Bochner : Curvature and Betti numbers, Ann. Math. Stud., 32 (1953) 83-105.

DEPARTMENT OF MATHEMATICS, LUCKNOW UNIVERSITY, LUCKNOW, INDIA

Received March 29, 1980.

