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ON THE FIRST FOURIER PROBLEM 
FOR RANDOM PARABOLIC EQUATIONS OF THE SECOND ORDER 

I n t h i s paper we cons ide r the f i r s t Fou r i e r problem 
η η 

(0 .1) M u s y~^ a i j ( x » t ) a
x χ + b ^ x . x ) ^ + c ( x t t ) u - ttt = 

i , d - i 1 3 i= i 1 

= f ( x , t ) , ^ ( x , t ) e G \ r , 

(0 .2) u ( x , t ) = 9»(x , t ) , ( x , t ) e Γ , 

where G c = | ( x , t ) s χ e R n , t e l i } i s a bounded domain, 
G denotes the c losure of G and Γ i s the pa rabo l i c bounda-
ry of G. Here M i s a pa rabo l i c o p e r a t o r i n G with r e a l -
-va lued c o e f f i c i e n t s def ined i n G, wnereas f and φ are 
random f u n c t i o n s de f ined i n G and Γ r e s p e c t i v e l y . At 
f i r s t we der ive some a p r i o r i e s t i m a t e s of Fr iedman 's type 
f o r a s o l u t i o n of the problem ( 0 . 1 ) , ( 0 . 2 ) . These e s t i m a t e s 
and the ex i s t ence of a s o l u t i o n of tha problem ( 0 . 1 ) , (0 .2 ) 
i n the s c a l a r case ( i . e . f and φ are r e a l - v a l u e d f u n c t i o n s ) 
enable us t o prove an ex i s t ence and uniqueness theorem f o r 
the problem in q u e s t i o n . 

^ Nota t ion and d e f i n i t i o n s w i l l be s t a t e d i n Sec t ion 1. 
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2 H.Ugowski 

The last section of the paper deals with the first Fourier 
problem for the infinite system of random semilinear parabolic 
equations 

η η 
(0.3) Mkuk • ^ a£3(xft)u£ χ + Σ bk(x,t)u£ + 

i,3=1 1 3 i-1 

+ ck(x,t)uk - uk = f^x.t.u,!^), (x,t)e g\r, 

(0.4) uk(x,t) = $pk(x,t), (x,t )er, k=1,2,..., 

where M (k=1,2,...) satisfy the same conditions as M, 
1 ? 1 ? u = ( u , u ,...), α.χ = (û . ,.,.,ιι̂  ) with a*.= ("χ.»"^ ,···) 
k V 1 η Ò d d and f , φ are certain given random functions. Using the 

results obtained for the problem (0.1), (0.2) and the Banach 
fixed point theorem we prove the existenoe and uniqueness of 
a solution of the problem (0.3), (0.4). 

In the paper [6] there was proved the existence of a so-
lution of the Cauchy problem for the random equation (0.1) 
with random coefficients (as well as with random functions f 
and φ ). Wext, in the paper [7] there has been considered the 
Gauchy problem for random evolution equations which involves 
some particular cases of the problems (0.1), (0.2) and (0.3), 
(0.4) under different assumptions from those of the present 
paper. Our results obtained for the problem (0.1), (0.2) con-
stitute an extension of appropriate ones concerning the scalar 
case (Theorems III.6, III.7 and VI.4 of [3]2^) to the random 
case. 

1. Notation and definitions 
Let G be a bounded domain of the Euclidean space 

of the variables (x,t) = (x^,...,xfl,t) whose boundary con-

2~) 
' Throughout this paper when referring to the monographs 

[1] - [4] we shall denote by a Roman numeral the chapter num-
ber. 
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First Fourier problem 3 

siats of domains B Q and E T lying on the planes t = 0 
and t = Τ = const>0, respectively, and of a manifold S 
situated in the strip |(x,t): OjftssTj. The set Γ = B 0U S 
is called a parabolio boundary of Ç. The parabolic distanoe 
of points Q(x,t), Q' (x;t') e R n + t is defined as 

d(Q,Q')= (|x-x'|2 + |t-t'| )Λί2 , where \x-x'\ = 
?11/2 

L i=1 
As in [ 3 ] (Sec. 111*2), we introduce the following nota-

tion for a function u:G — — R: 

||u||G = sup I u(Q ) 1, 4 « > U ) = sup M R l ^ l i 3 ) , 
U QeG u Q ,Q e G [d(Q,Qyj] 

M{a] ' π -ff 0 + 4aì^> I l 4 1 + e ) - + Κ - Ι Ι ^ » 
i-1 1 

iiuii<2+«> - + Σ + Σ Ζ + 

4 _ ·« 1 ¿ J 4 1 Π >G 
i=1 •*• i,d = 1 

The set c ( ( G ) (k=0,1,2) of all functions u with the 
finite normi H u||Qk+0t^ is a Banach spaoe. 

The following norms will also be needed (see Sec.VII.2 
of [5]) s 

. W l o V u p α I u(Q ) -u(Q' )| . [|x-x'| + |t-t'|]"1J, 

i=1 1 

3 ) Prom now α e(0,1) is an arbitrarily fixed number. 
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4 H.Ugowski 

The s e t of a l l f u n c t i o n s u wi th the f i n i t e norm 
(k = 1,2) w i l l be denoted by 

We s t a t e the fo l lowing d e f i n i t i o n s concerning the mani-
f o l d S (see [ 3 ] , Sec. I I I . 2 and V I I . 2 ) . Suppose t h a t f o r 
every point Q e S t h e r e e x i s t s an (n+1 ) -d imens iona l ne igh-
bourhood V such t h a t : 

1 0 V π G i s s i t u a t e d on only one s ide of the s u r f a c e V n S ; 
2° V n S can be r ep re sen t ed f o r some i ( l ^ i ^ n ) by 

an equa t ion of the form 
jx^ = h( x ^ , . . . , . . . , x n , t ) . 

I f the f u n c t i o n s h belong to C ^ ( γ - « , 1+cx. 2+ot. 1 - 0 , 2 - 0 ) , 
t hen we say t h a t S i s of c l a s s C ^ . I f S € ( T 2 + 0 ( ' and 
the d e r i v a t i v e s h x t ( j Φ i ) e x i s t and are con t inuous , then 

we say t h a t S i s of c l a s s i f , moreover, h „ 
t ¿ 

e x i s t and are con t inuous , then S i s said t o belong t o c l a s s 
q( 2+«) ^ T h e m a n i f o l d s o f c i a S g ¡jiff) can be covered by 
a f i n i t e number of b a l l s Vk such t h a t S^ = S n v ^ i s de -
f i n e d by the equa t ion 

(1 .1 ) x ± k = h k ( x 1 , . . . , x i ^ _ 1 , x i k + 1 , . . . , x n , t ) , 

where h - e c ' r l . f r ) Let v:S — R, where Se C* . Using ( I . I ) we can w r i t e 
the f u n c t i o n v ( x , t ) on S k as a f u n c t i o n of the v a r i a b l e s 
Χ^,. , . ,Χ]^ _ 1 , x i + 1 , . . . , x n , t i n a c e r t a i n r e g i o n D^. We t h e n 

k k 
d e f i n e 

l l v d ^ = max | | v | | ^ ) 

iL Κ 
and we say t h a t v e C ( a r ) ( S ) i f ||v|| ¡ f } < 00 . 

Now we in t roduce d e f i n i t i o n s concerning random f u n c t i o n s . 
Let (£2, Τ . Ρ) be a complete p r o b a b i l i t y space . By Lp = Lp(S2) 
( l « p < o o ) we denote the Banach space of a l l random v | a r i a -
b l e s ξ : £3 —«-R wi th the f i n i t e norm 

^ Throughout the paper ρ e < 1 , < » > i s a r b i t r a r i l y f i x e d . 
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5 

Bllr ξ(ω)| P P(d«) 
1/p 

i f p<oo , IIξ II = asa sup |ξ(ω)| . 
ut Ω 

The l i m i t , continuity and part ial derivatives of a random fun-
ction u: G are understood in the strong sense and they 
are called respectively the L p - l imi t , Lp-continuity and Lp-de-
r iva t ives of u. 

Like in the scalar case we introduce the following nota-
tion for a random function u:G —- L„: 

ι » II u(Q ) - U ( Q ' )|| 
Hull G = sup ||u(Q)|| 4 ° ¿ ( u ) = sup ' _ ! L £ . f 

P ' U QeG p P ' U Q , Q ' e G [ d ( Q , Q ) J 

i=1 

N ^ R 1 -
i=1 1 i , j = 1 1 3 

G* 

The set (G;Lp) (k = 0 , 1 , 2 ) of a l l functions u with 

the f i n i t e norm IMIp^Q0^ i s a Banach space-^. 

D e f i n i t i o n 1 .1 . A function ψ : Γ — Lp i s 
said to be of c lass C^2+Q^(G;Lp) i f there ex i s t s a cont i -
nuous function — Lp such that § t C ^ ( G.;Lp) and 
§ = φ on Γ . We then define 

^ The compietness of C^k +^(G;LD) can be proved in 
a standard manner by using the completeness of Lp and the 
c l a s s i c a l theorem on termwiee di f ferentat ion of a sequenoe 
of random functions. 
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6 H.Ugowaki 

i m i ^ - ψ ί ΐ η ΐ 2 ; ^ · 

S e m a r k 1.1. (see Sec. I I I . 3 of [ 3 ] ) . I f S i s 
of class and a function <p : Γ - * · ! belongs to 

q( 2+o() j G;Ii ) , then f o r any extension § e C*2+0<) ( G;L ) of ψ , 
r Η 

the der ivat ives $ χ , χ and φ̂ . are uniquely defined 

(by continuity) on the boundary 3Eq of the domain E q , and 
the de f in i t i on i s independent of φ . We denote these der iva-
t i ves (on 9E ) by ψ , ω and <pf, r espec t i ve ly . Ο Λ · ' Λ · Λ · w ·*• "'"J 

By a solution u of the problem (0 .1 ) , (0 .2 ) we shal l 
always understand a regular Lp-solution, i . e . the function 
u:G—·-L i s L -continuous in G, possesses L -der ivat ives 

Ρ Ρ ' y _ Ρ 
appearing in Mu which are Lp-continuous in G\P and u s a t i s f i e s (0 .1 ) , (0.2) in the Lp-sense. 

2. The uniqueness of a solution and a pr ior i estimates 
of a solution of the problem (0 .1 ) , (0.2) 

At f i r s t we derive some a pr idr i estimate of the norm 
Hu|! ρ f o r a solution u of the problem ( 0 . 1 ) , (0 .2 ) which P , u 
i s a counterpart of the appropriate estimate in the scalar 
case (see Theorem 5 in Sec. 1 of [ 5 ] ) . For this purpose we 
need the fol lowing lemma. 

L e m m a 2.1. Let the fo l lowing assumptions be sa-
t i s f i e d : 

(2 .1) The coe f f i c i en t s a . . , b. ( i , j = 1 , . . . , n ) and c 
are real-valued functions defined in G\ Γ and a.Λ = a.,.». — tJ d1 

( 2 . I I ) The operator M i s parabolic in G\Γ, i . e . f o r 
any ( x , t ) e G \ T and g = ( ^ , . . . , £>n) e Hn, p ^ O we have 

η 

a ^ ( x , t ) = a 3 i ( x , t ) , i , j = 1 , . . . , n , ) ( x , t )f ^ > 0. 

( 2 . I l l ) f : c N r — L p and ψ : Γ ~ Ι ι ρ . 
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First Fourier problem 7 

Súpose that u is a regular Lp-solution of the problem 
(0 .1 ) , (0 .2 ) . Then for any functional H L * 6 ' the function 
U = lu defined by U(x , t ) = l ( u ( x , t ) ) i s a regular solution 
of the scalar problem 

(2.1) MU = F ( x , t ) , ( x , t ) e G \ Γ , 

(2.2) U (x , t ) = § ( x , t ) , ( x , t ) e r , 

where F = I f , § = lp . 
P r o o f . The Lp-continuity of the function u in G 

implies the continuity of U in G (see Sec. V.2 of [ l ] or 
Sec. I I I . 2 of 04]). In view of Sec. V.3 of [ l ] there exist 
in G\Γ the derivatives 

( 2 · 3 ) \x.> " t 

and moreover 

3 A i i 

Thus the derivatives (2.3) are continuous in G\r . Now, 
using. (0.1), (0.2) and (2.4) one can easily find that U is 
a solution of the problem (2.1), (2.2). 

In order to formulale a theorem concering the above-men-
tioned estimate we additionally introduce the following assump-
tions. 

(2.IV) The coefficient c in (0.1) is bounded from above 
in G s r , i . e . o(x,t)<N.|, ( i , t ) e f i \ r for some positive 
constant N^. 

(2.V) The functions f and φ are Lp-bounded, i . e . 

f | l P , G N f < r a n d Μ ρ , Γ < 0 ° · 

^ L* denotes the adjoint space of Ρ Ρ 
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8 H.U«owski 

T h e ο r θ m 2 . 1 . Let assumptions ( 2 . I ) - ( 2 . V ) be s a -
t i s f i e d . Then for any eo la t ion u of the problem ( 0 . 1 ) , ( 0 . 2 ) 
we have the estimate 

( 2 . 5 ) M p , 5 ^ ( M p , r + T « f | | p f ^ r ) . 

P r o o f . Take an a r b i t r a r y point Q(ïc,t) e G and 
consider the case u(Q) Φ 0 . Then, by Theorem I I I . 8 . 3 of [ l ] , 
there e x i s t s a funct ional l e L* with the norm ||l|| = 1 _ _ ρ ρ 
such that lu(Q) = ||u(Q)|| . In view of Lemma 2.1 the funct ion 
U = lu i s a r e g u l a r so lut ion of the problem ( 2 . 1 ) , ( 2 . 2 ) . 
Hence, using the above-mentioned Theorem 5 of [ 5 ] , we obtain 
the estimate 

Ν Τ 

( 2 . 6 ) |U(Q)U e 1 (ΙΙφΙΙΓ + T | | F j ^ r ) , Q 6 G. 

One e a s i l y find that 

( 2 . 7 ) Ι Ι * Ι Ι Γ < Μ Ι Ρ ) Γ , l l ^ g x r < « f l l p , G K r · 

Since |U(Q)| = j lu(Q)| = j| u(Q)|( R , therefore i n e q u a l i t i e s 
( 2 . 6 ) , ( 2 . 7 1 immediately imply tiie sst imate 

( 2 . 8 ) ΐ α ( ς ) ΐ ι ρ < β Ν ι Τ ( Μ Ρ ί + 

In the case u(Q) = 0 the inequal i ty ( 2 . 8 ) holds a lso t r u e . 
Consequently ( 2 . 8 ) implies ( 2 . 5 ) . 

As a coro l lary from Theorem 2.1 we obtain in a standard 
manner the following uniqueness theorem f o r the problem ( 0 . 1 ) , 
(0.2) . 

T h e o r e m 2 . 2 . I f assumptions ( 2 . I ) - ( 2 . I V ) are s a -
t i s f i e d , then the problem ( 0 . 1 ) , ( 0 . 2 ) possesses no more than 
one so lut ion . 

Now we s h a l l derive a pr ior i estimate of the norm ρ, u 
of a so lut ion u of the problem ( 0 . 1 ) , ( 0 . 2 ) . ?or t h i s .pur-
pose we introduce the following assumptions: 

(2 .VI) The c o e f f i c i e n t s of M are uniformly Holder con-
tinuous (exponent α ) in G. 
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F i r s t Fou r i e r problem 9 

(2 .VII ) For any ( x , t ) e G and çeR 1 1 w e h a v e 

η 
a i j ( x» t -= a

<3l( : ! C»' f c ) » i » j = 1 } '. a i j f * » * ) ? ! ? ^ 1 ^ I ^ " 2 ' 

where N2 i s a p o s i t i v e c o n s t a n t . 
Assumption (2.VI) impl ies t h a t 

l | a i á ^ 0 < , , | | b i l l ^ ) , | | c l ¿ 0 , U N 3 ( i , j = 1 n ) , 

N^ being a p o s i t i v e c o n s t a n t . 
The fo l lowing lemma w i l l be a l so needed. 
L e m m a 2 . 2 . I f u e C ^ (G;L p ) , then f o r any fun-

c t i o n a l l e L* the f u n c t i o n l u belongs to C ^ ( G ) and 

(2 .9 ) | | ( l u ) | | Q < | | l | | p | | u | | p f G , 

(2 .10) 4 a ) ( l u U « l | | p H (
p ^ (u ) 

and consequently 

(2 .11) I | i u 4 w , < IIHip \M{
p

a
t l-

P r o o f . The i n e q u a l i t i e s (2 .9) and (2.10) r e s u l t 
r e s p e c t i v e l y from the fo l lowing ones 

| i u ( Q ) | « s | | i | | p | |u(Q)||pf Q e a 

and 

l ( l u ) ( Q ) - ( l u ) ( Q ' ) L | | 1 | , II u(Q)-u(Q' ) | | p 

[ d ( Q , Q ' ) ] e [d (Q ,Q' ) ] α ' Q , Q G ' Q ^ Q · 

As a g e n e r a l i z a t i o n of Lemma 2 .2 we ob ta in the fo l lowing 
lemma. 
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10 H.Ugowski 

L e m m a 2.3. I f u C^k+0 , ' (GjL·) ( k = 0,1,2 ) , then 

for any functional 16 L* the function lu belongs to 

C ( k + e , (G ) and 

(2.12) ||lu||<k+0,Ul|l||p I I » i I I -

P r o o f . Por k = 0 the lemma is proved. I f k = 1, 
then, using (2.4) and (2.11) for u_ ( i = 1 , . . . , n ) , we oon-

i elude that 

(2.13) I l d " ) ^ 0 0 ^ ΐ ^ - ΐ Ι ^ ^ ΐ ΐ ^ Ι ρ Κ ^ ΐ ρ ^ · 

According to (2.11) and (2.13) the inequality (2.12) holds 
for k = 1. Similarly for k = 2 we have 

l!(iu) t||^Ul|i||p ΟΜρ,σ-

Hence and by (2.11), (2.13) the inequality (2.12) holds f o r 
k = 2. 

T h e o r e m 2.3 ( c f . Theorem I I I . 6 of [ 3 ] ) . Suppose 
that : 

1° assumptions (2.VI) and (2.VI I ) are Satisf ied; 
2 0 S e C ( 2 + o , ) , f e C ( o i ) ( ( í ; l p ) and φ 6 C ( 2 + 0 f , (G;Lp ) (see 

Definition 1.1); 
3° the function u e C 2̂"1"0̂  (G;Lp) i s a solution of the 

problem (0.1 ) , (0 .2) . 
Then there exists a constant K^>0 depending only on 

Kg, N-j, « and G such that 

(2.14) l u i f t · » ^ + l l < ¿ ] · 
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First Fourier problem 11 

P r o o f . Lemmas 2.1 and 2.3 and formulas (2.4) imply 
that for any functional l € I * the function U = lu is a 
solution of the problem (2.1 ) , (2.2) and belongs to C^2+°^(G). 
This enables us to apply to the function U the estimate 
( I I I .2 .21 ) of [ 3 ] . 

Let us take arbitrary pojints Q,Q' e G, Q Φ Q' . I f 
u(Q) 4 u(Q' ) , then there exists a functional 1fcL* such 
that, II 1IIρ = 1 and and l[u(Q )-u(Q' )] = || u(Q)-u(Q')|| . Hence, 
according to the estimate ( I I I .2 .21 ) of [3] and Lemma 2.3 we 
have 

l|u(Q)-u(Q' )||p _ | u ( q ) _ u ( q M | 

[dtQ.Q')]* [d (Q,Q'rr * 

« κ [ | | ι 4 2 + « > + ||lf| Κ [|9|^J«> + II fII p^gJ -

Obviously this inequality holds true in the case u(Q) = u(Q') 
too. So we get the estimate 

(2.15) + ||f||£¿ ] . 

Now let us consider u for some i ( K i « n ) . For 
x i 

any point Q« G such that u (Q) ¿ 0 there exists a func-
i 

tional 1 6 L* such that ||l|| = 1 and lu v (Q) = || uv (Q)||n. p y ρ 
Like as above we obtain 

K . ( Q ) I I P = |UX.(Q)|^ k [ M ^ 

whe nee 

( 2 . 1 6 ) Ι Ι α χ ± Ι Ι p , g ^ k [ i | 9 > I | p ^ g w ) + l l f l l ^ ] . 
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12 H.Ugowski 

Further, taking a functional l & L p such that ||l||p = 1 and 
l f i y (Q)-ux (Q' )] = II Uy, (Q)-u x (q' )|| ρ (under the condition 

α (Q) ¿ tL, (Q'J) and arguing as in the proof of (2 .15) we 
x i x i 

get the inequality 

(2 .17) Η U K + ι * ι £ α ] ' i = 1 η · 

For the derivatives ιι _ , u+ one can also derive the 

estimates of the form ( 2 . 1 6 ) , ( 2 . 1 7 ) . Heince in view of the es-
timates ( 2 . 5 ) , ( 2 . 1 5 ) - ( 2 . 1 7 ) the proof of Theorem 2 .3 i s com-
pleted. 

Before formulating the next theorem we introduce the f o l -
lowing assumption and notation. 

( 2 . V I I I ) The c o e f f i c i e n t s a , j are uniformly Holder con-
— « ( ι—O) tinuous (exponent oc) in G and they belong to C ( S ) ; 

ΐκ and c are continuous in G. 
Thus for some constants 0 we have 

η η η 

Π Κ 3 ΐ ί β ) . * Σ > ΐ " σ * | ο | β * . 4 . 
i , 3=1 i=1 i , 3=1 

Por any τ^, τ^ e < 0 , Τ > with r^ < r 2 l e t us denote 

Ε Γ ι = { ( χ , Γ ι ) 6 5 s s } , 

T h e o r e m 2 . 4 ( c f . Theorem V I I . 4 of [ 3 ] ) . Suppose 
that : 

1° S e C ( 2 + ^ n C ( 2 - 0 ) and f f c C ( G ? L p ) 7 ) ; 

7) — — " C(G;Ip) denotes the set of a l l functions u:G—«~Lp 

which are Lp-continuous in G. 
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First Fourier problem 13 

2° assumptions (2.VII ) and (2 .V I I I ) are sat is f ied ; 
3° u is a solution of the problem 

(2.18) Mu = f (x , t ) , (x.t)eG \ Γ , u(x,t) = 0, ( χ , ΐ ) ί Γ^ . 
V 2 1» 2 1» 2 

Then for any β e (0 ,1 ) there exists a constant 0 
depending only on β , K2, N^, and G such that 

(2.19) ^ K 2 ( r 2 - τ , ΐ Ι Ι - Ί Λ |f I . 
1 * 2 1 ' 2 

P r o o f . I t follows from the proof of Theorem VII .4 
of [3] that i f u is a solution of the problem (2.18) in 
the scalar case, then there holds the estimate 

(2.20) I M ^ ^ K 2 ( r 2 - r ^ - M Z ||f||G 

Γ 1 » Γ 2 Γ 1 , Γ 2 

Moreover, the condition f (x ,r . , ) = 0 on 3E (the boundary 
1 τ 1 

of E ) is superfluous. Using (2.20) and applying the same 
1 

method as in the proof of Theorem 2.3, we get (2.19). 
Now let u be a solution of the problem 

Mu=f(x,t) , (x , t )eG r \ Γ _ , u (x , t ) « j » ( x , t ) f (x , t )eT , 
1 ' 2 1 ' 2 1 ' 2 

where the function β»:Γ_ _ — L belongs both to 
1 ' 2 p 

C ( 2 + 0 , , (G r ; L ) and C ( l + ^ ( G r j L ) . 
1 ' 2 Ρ 1 ' 2 ^ 

Then, under assumptions 1° and 2° of Theorem 2.4, we obtain 
from (2.19) ( in a standard manner) the following estimate 



14 H.Ugowski 

( 2 .21) ||u||<^ r < V V V ( 1 " ' , / 2 | j f l p f a c r 
1 '2 L 1' ; 
( 2+a) 

+ SIIGLI Ώ ; 1
 r 

1» ; 

(1+2) 
ρ.βτ τ ' 

1 ' 2 

0 being a constant depending only on N^. 

3. The existence of a solution of the problem (0.1), (0»2) 
At first we introduce some notation. Let us denote 

λ ={ßr...,Qmj, 

where fi^ef (i=1,...,m), υ ...u£?m =£? and 5 2 ^ 0 = φ 
for i / j, The set λ will be called a finite partition 
(or shortly a partition) of the space Ω , By Λ we denote 
the set of all partitions of Ω . It can be partially ordered 
as follows: if every set belonging to λ is a sum of 
those belonging to λ' . So (A,^) is a directed set (see 
Definition 1.7.1 of [2]). 

Por any λί A define an operator Α λ setting 

(3.1) 
m 

M - L AÄi(*,xs?.' 
fcl 1 

ρ» 

where X o is "the characteristic function of. ̂  and 

(3.2) -

[p(%)]"1 / Ξ(ω)ΡΜω) if Ρ ( Ω ± ) > 0 , 

0 if P(Qi) = 0. 

Obviously Α λ : Ι ρ — L p and it results from the proof of Theo-
rem IV.8.18 of [2] that 

(3.3) M p<1 > λ e Λ 
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F i r s t Four ier problem 15 
and 
(3.4) lira |UÂç -ξ II p = 0, ξ e Lp 
(see also Sec. 1.7.1 of [ 2 ] } . 

The fol lowing lemmas concerning generalized sequenoes of 
random functions w i l l be needed. 

L e m m a 3.1. I f U 6 C ( G ; L p ) , then for any Η Λ 
thç funct ion A^u, defined by (Α λα)(ΰ) = A A [u (Q ) J , belongs 
to C(G;Lp) and 

(3.5) l im ||Αλα-α||ρ>(} = 0. 
P r o o f . I n v i r tue of (3.2) we have A ^ e L * , when-

ce A ^ u e C(8) . This impl ies, by ( 3 .1 ) , the r e l a t i o n 

Ajy u € C( G j h go) c. C(GjLp) . 

According to the uniform Lp-continuity of u i n G g i-
ven any ε >0 there i s a <5 >0 such that 

(3.6) ||u(Q)-u(Q' ) \ \ p <j i f d (Q ,Q ' )<5 . 
Let | q i , · . . , Q k J c G be a fi-net of G 8 ' . By (3.4) 

l im I lA^MQ^-uiQ^llp = 0, i = 
and consequently there i s a ^ e A euch that 

(3.7) II Axu(Q i )-u(Q i )|| , i = 1 , . . . , k , λ » λ 0 . 

1.3» for any Q e G there i s Q-L such that d(Q,Qi)<<S. 
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I n v i e w o f ( 3 . 6 ) f o r a n y Q e G t h e r e e x i s t e s u c h , t h a t 

( 3 . 8 ) l | u ( Q ) - u ( Q i ) . | | p < - | . 

T a k i n g a d v a n t a g e o f i n e q u a l i t i e s ( 3 · 3 ) » ( 3 · 7 ) a n d ( 3 · 8 ) w e 
o b t a i n 

B a ä ' u ( Q ) - u ( Q } | | < | | Α λ [ α ( ί ) - α ( ή . ) ] | | 

+ | | A > u ( Q i ) - u ( Q i ) ' | | + l l u C Q ^ l - u C Q ) ! 

Ρ + 

P < e 

f o r a n y Q e G a n d T h i s g i v e s 

| Α Λ α , α | ρ ρ β < 6 . λ > λ 0 

w h i c h i m p l i e s ( 3 . 5 ) . 
L e m m a 3 . 2 . I f u e C t k + a ) ( G ; L p ) ( k = 0 , 1 , 2 ) , t h e n 

f o r a n y λ ε Α w e h a v e Α λ α e ( G j L ) a n d 

r 

( 3 . 9 ) M ^ . 

P r o o f . I f k = 0 , t h e n i t f o l l o w s f r o m ( 3 . 3 ) t h a t 

K a ( Q ) | | p ^ | | a ( Q ) | f p , Q e G , * e A 

a n d 

| | A A u ( Q ) - A a U ( Q ' ) | | I u ( Q ) - u ( Q ' ) | | Γ , / . η α V i Γ Τ Τ ο Γ ^ ' Q , Q 6 G , Q ^ Q \ * e A . [ d ( Q , Q ' ) J [ d ( Q , Q ) ] 
f < x } S o w e h a v e A ^ u e C ( G ; L ) a n d 

f i i i l ^ ' I I M I p . G ^ M p . G ' 
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Conseq uently 

(3.10) Ι Α » Β Ι Ι ρ ,α< Ι α Ι ρ ,α · 

which provea (3.9) for k » 0. 
In the case k = 1 the relations (3.1) and (2.4) y ie ld 

the formula 

(3.11) (Αλιι )χ = Αλ (αχ ) , 3 = 1 , . . . , n . 

Henoe, according to the previous considerations 

Wx (Αλα)_ 6 C ( o ( , ( G { L j 3 = 1 , . . . ,η 
Ί 

and 

(3.12·) ||(Αλα) J ^ I M p . G » i = 1 η. 
3 0 

Thus we have A ^ u e c ' 1 + a ' ( G ¡ I p ) and (3.10), (3.12) imply 
(3.9) f o r k = 1. 

Similarly for k = 2 one can find that 

( Α λ α , χ . χ . · ( A ^ I ^ C ^ ' t G j l J , j , i = 1 , . . . , n 
3 ^ 

and 

(3.13) » ( Α , . ) I l ^ ^ l l u J . i . 
J 1 J 1 

1 , • . · , n, 

(3.14) 

Consequently A^a e c ( ( G ; L ) and in view of (3.10), 
(3· 12)-( 3.14) the inequality (3-9) holds true fo r k = 2. 
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18 H.Ugowski 

L e m m a 3.3. If ueC ( k + C ( ) (S i i p ) (k = 0 ,1 ,2 ) , then 

(3.15) lim IA^u-u||p^jj^ = 0 for any ße(0,ct): 
λεΑ 

P r o o f . In the case k = 0 l e t us introduce the 
function 

v(Q,Q' ) =· 

u(Q)-u(Q') 
[d(Q,Q')7 

0, Q = Q' e G, 

, Q,Q' 6 G, Q' ¡i Q, 

where ße(0,a). Since ν i s Lp-conttlnuous in GxG, the-
r e fo re , by Lemma 3.1, 

lim ||axv-v||p>G)<g = 0. 

Hence, taking into considerations the equality 

V-v«p,GxG » 

and (3.5) , i t follows that 

(3.16) lim ¡A,u-u | | ^ í = 0. 
AeA λ P ' G 

In the case k = 1 the formula (3.11) enables us to 
apply (3.1 ß) to û . ( j = 1 , . . . , n ) and so we get 

(3.17) lim«(A,u-u) H W = lim || A,u -u || $ = 0. 
J «J J 

Relations (3.16), (3.17) imply (3.15) for k = 1. 
If k = 2, then arguing like as above we find that 

lim||(AÄu-u) = 0, j , i = 1 η, 

lim | | ( A , u - u ) t l ^ ¿ = 0 
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F i r s t Fourier problem 19 

Hence, by (3 .16) and ( 3 . 1 7 ) , the r e l a t i o n (3 .15) holds true 
for k = 2. 

How we prove an e x i s t e n c e theorem f o r the problem ( 0 . 1 ) , 
( 0 .2 ) which i s a counterpart of Theorem I I I . 7 of [ 3 ] . 

T h e o r e m 3 . 1 . Let assumptions (2.VI) and (2 .VII) 
be s a t i s f i e d and suppose that S e c ' 2 + 0 1 ' , f e c ' a ' ( G ; I p ) , 
p e c ' 2 + 0 , ' ( G ; L p ) (see D e f i n i t i o n 1.1) and 

(3 .18) « Mp= f on 3E 0 (see Remark 1 . 1 ) . 

Then the problem (0.1),* ( 0 . 2 ) has a unique s o l u t i o n ue 
e C ( 2 + e , ( G j L p ) . 

P r o o f . The un ic i ty was proved i n Sec. 2. In order 
to prove the ex i s tence of a s o l u t i o n we consider , f or any 
λ e Λ , the problem 

(3 .19) Mu = Α λ ί ( χ , ΐ ) , ( x , t ) e G \ r 

(3.20) u ( x , t ) = ΑΛ9>(χ,ΐ), ( x , t ) e P 

In v ir tue of Lemma 3 .2 we have 
and moreover, by ( 3 . 1 ) , 

A , f e C ( G ; Lp ) , Aj^e C (G ; Lp) («) ,(24«) 

m 
(3 .21) 

i=1 

m 
(3.22) 

Now f o r i 1 , . . . , m consider the s c a l a r problem 

(3 .24) 
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20 H.Ugowski 

According to Lemma 2.3 A ^ f t c ' e ' ( G ) and Α·χ±φ 6 C ^ 2 + a ' (G). 
Moreover, re la t ions (2.4) and (3.18) imply that M(A^(p) = 
= A ^ f on Thus, by Theorem I I I . 7 of [ 3 ] , the problem 
(3 .23) , (3.24) has a unique solution u ^ e c ' ^ ' l G ) 
( i = 1 , . . . , m ) . Consequently the function 

m 

Η - Ε α λ χ χ ^ 
i=1 1 

belongs to (G;Lp) and, in view of (3.21) and (3 .22) , 
i t i s a solution of the problem (3 .19) , (3 .20) . 

Take an a rb i t ra r i ly f ixed xj . By Lemma 3·3 we 
have 

(3.25) l i m « A , f - f | | W = 0 , 

(3.26) - 0 

and therefore the generalized sequences (A^f) and [Αχψ) s a -
t i s f y the Cauchy condition in the spaces C ^ ( G ; L ) and 
C^2 + / 3^(G;Lp) , respectively (see Sec. 1 .7 .4 of [ 2 ] ) . Obser-
ve that for any λ , λ'e A hold the re la t ions 

E(uÄ-uÄ ' ) = Ä Ä f (x , t ) - A x ' f ( x , t ) , ( x , t ) e G \ r , 

( u^-u^ ) ( x , t ) = Αλ9»(χ,ΐ)-Αλ' $¡>(x,t), ( x , t ) e T , 

αλ- Utf 6 C ^ + ^ i G j L p ) , Αλ£-Αλ' f ê C W ( G j I p ) , 

Αλ5ρ-Αλ'996 C { 2 + ^ ( G ; L p ) . 

So we have, by Theorem 2.3» the estimate 
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Hence, in view of the above-mentioned Cauchy condition, given 
any ε > 0. there i s a ÄQeA such that 

IIH-ax\\ 1 for any λ , V » λ Q . 

This implies, by Lemma 1 .7 .5 of [2] , the existence of 
u e c ' 2 + i ' ( G ; l ) s a c h t h a t 

Γ 

(3.27) lim K - u H ^ * ) = 0. 

In virtue of the re la t ions (3 .25)-(3 .27) the function u i s 
a solution of the problem (0 .1 ) , (0 .2 ) . 

I t remains to show that 

(3.28) u e C ( 2 + o t , ( G ; L p ) . 

Indeed, by Theorem 2 .3 , we have 

(3.29) + Rf | |£>] 

for any » « ) · The proofs of Theorems I I I . 6 of [3] and 
2.3 imply that 

(3.30) K ^ y J U K ' , >Se(f , « ) 

for some Κ ' > 0 . Moreover, we have 

(3.31) l * l ^ < n f , C 2 j « ) f HfB<«>, ^ ( f . o , ) 

for some K " > 0 . Relations (3 .29)-(3.31 ) give the estimate 
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22 H.Ugowski 

l l u l l ^ + a ^ k ' k " [ m [,2+«) + | | f | | ( « ) j f o r a n ? fi6( | ) C X ) 

from which ( 3 . 2 8 ) f o l l o w s . 

4 . On the e x i s t e n c e and uniqueness of a s o l u t i o n of the 
problem ( 0 . 3 ) , ( 0 . 4 ) 

We introduce the fol lowing assumptions concerning opera-
t o r s Mk (k = 1 , 2 , . . . ) defined by ( 0 . 3 ) . 

k » ( 4 . 1 ) The c o e f f i c i e n t s of M are uniformly Holder con-
tinnuous (exponent <x) i n G and moreover 

l l a l l a 0 0 . l o k l i e , < B 1 f 

B.J being a p o s i t i v e c o n s t a n t . 
( 4 . I I ) For any ( x , t ) 6 G, ρ e R û and k = 1 , 2 , . . . we ha-

ve 

η 

i , 3=1 

where B 0 i s a pos i t ive c o n s t a n t . 
k 

( 4 . I l l ) The c o e f f i c i e n t s a ^ ( i , j = 1 , . . . , n ; k = 1 , 2 , . . . ) 
belong χυ and 

X L l l a i â « S 1 " 0 ) < B 3 ( k = 1 , 2 , . . . ) , 
1 , 3 = 1 

B^ being a pos i t ive c o n s t a n t . 
In order to formulate assumptions concerning the func t ions 

f k and © k ( k= 1 , 2 , . , . ) we introduce the fol lowing n o t a t i o n . 
1 2 

Let Y denote the set of a l l func t ions u = (u ,u , . . . ) such 
that u J e L , 3 = 1 , 2 , . . . and 

( 4 . 1 ) N . p - L B 4 J · α 3 · ρ * - · 
3 = 1 
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F i r s t Four i e r problem 23 

where B ^ ( j = 1 , 2 , . . . ( are some p o s i t i v e cons tan t s such 
t h a t 

Β 4 Ξ Ε Β«<0°· 
D = 1 

As i s e a s i l y seen the space V wi th the norm (4 .1) i s a Ba-
nach space . Moreover, by ( i = 0 , 1 , 2 ) we denote the 
se t of a l l f u n c t i o n s u = ( u 1 , u 2 , . . . ) such t h a t u*W i+0^(G$Lp) 
( ¿ = 1 , 2 , . . . ) and 

j = 1 

The s e t V^ i + ( x J(G) ( i = 0 , 1 , 2 ) with the norm (4 .2) i s a Banach 
space t o o . 

Mow we formulate the f u r t h e r assumptions . 
(4.IV) The f u n c t i o n s f k ( k = 1 , 2 , . . . ) are def ined f o r 

( x , t ) e G, u , v ^ , . . . , v n e V wi th va lues i n Lp and they s a t i s -
fy the fo l lowing Holder condi t ions f o r any a > 0 the re i s a 
cons tant B ^ ( a ) > 0 such t h a t 

| | f k ( Q , u , v 1 , . , . , v n ) - f k ( Q ' , ^ v 1 , . . . , v n ) | | p « B 5 ( a ) [ d ( Q , Q ' )]* 

f o r any Q,Q'e G, u , v 1 , . . . , v a e V a , k = 1 , 2 , . . . , where 

Va = j u e V : | u | p * a ) . 

There i s a constant B g > 0 such t h a t 

(4 .3) Bf l t (Q t u ,v 1 v n ) - f k ( Q , u ' ,v!j v ; ) | | p « 

( | u - a ' | p + ¿ | τ | ) 

3=1 
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24 H.UgowslÄ 

for any Q e G, ι ι , α ' , Τ ρ ϊ Ι ί ϊ ( i = 1 , . . . , n ) , k = 1 ,2 , . . » . Mo-

reover, the sequence ( ||fk( · , 0 , . . . ,0)|| G i s bounded. 

( 4.V) The function y>= (ju1, p 2 , . . . ) , where ?>k: Γ -— Lp 

(k=1,2, . . . ) , belongs to V ( 2 + a , ( t t ) n V ( l + i l ( G ) with ¿6 (0 , i ) " 9 ) 
and 

(4.4) M V = fk(x,0,j»,$px) on 3EQ 

(see Definition 1.1 and Remark 1.1). 
T h e o r e m 4.1. Suppose that Sé c ( 2 + C ( ) l C ( 2 ' 0 ) 

and le t assumptions (4 . I ) - ( 4 .V ) be sat is f i ed . Then the prob-
lem (0.3 ) , (0.4) has a unique solution u e V ( 2+<x , (G)OV( (G). 

P r o o f . At f i r s t we prove the uniqueness of a solu-
tion of the problem (0.3|), (0.4) in the space V^1+/3^(G). We 
proceed in a standard manner step by step. Namely, l e t 
U ,û6 ï ' 1 + ^ ' (G ) be two solutions of the problem (0.3 ) , (0 .4 ) . 
So we have, for any r e ( 0 , T > and k=1,2, . . . , the relations 

(4.5) Mk(uk-Ük) = F k ( x , t ) - P k ( x , t ) , ( x , t ) e G ^ r r , 

(4.6) (u k -ü k ) ( x , t ) = 0, ( x , t ) e ΓΓ , 

where Gr = GQ r , Γτ = /"*0j|r (see the notation before Theo-
rem 2.4) and 

(4.7) F k ( x , t ) = f k ( χ, t , u, û  ) , F k ( x , t ) = ^ ( χ , ΐ , ΰ , ι ^ ) . 

k —k — 
In view of the assumption (4.IV) Ρ ,F e C(G r;Lp) and there-
fore , applying to (4.5) , (4.6) Theorem 2.4 and using (4.3) we 
obtain the inequalities 

9 ) Obviously i f £ 6(0, « > , then V( ( G) C V( 2 + 0 ° (G). 
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Multiplying each of these inequalities by B ^ , then summing 
over k and using (4.2) we get 

(4.8) I u - ü | K 2 B 6 B 4 r ( 1 ~ ß W 2 i · 

Now let us fix re(0,T> such that 

(4.9) B 7 Ξ Κ2Β6Β4Γ{1"^,/2<1. 

This implies, by (4.8), the equality u = ü in Gr. If 

(4.10) K2B6B4|T(l-*,/2<1, 

then we can take r = Τ and the proof of the uniqueness is 
completed. 

In the case 

(4.11) K 2B 6B 4T ( 1~^ / 2>1 

we have τ < T. Let us put 

Γ, if 2Γ <· T, 
<5 = . 

T-r, if 2r > T. 

So we have 5e(C,t-> and 

Mk(uk-uk) = Fk(x,t)-Fk(x,t), (x,t) eG 5 ) 5 + r\r í ( í + r, 

(uk-ük)(x,t) = 0, (x,t )er. δ,δ+τ 
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F u r t h e r , a rgu ing as above, one can f i n d t h a t u = ü i n 
So a f t | e r f i n i t e number of s t e p s we ge t u = ΰ i n G. 

Now we s h a l l prove the e x i s t e n c e of a s o l u t i o n of thg 
problem ( 0 . 3 ) , ( 0 . 4 ) . I t w i l l be app l i ed a s t anda rd manner 
of e x t e n s i o n of a s o l u t i o n . 

Let us c o n s i d e r t he problem 

(4 .12) Mkuk = f k ( χ , t , u , u ^ ) , ( x , t ) e G r \ Ρτ , 

(4 .13) u k ( x , t ) = j > k ( x , t ) e r r , 

where r e ( 0 , I > i s f i x e d and s a t i s f i e s the c o n d i t i o n 
( 4 . 9 ) . We denote by Wr the s e t of a l l f u n c t i o n s 
such t h a t 

(4 .14) u ( x , t ) = j p ( x , t ) , ( χ , ΐ ) ε Γ τ . 

Obviously w r i s a c lo sed s e t of the space ( G r ) . Por 
any u e W r , k = l , 2 , . . . c o n s i d e r the problem 

(4 .15) Mkvk = F k ( x , t ) , ( x , t ) e G τ \ Γ τ t 

(4 .16) v k ( x , t ) = 9 > k ( x , t ) , ( x , t ) e Γ Γ , 

where P k a re de f ined by ( 4 . 7 ) . I t f o l l o w s from assumpt ion 
(4 . IV) t h a t 

(4 .17) P k6 C ( o < , (G ;L p ) , || Pk | | , k=1,2 

Bg being a p o s i t i v e c o n s t a n t . In view of (4 .4 ) and (4 .14) we 
have 

m V = P ( x , 0 ) , ( x ,0 ) e 3 E q , k = 1 , 2 , . . . 
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So, by Theorem 3.1, the problem (4.15), (4.16) has a unique 
solution vke (Gr j L p ) , k=1,2, . . . Moreover, relations 
(2.14), (2.21) and (4.17) imply that 

ι * ft? « " » D 

• * ί : ΐ Λ * » ι ο [ ι - « " " « f t : 1 ] • " Λ ' χ " , 

where Bg and B^Q are some positive constants. Thus, by 
(;4.V), we have 

(4.18) ν = ( v 1 , T 2 , . . . ) e 7 ( 2 + i , ) ( G t ) n T ( l ^ ( f l r ) . 

At the same time we have proved that the operator Ζ defined 
by Zu = ν maps Wr into i t s e l f . 

Fot any u,ueW r hold the relations 

Mk (v^-vk ) = F k ( x , t ) - F k ( x , t ) , (χ ,t ) 6 G r\ r r , 

( v k - v k ) ( x , t ) = 0, (x ,t ) e r r , 

k —k 
where F and F are given by (4 .7 ) . Further, arguing as in 
the proof of Ì4.8) one oan obtain the inequality 

| z u - Z Ü | ( ^ < B 7 | U - Ü | ^ > , 

Βrj being defined by (4 .9 ) . According to the Banach fixed 
point theorem the operator Ζ has a unique fixed point u. 
This function u is a solution of the problem (4..12), (4.13) 
and, by (4.18), u e V( 2 +c t ) (G r ) 0 V( {G r ) . 

In the case (4.10) we can set Γ = Τ and so the proof of 
the existence of a solution of the problem (0.3 ) , (0.4) is 
completed. I f (4.11) holds, then we consider the problem 
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(4.19) Mkvk = f k ( x , t , v , v j , ( x t t U f i M n V M + r , 

(4.20) vk(x,t) = j>k(x,t), (x,t ) e r i ( f i + I , 

where ffe(0,r) ia selected such, that ff+r^T, 

pk(x,t) 
uk(x,δ), (x,5)e EÄ, 

9 (x»t), ( x , t ) 6 S i ( { + r 

1 2 
and u = ( u , u , . . . ) i s the above obtained solution of the 
problem (4.12), (4.13). Por k = 1 , 2 , . . . let us put 

¿ ¡ k U , t ) = 
0 k (x ,t) [ l -g(t)] + g(t)uk(x,t), ( x , t ) e G , 

$ k ( x , t ) , (x,t)6 G r > f f + r , 

where § = ( ¿ 1 , § 2 , . . . ) 6 v ( 2 + e ) (G;L_) Π V ( 1 + ^ (GjL ) i s an ex-
1 ? tension of φ = (ρ , φ ,·..) and g: <δ , δ + Γ> — R i s a smooth 

function such that g(<S) = 1 and g(t) = 0 for t e c r , 5+r>. 
— k —k Thus § ( k = 1 , 2 , . . . ) i s an extension of φ and 

φ β γ { 2 + α ) (G δ,δ+τ) ην ( 1+jS) (G δ,δ+τ 

i . e . ψ= ( φ \ φ 2 , . . . ) feV(2+0(,(G. 
Moreover we have 

δ,δ+τ) η ν ( 1+JÖ) (G <5,tf+r 

Mk^k = ΐ*{χ,δ,ψ,φχ) on 3 B 5 . 

Further, applying the same argumentation as that used for the 
problem (4.12), (4.13) one can prove the existence of a unique 
solution 
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of the problem (4.19), (4.20). Sinoe 

v k ( x , t ) = u k ( x , t ) , ( x , t | t r i ( r , k= 1 ,2 , . . . , 

therefore in view of (4.12), (4.19) and by the uniqueness of 
a solution we have ν = u in GA r . Consequently the func-

1 ? k τ 
t ion w = (w ,w , . . . ) with w (k=1,2, . . . ) defined by for-
mula 

w* (x , t ) =· 
u ( x , t ) , ( x , t ) e G r, 

v k ( x , t ) , ( x , t ) e G r > ( 5 + r 

belongs to 

T ( 2 + a l ( G r + í ) n v ( 1 + ¿ l ( G r + í ) 

and i t is a solution of the problem 

= f * ( x , t ,w ,w x ) , ( i , t l e f i r + { \ r r + 4 ) 

w k ( x , t ) =5£>k(x,t), (x , t ) έ Γ Γ + ί , k= 1 ,2 , . . . 

Proceeding in the above manner we obtain, after f in i t e 
number of steps, a solution of the problem (0.3) , (0 .4 ) . Thus 
the proof of Theorem 4.1 is completed. 

Now let us consider the particular case 

g e 

(4.21) fk (Q,u,v1 vn ) = gk(Q ) + Σ dk(Q) û " + 
i=1 

+ Σ Σ e^ íQ jvJ , QeG, u , v r . . . , v n e V, k=1,2,.., 
j=1 i=1 
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The fo l lowing assumptions are i n t roduced . 
(4.VI) The f u n c t i o n s gk :G L ( k = 1 , 2 , . . . ) belong t o 

C ( o f , (G}l p ) and sup || gk | | < . 

(4 .VII ) The f u n c t i o n s d ^ G — L«, , e ^ G - — L o o ( k , i = 
= 1 , 2 , . . . , j = 1 , . . . , n ) belong to C ^ ^ G j L o o ) and moreover 

I ^ Ï I ILIG. "* ! ) i i i í ? !G< B i i B 4k . 

where B ^ i s a pos i t i ve c o n s t a n t . 
I t i s e a s i l y v e r i f i e d t h a t assumptions (4 .VI ) , (4 .VII ) 

imply (4.IV) f o r the case ( 4 . 2 1 ) . Thus Theorem 4.1 ho lds t rue 
i n case ( 4 . 2 1 ) . 
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