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’ ON THE FIRST FOURIER PROBLEM
FOR RANDOM PARABOLIC EQUATIONS OF THE SECOND ORDER

In this paper we congider the first Fourier problem
n

n
(0.1) Mu = L aij(x’t)"xixj + ; bi(x,t)uxi+ e(x,t)u~u; =

= £(x,t), @(x,t)e G\I,
(0.2) u(x,t) = p(x,%), (x,t)el ,

where Gc RO - {(x,t)-: xe RY, teR} is a bounded domain,

G denotes the closure of G and I 1is the parabolic bounda-
ry of G. Here M is a parabolic operator in & with real-
-valued coefficients defined in G, wnereas f and ¢ are
random functions defined in G and " 1), respectively. At
first we derive some a priori estimates of Friedman’s type
for a solution of the problem (0.1), (0.2). These estimates
and the existence of g solution of the problem {0.1), (0.2)
in the scalar case (i.e. f and ¢ are real-valued functions)
enable us to prove an existence and uniqueness theorem for
the problem in question.

1) Notation and definitions will be stated in Section 1.
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2 . H.Ugowski

The last section of the paper deals with the first Fourier
problem for the infinite system of random semilinear parabolic
‘equations

n n
k k _ K k k k
(0.3) Mu -i§j=1 aij(x,t)uxixj + §=1 bi(x,t)ux +

v oz, t)0F - of = Fxt,0u),  (x,0)e A\,

(0.4) W¥(x,1) = o¥(x,8), (x,8)el, k=1,2,...,

where MF (k=1,2,.00) satisfy the same conditions as M,

n = (u1,u2,...), ue = (U yeeepny ) with u = (u;.,ug yoos)
and fk, ¢k are certain ;iven ragdom functiogs. Usgng ghe
results obtained for the problem (0.1), (0.2) and the Banach .
fixed point theorem we prove the existence and uniqueness of
a solution of the problem (0.3), (0.4).

In the paper [6] there was proved the existence of a so-
lution of the Cauchy problem for the random eguation (0.1)
with random coefficients (as well as with random functions f
and ¢ ). Next, in the paper [7) there has been considered the
Gauchy problem for random evolution equations which involves
gome particular cases of the problems (0.1), (0.2) and (0.3),
(0.4) under different assumptions from those of the present
paper, Our results obtained for the problem (0.1), (0.2) con-
stitute an extension of appropriate ones concerning the scalar
case (Theorems IIT.6, III.7 and VI.4 of [3]2)) to the random
case,

1. Notation and definitions
Let G Dbe a bounded domain of the Euclidean space
of the variables (x,t) = (x1,...,xn,t) whose boundary con-

Rn+1

2) Throughout this paper when referring to the monographs
[1] - [4) we shall denote by a Roman numeral the chapter num-
ber,
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First Fourier problem 3

sists of domains E; and By 1lying on the planes t = 0
and t = T = const >0, respectively, and of a manifold S
situated in the strip {(x,t): O<t<T}. The set M= B US
is called a parabolie boundary of G. The parabolic distance
of points Q(x,t), Q (x;t')e R™' 45 defined as

2 1/2
a(,@) = (1x-x12 + [4-+'1 ) /2, where |x-x'| =[ Z_ (xi‘xi)eJ .

As in [3] (Sec. III.2), we introduce the following nota-
tion for a function u:G ——R:

3)
|u{Q)-u{Q’)
Q,0eG [d(Q, Q')]“

labg + B ), g™ = pagf) + Z_nu J&

lan! }: ) &+ 5 Vg 6+ ¢

i,3=1

”u”G = 828 |u(Q)], ng)(u) =

[t}

S

Iu"(2+d)

The set ¢l %+l (g) (k=0,1,2) of all functions u with the
finite norm'”u”ék+°) is a Banach space.,

The following norms will also be needed (see Sec.VII.2
of [5]):

.[]x-x'l+|t-t¢]"1},

a0 = agt-o) 4 Znu Jge

’

’

(1-0) _ { i
lallg lall + sue {]u(@)-u

3) Prom now « e (0,1) is an arbitrarily fixed number,

- 837 -



4 H.Ugowski

The set of all functions u with the finite norm ||u||(k -0)

(k = 1,2) will be denoted by ¢ X=0)(g),

We state the following definitions concerning the mani-
fold S (see [3], Sec. III.2 and VII.2). Suppose that for
every point Q€ S there exists an (n+1)-dimensional neigh-
bourhood V such that:

® yng is situated on only one side of the surface VAN S;

2% YnsS can be represented for some i (1gi<n} by

an eguation of the form
s = hfx1,...,xi__1,xi+1,...,xn,t).

If the functions h Dbelong to C("T) (2 =o:,1+o‘(2+q'1-0,2-0),
then we say that S 1s of class C(T). If Seclote and
the derivatives h ¢ (3 # i) exist and are continuous, then

we sgy that S 4is of class if, moreover, h

2
t
exist and are continuous, then S is said to belong to class
C(2+°‘). The manifold S of class C(T) can be coversd by
a finite numbgr of balls Vk such that Sk = Snd ig de-

fined by the equation

(101) Xik = hk(x1,...,Xik_1,Xik+1,...,xn,t),

where hke C(ﬂ .

Let v:S — R, where Se ¢'?), Using (1.1) we can write
the function v(x,t) on S, as a function of the variables

x1,.'..,xik_1,xik+1,...,xn,t in a certain region D,. We then

define
(7)
Dy
and we say that vec?)(s) ir uvu§"< oo,

Now we introduce definitions concerning random functions.
Let (S, 5"5 P) be a complete probability space. By Lp = LP(Q)
(1< p oo"') we denote the Banach space of all random vearia-
bles £ : Q-—-—R with the finite norm

"V"(t)

= max ||v]p
k

4) Throughout the paper pe <1,0> is arbitrarily fixed.
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First Fourier problem 5

: 1/p
150 ] J1san? ool " it tapae, 80 onm gurltlol]

The 1imit, continuity and partial derivatives of a random fun-
ction u: G-——-Lp are understood in the strong sense and they
are called respectively the L
rivatives of u.

Like in the scalar case we introduce the following nota-
tion for a random function u:G *—-Lp:

-13 - i t , =de-
p limit, Lp continuity and Lp de

b

Q)=u(Q")
H(aé(u) = su Jul ul ”p

ffull = sup [|u(Q) p ;
Pr& ~ qeg Ior B, Q,Qec [d(g,Q")]"*

n
I35 = B, g+ B0, B 5 = 0+ ) g 530
i=1

n n
(2+a) _ () Z () Z () (o)
"u“p’G = “u"p’G + " ux." p’G + " ux.x_" p,G+" utn p’G,’
=1 i,9=1

The set C\¥**(g;1L ) (k = 0,1,2) of all functions u with

the finite norm "uﬂng“) is a Banach SpacGS).
H

Definition 1.1, A function ¢ :F'-*-Lp is

said to be of class C(2+Q)(G;Lp) if there exists a conti-

nuous function §:G — L, such that Fe C(2+°‘)(G.;Lp) and
$=9 onl ., We then define

5) The completness of C(k+“)(G;LD) can be proved in

a standard manner by using the coampleteness of Lp and the

classical theorem on terawime differentation of a sequence
of random functions.
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6 H.Ugowski

ol {250 = sazlo (25

Remark 1.1, (see Sec. III.3 of [3]). If S is

of class C(2+“) and a function p: M~—=1L belongs to

C(2+°‘)(G';Lp), then for any extension ¢ecC 2'“")(G;Lp) of ¢,
the derivatives §xi, ﬁxix' and ¢t are uniquely defined

(by continuity) on the bougdary 3E, of the domain E_, and
the definition is independent of ¢ . We denote these deriva-

tives (on an) by pxi, ¢xix- and ¢, respectively.

By a solution u of the problem (0.1), (0.2) we shall
always understand a regular Lp—solution, i.e. the function
u:G——---Lp is Lp—continuous in G, possesses_Lp-derivatives
appearing in Mu which are I ~-continnous in GN\I™ and u
satisfies (0.1), (0.2) in the Lp—sense.

2. The uniqueness of a solution and a priori estimates
of a solution of the problem (0.1), (0.2)

At first we derive some a pridri estimate of the norm
Huﬂp’G for a solution u of the problem (0.1), (0.2) which
is a counterpart of the appropriate estimate in the scalar
case (see Theorem 5 in Sec. 1 of [5]). For this purpose we
need the following lemma,

Lemma 2.1. Let the following assumptions be sa~

tisfied:
(2,I) The coefficients 234 by (iyJ = 15ees,n) and ¢
are real-valued functions defined ir &\ and a.. = a

— ij i
(2.II) The operator M is parabolic in G\/[, i.e. for

any (x,t)e G\l and »p = (?1,...,?n)eRn, p# 0 we have

n
a; . (x,t) = a,

1j Ji(x’t)’ i,j = Tyeeeylly ? aij(x’t)?i?j>o'
i,j=1

(2.1II) £: &~ —L, and p: =L

p
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First Fourier problem 7

Supose that u 1is a regular Lp-solution of the problem
{01}, (0s2). Then for any functional le If;s) the function
U = 1ln defined by U(x,t) = l(u(x,t)) is a regular solution
of the scalar problem

(2.1) MU = F(x,t), (x,t)eG\/,
(2.2) U{x,t) =@{x,t), (x,t)el,

where F = 1f, § = lg.

Proof. The L -continuity of the function u in G
implies the continuity of U in G (see Sec., V.2 of [1] or
Sec. IITI.2 of [4]). In view of Sec. V.3 of [1] there exist
in G\ the derivatives

(2.3) U U U
xi’ xixj’ t
and moreover
(2.4) Uxi = 1%1, Uxixj = luxixj' Uy = lug.

Thus the derivatives (2.3) are continuous in G\/". Now,
using. (0e1), (0.2) and (2.4) one can easily find that U 1is
a solution of the problem (2.1), (2.2).

In order to formulate a theorem concering the above-men=-
tioned estimate we additionally introduce the following assump-
tions.

(2.IV) The coefficient ¢ in (0.1) is bounded from above
in &r, i.e. o(x,t)<W,, (x,t}e G\I" for some positive
constant N1.

(2.V) The functions f and ¢ are L ~bounded, i.e.

p
I f"p,'@\p<\°° and | gol]p’,,<oo.
6) L; denotes the adjoint space of Lp.
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8 H.,Ugowski

Theorem 2.1, Let assumptions (2.1)-(2.V) be sa-
tisfied. Then for any solution u of the preblem (0.1), (0.2)
we have the estimate

N,T l
(2.5) lall, g<e * (el -+ Thel; &p)

Proof. Take an arbitrary point Q(X,t)€CG and
consider the case u(Q) # 0. Then, by Theorem III.8.3 of [1],
there exists a functional 1le L' with the norm Hlﬂp = 1
such that 1u(Q) = Hu(@”lp. In view of Lemma 2.7 the function
U = lu is a-regular solution cf the problem {2.1), (2.2},
Hence, using the above-mentioned Theorem 5 of [5], we obtain
the estimate

N1T -
(2.6) lu(@)l< e Vgl + TPl ), Qed.

One easily find that
, 0 _
(2.7) HMIF <|I¢||p’r., "F'lG\I" < "f"p,G\/" .

since [U(Q)N = [1a(Q)] =i w(Q)fi ;, therefore inequalities
(2.6), (2.7 immediately imply the sstimate

N,T
3 1 =
(2.8) Tul@i j<e * gl + ThED, &

In the case u{Q) = 0 the inequality (2.8) holds also true.
Consequently (2.8) implies (2.5}.

As a corollary from Theorem 2.1 we cbtain in a standard
manner the following uniqueness theorem for the problem (0e1),
(0.2).

Theocrem 2.2 If assumptions (2.1)~(2.,IV) are sa-
tisfied, then the problem (0.1), {C.2) possesses no more than
one solution.

Now we shall derive a priori estimate of the norm "uﬂéfaa)
of & sclution u of the problem (0.1), (0.2). Tor this ,pur-
pose we introduce the following assumptions:

(2.VI) The coefficients of M are uniformly Hélder con-
tinuous {exponent « )} in G.
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First Fourier problem 9

(2.VII) Por any (x,t)e G and rzeRn we have

n
. = 2
aij(x’t-"-'aji(xvt), 1,J=14e00,0, 2 aij(x,f)?i?3>N2l!?H s
i,3=1
where N2 is a positive constant,
Assumption (2,VI) implies that

Pag 0 &0 Mo i) s nenf e my  (1,521,000,m),

N3 being a positive constant.

The following lemma will be alsoc nseded.

Lemma 2.2 If wnec®(a;1 ), then for any fun-
ctional 1le L; the function lu belongs to C(*)(G) and

(2.9) Czedllig <2l Hally, g
(o) ()
(2.10) By '(la)< )l B 76 (u)

and consequently

(2.11) O Y UMY

Proof. The inequalities (2.9) and (2.10) result
regspectively from the following ones

|lu(Q)|<Hlllp llu(Q)llp, Qed

and

tu(Q)-u(Q’ )IIp
[a(¢,e )]

[(1u)(Q)=(1u)(Q’ )|
[a(e,0")]"

I , ,
<[, , Weec, Q#C.

As a generalization of Lemma 2.2 we obtain the following
lemma,
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10 H.Ugowski

Lemma 2.3, If u C(k+“)(G;Lp) (k = 0,1,2}, then
for any functional 1le L; the function 1lu belongs to
clired(g)  ang

(2.12) Dl e g, guplse) .

Proof, PFor k=0 the lemma is proved. If k = 1,
then, using (2.4) and (2.11) for u, (i=1,+ee,0), we con~
clude that 1

(2,13) ), 0 () 1y Je &< <l oy ¥ o

According to (2.11) and (2.13) the inequality (2.12) holds
for k =1, Similarly for k = 2 we have

g 1 B o STt

Ierad l $< 3l Nuglly, g

Hence and by (2.11), (2.13) the inequality (2.12) holds for
k = 2.

Theorem 2.3 (cf. Theorem III.6 of [3]). Suppose
that:

1° assumptions (2.VI) and (2.VII) are datisfied;

20 seclared, fec(“’(G;L) and goeC(2+°‘)(G;Lp) (see
Deflnitlon 1.1);

3% the function ue C(2+“)(G ;L ) is a solution of the
problem (0.1), {0.2).

Then there exists a constant K1>-0 depending only on
NZ’ N3, « and G such that

(2.14) 125 < &, (gt (2% + e (7).

- 844 -



First Fourier problem 11

Proof., Lemmas 2,1 and 2.3 and formulas (2.4) imply
that for any functional 1le L® the function U = lu is a
solntion of the problem (2.1), (2.2} and belongs to C(2+“)(G).
This enables us to apply to the function U the estimate
(III.2.21) of [3].

Let us take arbitrary pdints Q,Q' € G, Q #Q . If
u(Q) # u(Q’ ), then there exists a functional 1eL” such
that, Hl" and and 1[u(Q)-u(Q ﬂ fu(Q)-ulQ’ ?np Hence,
according to the estimate (III.2.21) of [3] and Lemma 2.3 we
have

hu(@)-u(Q’ )y, _lutq) U(Q )
LE T - fee e <

< k1o + pren{™] < kion (26 + penid] .

u(Q’)

Obviously this fnequality holds true in the case u(Q)
to0. So we get the estimate

(2.15) n ) < k[ioh 23 e} ]

Now let us consider wu_ for some i (1<i<n). PFor
i
any point Q€ G such that (Q) # 0 there exists a func-

. * ~
tional lel; such that "1" and uxi(Q) = nuxi(Q)Hp

Like as above we obtain

g (@, = 10, (@ < Kfior (2520 +nan A ],

whe nce
(2.16) gl g<Kloh (5% 4 020 (d ]

- 845 -



12 H.Ugowski

Further, taking a functional lelX such that ||1||p = 1 and
[ux (Q)-u, J ||uX uxi(Q )Hp (under the condition

) # ux. (Q")) and argulng as in the proof of (2.15) we
i
get the inequality

(211w, 1<K [||¢||‘2+°"+nfu§°jé}, 1=1,000,n.

For the derivatives U, x.» g oOne can also derive the

estimates of the form (2.16), (2.17). Hence in view of the es-
timates (2.5), (2.15)-(2.17) the proof of Theorem 2,3 is com-
pleted.

Before formulating the next theorem we introduce the fol-
lowing assumption and notation.

(2,VIII) The coefficients a;5 are uniformly Holder con-
tinuous (exponent o) in G and they belong to 0(1"0)(8);
bi and ¢ are continuous in G.

Thus for some constants N4, N5>-0 we have

n

Z Z (1-0) o
E "ai | by "G + cllG$N49 I a; Jll

i’j=1
For any Tys To € <0,T> with T < T, let us denote

Ge Tg:Gn{(x,t):r1<t<r2}, S

., = sn{(x,t): r1stsT2},

T %
E, = {(x,r1)e E\S}, r =E_uS

The orem 2.4 (cf. Theorem VII.4 of [3]). Suppose
that:
0 gegl2+adng(2-0) g se o(&;D, )7,

7 C(G; L ) denotes the set of all functions u:G —*-Lp
which are L -contlnuous in G.
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Firat Fourier problem 13

2% agsumptions (2.VII) and (2.VIII) are satiefied;
3° 4 is a solution of the problem

(2.18) Mu = f£(x,t), (x,t)e@t e\ Ty

y u(x,t) =0, (x,t)el
1' 2 T tl,

172 %'
Then for any Be{0,1) there exists a constant K2> 0
depending only on 3, N2, N4, HS and G such that

(2.19) fagf R <k (r, - z,)(1-8)/2 |g|
p,Gt1’T2 2'°2 1 p,Gr1,f2.

Proof. It follows from the proof of Theorem VII.4
of [3] that if u is a solution of the problem (2.18) in
the scalar case, then thers holds the estimate

(2.20) (1+8) <k (¢, - ¢, )(1-R)V/2 yp
Ilulle_1,r2 2 1.'2 1 " "GT,],‘!.'Z

Moreover, the condition f(x,r1) = 0 on ?E. (the boundary

1
of E, ) is superfluous., Using (2.20) and applying the same
1

method as in the proof of Theorem 2.3, we get (2.19).
Now let u be a solution of the problem

Mu=f(x,t), (x,t)th1’r2\Ft1’r2, u(x,t)=p(x,t), (x,t)er'q’rz,

where the function g¢:l,. ., —= L_ belongs both fo
122 p

1,t2‘I‘p)'

Ty’

Then, under assumptions 1° and 2° of Theorem 2.4, we obtain
from (2.19) (in a standard manner) the following estimate



14 H.Ugowski

(2.21) MWML;%%ﬂWMWHﬂM

2 A
*%MWNLJ+M“”

p,G
T, T,

SRR

K3> 0 Dbeing a constant depending only on N4.

3. The existénce of a solution of the problem (0.1), (0.2)
At first we introduce some notation. Legt us denote

A ={sz1,...,9m},

where Qe ¥ (i=1,4c0,m), Q1U...u§2m =Q and 910913. =¢
for 1 # j. The set A will be called a finite partifion
(or shortly a partition) of the space 2. By A we denote
the set of all partitions of 2. It can be partially orde;‘ed
as follows: A< X if every set belonging to A is a sum of
those belonging to A'. So {(A,g) 1is a directed set (see
Definition I.7.1 of [2]).

For any Ae A define an operstor 4, setting

m

(3.1) Ak = Z AAi(g)in, EéLp.
i=1q

where XQi is the characteristic function of- Q4 and

o]t f tlwiplea) ir Ble;) >0,
Q-
(3.2)  Ay;(8) = +
0 if P(Qi) = 0,

Obviously A,\:Lp——Lp and it results from the proof of Theo-
rem IV.8.18 of [2] that :

(3.3) IMJP<1,AeA

- 848 -



First Fourier problenm 15

and

(3.4) Lin a8 -3l =0,  ¥elp

(see also Sec. I.7.1 of [2]).

The following lemmas concerning gensralized sequences of
random functions will be needed.

Lemma 3.1. If ueC(G;L ), then for any AeA
the function 4,u, defined by (4,u}(Q) = 4, [u(Q)], belongs
to C((-};Lp) and

(3.5) 1in [azu-af, o = o

Proof. Invirtus of (3.2) we have A;\ieL;, wheil-
ce Ay ueC(G). This implies, by (3.1), the relation

AueC(Gila)c c(E;Lp).

According to the uniform Lp-continuity of u in G gi-
ven any € >0 there is a & >0 such that

(3.6) fut@i-ut@ )] ;<& 12 a(e,e" <6,

Let {Q1.....,Qk}C§ be a 6-net of GO, By (3.4)

%g% "A)’u(Qi)"u(Qi)"p = 0, i-= 1,doo,k

and consequently there is a aoe/\ such that

(3.7) "Azu(Qi)-u(Qi)" p<4§’~ y 1=1,..0,k, A=A

8) .. for any Ge & there is Qj such that d(Q,Q;)<6.
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16 H.Ugowski

In view of (3.6) for any Qe G +here exists Q; suach that
(3.8) IIu(Q)--u(Qi).||p<-3Q .

Taking advantage of inequalities {3.3), (3.7) and (3.8) we
obtain

lagu(@)-u(@) i< 45 [ut@)-ate ]|, +
+f apategr-nta ) |+ futeg)-ata)] <

for any QeG and A>2 . This gives

"Aau‘u"p’(;<5 ’ A 22,

which implies (3.5).
Lemma 3,2, If ueC(k+°‘)(G;Lp) (k=0,1,2), then

for any Ae A we have Ajue C(k+°()(G;Lp) and

{k+a) {k+a)
(3.9) "Alu"p,G < "u"p’(} .

Proof. If k=0, then it follows from (3.3} that

IIA;\u(Q)llpsllu(Q)"p, QeG, AeA
and

llaya(Q)-a5u(Q’ )"Ps Jat@)-ut@ ],
[a(q,qa")]" [a(q,q’ )]*

So we have Ajne C(“)(G;Lp) and

, Q,87e G, Q#Q, AeA.

(e

"Axu"p,gsuuﬂp,go Hg:();(hu)é Hp’();(u).
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Consequently

(3.10) I Axu"p’(;é "u"p’qr
which proves (3.9) for k = O,

In the case k = 1 the relations (3.1) and (2.4) yield
the formula

(3.11) (Azu)xj = Az(uxj), j = 1,...,11.

Hence, according to the previous considerations

(Axu)xjec(q)(G;Lp) J 2 1yeeeyn

and

(3.12) lapu |

()
Xj P

X [N PR P

Thus we have Aluec(1+°')(G;Lp) and (3.10), (3.12) imply
(3.9) for k =1,
Similarly for k = 2 one can find that

) .
(830 (apa)gec™@n), 3,1 =1,000,n

and

) (&) .
(3.13) II(A,\u)xjinI E)‘:‘Gsll%rjxil Y PR PE AL P

(3.14) a0 gl X8 < g &2

Concsequently A,‘ueC(2+°‘)(G;L ) and in view of (3.10),
(3.12}-(3.14) the inequality F3,.9) holds true for k = 2,
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18 H.Ugowski

L e M m a 3.3. If ueC(k+q)(G;Lp) (k = 0,192)9 then
(3.15) lim {|Aqu-u (k+p) = 0 for an e(0y0a)

Proof. In the case k = 0 1let us introduce the
function

u(Q)-u(Q’) ‘e G. O
Tileorp » @9 ¢ 40,
(Q,Q") 2,071
v 9 =

where B e€(0,a). Since v is L -continuous in GxG, the-
refore, by Lemma 3.1,

Ha flayv=vlly g = 0-
Hende, taking into considerations the equaiity

_ (Al
IlAAV—V"p’GxG = HP,G(AAu-u)
and (3.5), it follows that
: (B) _

(3.16) %2% fayu-ufl g = 0.

In the case k = 1 the formula (3.11) enables us to
apply (3.18) to u, (] = 1,0.e,0) and so we get

J
: (B) _ (B)

(3.17) %iﬁu(Aku'u)xj“p,G = 11m||AA “ = 0.
Relations (3.16), {3.17) imply (3.15) for k = 1.

If k = 2, then arguing like as above we find that

. ( ..
%:ﬁII(AAu-u)xe “ ﬁ) o, Jel = T4eee,n,

(B) _
1im ||(A,\u-u)1;||p’G = O
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Hence, by (3.16) and (3.17), the relation (3.15) holds true
for k = 2, ,
Now we prove an existence theorem for the problem (0.1),
(0s2) which is a counterpart of Theorem III.7 ofr[3].
Theorem 3.1. Let assumptions (2,VI) and (2,VII)
be satisfied and suppose that Se E(2+q),.fe C(a)(G;Lp),
goeC(2+°')(G;Lp) (see Definition 1.1) and

(3.18) Me=1L on an (see Remark 1.1).

Then the problem (0.1), (0.2} has a unique solution ne
ecl2+al (a1 ),

Proof. The unicity was proved in Sec. 2. In order
to prove the existence of a solution we consider, for any
AeA, the problem

(3.19) Mu = 4,f(x,t), (x,t)e G\,

(3.20) u(x,t) = Ap(x,t), (x,t)el.

In virtue of Lemma 3.2 we have 4,fe C(°‘)(G;Lp),Aa(pec(zm)(G;Lp)
and moreover, by (3.1),

m

(3.21) 8,%(x,t) = Z A,\i[f(x,t)]xg,
1= *
m

(3.22) Ayp(x,t) = Z AM_[qa(x,t)]XQi.
=1

Now for i = 1,...,m consider the scalar problem
(3.23) Mu = 4, [f(x,t)] , (x,t)ed\r,

(3.24) alx,t) = & [o(x,6)], (x,80er .
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20 H,Ugowski

According to Lemma 2.3 4,;fe€ C(q)(G) and Aki¢ec(2+°')(G).
Noreover, relations (2.4) and (3.18) imply that M(Ali¢) =
= 4)4T on an' Thus, by Theorem III.7 of 53], the problem
(3.23), (3.24) has a unique solution uy; €C 2'H")(G)

(i = 1500e,m). Consequently the function

m
4a = Z uxiin
i=1

belongs to C(2+°()(G;Lp) and, in view of (3.21) and (3.22),
it is a solution of the problem (3.19), (3.20).

Take an arbitrarily fixed ,ee(% ,q) . By Lemma 3.3 we
have

; el (B) _
(3.25) ;1\1'% "Alf f"p,G = 0,

. (2+8) _
(3.26) Him [l aye-of ;g™ = 0

and therefore the generalized sequences (A,f) and (4,¢) sa-
tisfy the Cauchy condition in the spaces C(ﬁ)(G;L } and
C(2+/3’>(G;Lp), respectively (see Sec. I.7.4 of [2]). Obser-
ve that for sany A, A€ A hold the relations

Elug-uy ) = Apf(x,t) - Ay £(x,t), (x,t)e G\/,
(up-uy Jx,t) = aplx,t)-Ay o(x,t), (x,t)el,
Uy~ Uy € C(2+'e)(G;Lp), Ayf-4y fe C(m(G;Lp),
ayp-ax pe o2 (1 ).
So we have, by Theorem 2.3, the estimate
ax-ux] Ef?;p)‘ X W[” brp-by 9 é%ﬁ) + [laxt-ay 2| g/,j();]
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Hence, in view of the above~mentioned Cauchy condition, given
any € > 0. there is a A eA such that

flug-uy| <¢ for any A,A>2A

(2+8)
'va 0

This implies, by Lemma I.7.5 of [2], the existence of
uec(2+'°’(G;Lp) such that

. _an(2+8) _
(3.27) %2% Nlu, u]lp’G = O

In virtue of the relations (3.25)-{3.27) the function u is
& solution of the problem (0.1), (0.2).
" It remains to show that

(3.28) ueC(2+°‘)(G;Lp).

Indeed, by Theorem 2.3, we have

(3.29) 1l (258 < x (8119l (257 + 121 é’?c);]

for any ﬁe(—%—‘ , cx). The proofs of Theorems III.6 of [3] and
2.3 imply that

(3.30) K (p)<K', Ae(%,)

7
for some K > 0. Moreover, we have

(3.31) Noh (ZEA <Mt (209, nen(Blax ne1(*),  pe(% o)

for some K">0, Relations (3.29)-(3.31) give the estimate
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22 H.Ugowski

Ilu||§faﬁ) <K' K"[“?"L?Eu) + £ g:,(()}] for any  pe( §,x)

from which (3.28) follows.

4. On the existence and uniqueness of s solution of the
problem {0.3), {(0.4)
'~ We introduce the following assumptions concerning opera-
tors MY (k = 1,2,...) defined by (0.3).
(4.1) The coefficients of Mk are uniformly Holder con-
tinnuous (exponent «) in G and moreover

k ()

k,(x k, (x
pefs e, eknE, negt <

17

B1 being a positive constant,

(4.II) For any (x,t)eq, QeRn and k = 1,2,... We ha-
ve
afj(x,t)=a§i(x,t), 1,3=15e00,n, E 3ij(x,t)?i?33332|?|29
i,j=1

where B2 is a positive constant,
(4,1II) The coefficients agj (i,5=1,00e,0; kK=1,2,000)
belong %o 0(1'0)(8) and

n
> a§j||§1-°’< By (k=1,2,e..),
ivj=1

B3 being a posifive constant.

In order to formulate assumptions concerning the functions
hig and ¢k (k=1,2,+..) we introduce the following notation.
Let V denote the set of all functions u = (u1,u2,...) such
that ude Loy 32125000 and

(a.1) hal, = ) By hudt <o,
3=
- 856 -
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where B (3j=1,2,+.+( are some positive constants such

that

4J

JEDNENELS
Jd=

As is easily seen the space V with the norm (4.1) is a Ba-

nach space. Moreover, by V(i+°‘)(G) (i=0,1,2) we denote the
set of all functions u = (u1,u2,...) such that ujec(i"'“)(G;Lp)
(i=1,2540.) and

(4.2) af (24 Z Byy ludl (339 < oo,

The set VIita(g) (i=0,1,2) with the norm (4.,2) is a Banach
space too.

Now we formulate the further assumptions.

(4.IV) The fudctions f£¥X (k=1,2,...) ere defined for
(x,t) €@G, UyViseee, V€V with values in L, and they satis-
fy the following Hélder condiflion: for any &> 0 there is a
constant B5(a)>0 such that

’ , %
||_fk(Q,u,v1,...,vn-) - fk(Q ,u,v1-,...,vn)|]ps35(a)[d(Q,Q )]
fOI‘ w Q,Q' € G, u'v.‘,.oo,vneva, k = .1’_2’000 'Y Where
Vg = {uev : |u|p‘a].

There is a constant BG>O such that

(4.3) B£5(Q, 1% 00 e, vy) = £5(Q,0° v e en vyl €
n
< B¢ (Iu—a’lp + ; |vj-v’J|P)
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for any Qea, u,u, ,Vi,vg_év (i=1,...,n), k = 1,2,.0Q + Mo=-
reover, the sequence ("fk(°’o""’o)"p.(} is bounded.

(4.V) The function ¢= (501, }’2,...), where pk: I"~*Lp
(k=1,2,...), belongs to V 2¥¥(g)nv{1*8)(c) with Be(0,1)9)
and

(4.4) Mkwk = fk(x,0.¢.px) on 3B,

(see Definition 1.1 and Remark 1.1).
Theorem 4.1. Suppose that Se gl2+al  g(2-0)
and let assumptions (4.I)-(4.V) be satisfied. Then the prob-
lem (0.3), (0.4) has a unique solution uev(z"“’(c)nv“*m(m,
Proof., At first we prove the uniqueness of a solu-
tion of the problem (0.3}, (0.4) in the space V“"’ﬁ)(G). We
proceed in a standerd manner step by step. Namely, let
u,EeV(Hﬁ)(G) be two solutions of the problem (0.3), (0.4).
So we have, for any te(0,T> and k=1,2,..., the relations

(4.5) M -55) = #(x,t)-F(x,t), (x,t) €GN ,
(4.6) (u*-5%)(x,%) = 0, (x,t)el,

where Gg = G o [z = /"0’,1'_ (see the notation before Theo-
rem 2.4) and

(4.7) Fk(x,t) = fk(x,t,u,ux), f‘k(x,t) = fk(x,t,ﬁ,ﬁx).

In view of the assumption (4.IV) Fk,f‘ke C(E,;;Lp) and there-

fore, applying to (4.5}, (4.6) Theorem 2.4 and using (4.3) we
obtain the inequalifies

9 Gbviously if Be(0, x>, then v(I*Al(g)cv(2¥a)(q),
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o {158 < komee(1R/2 fueg) (1A (ket2,.00,

Multiplying each of these ipequalities by B4k’ then summing
over k and using (4.2) we get

—1(1+A8) (1-gl/2 —1(1+8)
(4.8) Iu-u.lp’G < K,B¢B,T {u-u'mar .
Now let us fix t7e(0,T> such that
(4.9) By = KBcB,r( 1A/2< 4,
This implies, by (4.8), the equality u =W in G,. If
(1-g)/2
(4.10) K, BB, T <1,
then we can take T =T and the proof of the uniqueness is

completed.
In the case

(1-p1/2
(4.11) RBeB, 0l 17A1/2 5

we have T < T. Let us put

r, if 2r <T,
S =

So we have 8e(G,t> and
k, k -k k =k =
M (u=-a") = F(x,t)-F (x,t), (x,t) eG5,5+r\F6,6+t’

(0 -5%) (x,%) = 0, (x,%)el gyppe
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Further, arguing as above, one can find that u =@ in §&+t.
So after finite number of steps we get u=u in G,

Now we shall prove the existence of a solution of the
problem (0.3), (0s4). It will be applied a standard manner
of extension of a solution.

Let us consider the problem

(4.12) wak = (60,0 ), (x,8)e G\ T,

(4.13) w¥(x,t) = ¢k(x,t)er}

where t€(0,T> is fixed and satisfies the condition
(449)¢ We denote by W, the set of all functions uev(1+p)(c )
such that

(4.14) u(xyt) -'-‘SO(X,t), (x’t)er't .

Obviously W, is a closed set of the space V(1+ﬁ)(Gt). For
any ueW,, k=1,2,... consider the problem

(4.15) wE = B (x,t),  (x,t) € G\ T3,

(4.16) vk(x,t) = ¢k(x,t), (x,t)ely ,
where FX are defined by (4.7). It follows from assumption
(4.IV) that

k“(a

(4.17) e o (en), 170 <Bg, ke1,2,..0

By being a positive constant. In view of (4.4) and (4.14) we
have

wp¥ = F(x,0), (x,0) € 9E,, k= 1,2,...
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So, by Theorem 3.1, the problem (4.15), (4.16) has a unique
soiution vke C(2+°)(Gt;Lp), k=1,2,... DMoreover, relations
(2.14), (2.21) and (4.17) imply that

112 < B [1 k125,
R 15 P T T P e IR P 10

where 39 and B1O are some positive constants. Thus, by
{4.V), we have

(4.18) v = (vl,v8,..0evi@ g )av(1Al(q ),

At the sgame time we have proved that the operator Z defined
by 2u =v maps Wy into itself.
Por any u,ueW, hold the relations

(vk k)

M k(Jr,'l:) - f‘k(x,t), (x,t) e G\ I,

(vE7E) (x,8) = 0, (x,t)el}

where: FX and FX are given by (4.7). Further, arguing &s in
the proof of [4.8) one can obtain the inequality

Izu_zu|(1+ﬁ)<B Iu u|(1+f) ,

B, being defined by (4.9). According to the Banach fixed
point theorem the operator Z has a unique fixed point u.
This function u is a solution of the problem (4.12}, (4.13)
and, by (4.18), nevi2*® (g )nv(1+A) (g ),

In the case (4.10) we can set t = T and so the proof of
the existence of a solution of the problem (0.3), (0.4) is
completed, If (4.11) holds, then we consider the problem
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(4.19) uv = fk(x,t,v,vx), (x,t)e 66,6+1:\r'6',6+t’
(4.20) vE(x,t) = 55(x,1), (x,t)el 5 5.p0

where 6§€(0,7) 1is selected such that & +7<T,

N uk(x,b‘), (x,6)e Esv
6 (xyt) = X
t t S
g (x,t), (x,t) € S5 647
and u = (u1,u2,...) is the above obtained solution of the

problem (4.12), (4.13)s For k = 1,2,... let us put

Qk(x,t) [1-g(t)] + g(t)uk(x,t), (x,t)eGb.,t,
&E(x,t) =

$5(x,), (x,8) ey 5 p
where ¢ = (931, Qz,...) eV(2+°’)(G;Lp) nV“""B)(G;Lp) is an ex~
tension of ¢= (501, 9:2,...) and g:<6,06+t>—-R is a smooth
function such that g(6) =1 and g(t) = 0 for te<t, §+7>,
Thus §k (k=1,2,+..) is an extension of §k and

T 2
9$ev( +el (G6,6+t) nv(Hﬁ) (G6,6+z) ’

i.e. ¢= (¢1s62"" ) e V(2+0() (G6,5+t) n V( 1+p)(G6,6+t)'
Moreover we have

k-k

M ¢ = fk(x,a,ﬁ,g?x) on 3E60

Further, applyling the same argumentation as that used for the
problem (4.12), (4.13) one can prove the existence of a unigus
solution

ve V( 2+G) ( G6,6+t) n v(1+ﬁ) ( G6’6+1")
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of the problem (4.19), (4.20). Since

vE(x,t) = u¥(x,t), (x,t)el K=1,2,000 ,

5,77

therefore in view of (4.12), (4.19) and by the uniqueness of
a solution we have v = u in 66 re Consequently the func-
)

tion w = (w1,w2,... with wS zk=1,2,...) defined by for- .

mula
k —
wx,t), (x,t)e G,
wk(x,t) =
vk(x,t), (x,t) e ar,6+r
belongs to
(2+a) (1+48)
v (G )NV (Gr o, o)
and it is a solution of the problem
" = £ (x, 6w ), (x,t)e Ty N\ Mg
wE(x,t) = o5(x,t), (x,t)el k=1,2
? ? ’ 1 9 f+6, 9Cgeee

Proceeding in the above manner we obtain, after finite
number of steps, a solution of the problem (0.3), (0.4). Thus
the proof of Theorem 4.1 is completed.

Now let us consider the particular case

(4.21)  £5(Q,0,7,000,vy) = 85(Q) + ) df(Q)ud +
i=1
n oo
+ Z Z e];i(Q)vg.', Qe@, u,v1,...,vnev, k=1,25000
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The following assumptions are introduced.

(4.VI) The functions gF:@ —=1L, (k=1,2,...) belong to
o) (e;1 ) and sup &5 < oo

(4.VII) The functions d51G — Lo, 34:G —=Loe (k,i=
=1,24¢00y J=Tyese,n) belong to C(q)(G;L.c) and moreover

ky{o) k g(x)
laglsor Hogilen, o<1 1Bqs

where B11 is a positive constant.

It ie easily verified that assumptions (4.VI), (4.VII)
imply (4.IV) for the case (4.21). Thus Theorem 4.1 holds true
in case {4.21).
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