

Leon Bieszk

**CLASSIFICATION OF THE SPACES
WITH AFFINE CONNECTION OF COSSU TYPE**

1. Introduction

We call space with affine connection L_n of Cossu type a space L_n such that the curvature tensor R_{ijk}^1 satisfies ([4], [7]) the condition

$$(1) \quad R_{ijk}^1 = \frac{2}{n-1} A^1_{[i} R_{jk]}, \quad (n > 1).$$

In paper [2] I have proved that the abstract curvature tensor of type (1) is strictly equivalent to the abstract Ricci tensor R_{jk} . The n^2 coordinates of the Ricci tensor R_{jk} can be expressed in terms of the essential coordinates of the curvature tensor R_{ijk}^1 as follows

$$(2) \quad R_{jk} = (n-1) R_{ijk}^i, \quad i \neq j, \quad i, j, k = 1, \dots, n,$$

(where i is a fixed index) and besides that the following condition is satisfied

$$(3) \quad R_{ijk}^l = 0, \quad \text{for } l \neq i, \quad l = 1, \dots, n.$$

To fix the ideas, when defining R_{jk} by means of formula (2), we take the values of the index i possibly least; by means of the remaining values of the index i we then get corresponding equalities for R_{ijk}^i .

2.. Canonical forms of the curvature tensor

We call first canonical form of the curvature tensor in the space L_n of Cossu type the form of R_{ijk}^1 corresponding by formulas (2)-(3) to the canonical form of the Ricci tensor R_{jk} , [9].

Defining the following blocks

$$(4) \quad C_{ij} = [R_{ijk}^1], \quad i, j, k, l = 1, \dots, n,$$

where i, j are fixed and l is a row index we can write the coordinate matrix C of the curvature tensor R_{ijk}^1 in the form of a block-antisymmetric matrix

$$(5) \quad C = [C_{ij}] = \begin{bmatrix} 0 & C_{12} & \dots & C_{1n} \\ -C_{12} & 0 & \dots & C_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -C_{1n} & -C_{2n} & \dots & -C_{n-1,n} \\ & & & 0 \end{bmatrix}.$$

Theorem 1. The coordinate matrix C of the curvature tensor R_{ijk}^1 of the space L_n of Cossu type is elementarily equivalent to the following block-diagonal matrix

$$(6) \quad C \sim \begin{bmatrix} [R_{jk}] & 0 & \dots & 0 \\ & [R_{jk}] & \dots & \\ \dots & \dots & \dots & \\ 0 & \dots & \dots & [R_{jk}] \end{bmatrix}.$$

Proof. Taking into account formulas (2) and (4) and performing elementary operations on the lines of the matrix (5) we get the right-hand side of formula (6).

Corollary 1. By means of (5) and (6) we get the following formula for the rank of the matrix C

$$(7) \quad r(C) = n \cdot r([R_{jk}]).$$

We call second canonical form of the curvature tensor R_{ijk}^l of the space L_n of Cossu type the right-hand side of formula (6) written for the canonical form [9] of the Ricci tensor R_{jk} .

Formula (7) enables us to divide the curvature tensor R_{ijk}^l of the space L_n of Cossu type into types (and the space L_n itself into classes) according to the rank of the matrix C .

3. Classification of the two-dimensional space

For $n = 2$ we have by (5) and (6)

$$(7) \quad C = \begin{bmatrix} 0 & C_{12} \\ -C_{12} & 0 \end{bmatrix}, \quad C_{12} = \begin{bmatrix} R_{21} & R_{22} \\ -R_{11} & -R_{12} \end{bmatrix}$$

or

$$(8) \quad C \sim \begin{bmatrix} [R_{jk}] & 0 \\ 0 & [R_{jk}] \end{bmatrix}, \quad j, k = 1, 2.$$

From [3] we infer that the Ricci tensor R_{jk} has twelve canonical forms which we can write in the following condensed form

$$(9) \quad \left\{ \begin{array}{l} R_1 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \quad R_{2,3} = \begin{bmatrix} 0 & 0 \\ 0 & \epsilon \end{bmatrix}, \quad \begin{array}{l} a) \epsilon = 1 \\ b) \epsilon = -1 \end{array}; \\ R_{4,5,6} = \begin{bmatrix} \epsilon_1 & 0 \\ 0 & \epsilon_2 \end{bmatrix}, \quad \begin{array}{l} a) \epsilon_1 = \epsilon_2 = 1, \\ b) \epsilon_1 = -\epsilon_2 = 1, \\ c) \epsilon_1 = \epsilon_2 = -1; \end{array} \\ R_7 = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \quad R_{8,9} = \begin{bmatrix} 1 & \epsilon \\ -\epsilon & \epsilon \end{bmatrix}, \quad \begin{array}{l} a) \epsilon = 1, \\ b) \epsilon = -1; \end{array} \\ R_{10} = \begin{bmatrix} 0 & 1+\alpha \\ 1-\alpha & 0 \end{bmatrix}, \quad \alpha \neq 0; \\ R_{11,12} = \begin{bmatrix} \epsilon & \epsilon^\beta \\ -\epsilon^\beta & \epsilon \end{bmatrix}, \quad \beta \neq 0, \quad \begin{array}{l} a) \epsilon = 1, \\ b) \epsilon = -1. \end{array} \end{array} \right.$$

The orbits of the tensor R_{jk} (or the tensor R_{ijk}^1) corresponding to the canonical forms (9) we denote by $\mathcal{M}_{R_1^1}, \dots, \mathcal{M}_{R_{12}^1}$ (or by $\overline{\mathcal{M}}_{R_1^1}, \dots, \overline{\mathcal{M}}_{R_{12}^1}$ for the tensor R_{ijk}^1), respectively. The exact characteristic of the orbits has been given in paper [3].

Theorem 2. There exist twelve types of the space L_2 of Cossu type corresponding to the canonical forms (7) and (9) of the curvature tensor R_{ijk}^1 . Moreover, for R_1 we have $r(C) = 0$; for $R_{2,3}$, $r(C) = 2$; whereas for $R_{4,\dots,R_{12}}$ ($\alpha \neq 0, \pm 1, \beta \neq 0$), $r(C) = 4$.

4. Classification of the three-dimensional space

For $n = 3$ we have by (5) and (6)

$$(10) \quad C = \begin{bmatrix} 0 & C_{12} & C_{13} \\ -C_{12} & 0 & C_{23} \\ -C_{13} & -C_{23} & 0 \end{bmatrix},$$

where the essential blocks have the form

$$(11) \quad \left\{ \begin{array}{l} C_{12} = \frac{1}{2} \begin{bmatrix} R_{21} & R_{22} & R_{23} \\ -R_{11} & -R_{12} & -R_{13} \\ 0 & 0 & 0 \end{bmatrix}, \\ C_{13} = \frac{1}{2} \begin{bmatrix} R_{31} & R_{32} & R_{33} \\ 0 & 0 & 0 \\ -R_{11} & -R_{12} & -R_{13} \end{bmatrix}, \\ C_{23} = \frac{1}{2} \begin{bmatrix} 0 & 0 & 0 \\ R_{31} & R_{32} & R_{33} \\ -R_{21} & -R_{22} & -R_{23} \end{bmatrix}. \end{array} \right.$$

By Theorem 1 we have

$$(12). \quad C \sim \begin{bmatrix} [R_{jk}] & 0 & 0 \\ 0 & [R_{jk}] & 0 \\ 0 & 0 & [R_{jk}] \end{bmatrix} \quad j, k = 1, 2, 3.$$

By [8] the Ricci tensor R_{jk} has thirty one canonical forms which can be written in the following condensed form

$$(13) \quad \left\{ \begin{array}{l} R_1 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad R_{2,3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad \begin{array}{l} a) \quad \epsilon = 1, \\ b) \quad \epsilon = -1; \end{array} \\ R_{4,5,6} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & \epsilon_1 & 0 \\ 0 & 0 & \epsilon_2 \end{bmatrix}, \quad \begin{array}{l} a) \quad \epsilon_1 = \epsilon_2 = 1, \\ b) \quad \epsilon_1 = -\epsilon_2 = 1, \\ c) \quad \epsilon_1 = \epsilon_2 = -1; \end{array} \\ R_{7,8,9,10} = \begin{bmatrix} \epsilon_1 & 0 & 0 \\ 0 & \epsilon_2 & 0 \\ 0 & 0 & \epsilon_3 \end{bmatrix}, \quad \begin{array}{l} a) \quad \epsilon_1 = \epsilon_2 = \epsilon_3 = 1, \\ b) \quad \epsilon_1 = \epsilon_2 = -\epsilon_3 = 1, \\ c) \quad \epsilon_1 = -\epsilon_2 = -\epsilon_3 = 1, \\ d) \quad \epsilon_1 = \epsilon_2 = \epsilon_3 = -1; \end{array} \\ R_{11} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}, \quad R_{12,13} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & \epsilon \\ 0 & -\epsilon & \epsilon \end{bmatrix}, \quad \begin{array}{l} a) \quad \epsilon = 1, \\ b) \quad \epsilon = -1; \end{array} \\ R_{14} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1-\alpha \\ 0 & 1-\alpha & 0 \end{bmatrix}, \quad \alpha \neq 0; \quad R_{15,16} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & \epsilon & \epsilon\beta \\ 0 & -\epsilon\beta & \epsilon \end{bmatrix}, \quad \beta \neq 0, \\ \begin{array}{l} a) \quad \epsilon = 1, \\ b) \quad \epsilon \neq 1, \end{array} \\ R_{17} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & -1 \\ 1 & 1 & 0 \end{bmatrix}, \quad R_{18,19} = \begin{bmatrix} 0 & 0 & \epsilon \\ 0 & \epsilon & \epsilon \\ \epsilon & -\epsilon & 0 \end{bmatrix}, \quad \begin{array}{l} a) \quad \epsilon = 1, \\ b) \quad \epsilon = -1; \end{array} \\ R_{20,21} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & \epsilon \end{bmatrix}, \quad \begin{array}{l} a) \quad \epsilon = 1, \\ b) \quad \epsilon = -1; \end{array} \end{array} \right.$$

$$\left| \begin{array}{l}
 R_{22,23,24,25} = \begin{bmatrix} 0 & \epsilon_1 & 0 \\ -\epsilon_1 & \epsilon_1 & 0 \\ 0 & 0 & \epsilon_2 \end{bmatrix}, \quad \begin{array}{l} a) \epsilon_1 = \epsilon_2 = 1, \\ b) \epsilon_1 = -\epsilon_2 = 1, \\ c) \epsilon_1 = -\epsilon_2 = -1, \\ d) \epsilon_1 = \epsilon_2 = -1; \end{array} \\
 R_{26,27} = \begin{bmatrix} \epsilon & 0 & 0 \\ 0 & 0 & 1+\alpha \\ 0 & 1-\alpha & 0 \end{bmatrix}, \quad \alpha \neq 0 \quad \begin{array}{l} a) \epsilon = 1, \\ b) \epsilon = -1; \end{array} \\
 R_{28,29,30,31} = \begin{bmatrix} \epsilon_1 & 0 & 0 \\ 0 & \epsilon_2 & \epsilon_2\beta \\ 0 & -\epsilon_2\beta & \epsilon_2 \end{bmatrix}, \quad \beta \neq 0 \quad \begin{array}{l} a) \epsilon_1 = \epsilon_2 = 1, \\ b) \epsilon_1 = -\epsilon_2 = 1, \\ c) \epsilon_1 = -\epsilon_2 = -1, \\ d) \epsilon_1 = \epsilon_2 = -1. \end{array}
 \end{array} \right.$$

The orbits (or families of orbits) of the Ricci tensor R_{jk} (or the curvature tensor R_{ijk}^1) corresponding to the canonical forms (13) we denote by $\mathfrak{m}_{R_1}, \dots, \mathfrak{m}_{R_{31}}$ (or by $\bar{\mathfrak{m}}_{R_1}, \dots, \bar{\mathfrak{m}}_{R_{31}}$ for the tensor R_{ijk}^1), respectively. The exact characteristic of the orbits may be found in paper [8].

Theorem 3. There exist thirty one types of space L_3 of Cossu type corresponding to the canonical forms (10)-(11) and (13) of the curvature tensor R_{ijk}^1 . Moreover, for R_1 we have $r(C) = 0$; for $R_{2,3}$, $r(C) = 3$; for $R_{4,5,6}$, $R_{11}, R_{12,13}, R_{14}$ ($\alpha \neq \pm 1$), $R_{15,16}$ ($\beta \neq 0$), R_{17} , $r(C) = 6$; for the remaining canonical forms of the tensor R_{jk} we have $r(C) = 9$.

BIBLIOGRAPHY

- [1] S. Gołęb : Tensor calculus. Warszawa 1974.
- [2] L. Bieszk : O rzędzie przestrzeni o koneksji afi-
nicznej L_n typu Cossu, (to appear in Zeszyty Nauk. Politech. Szczecin.), 1980.
- [3] L. Bieszk, D. Stygar : On the transitive
fibres of tensors of second order in the two-dimensional
space X^2 , Demonstratio Math. 13 (1980) 147-163.

- [4] A. Cossu : Proprietà di curvatura di una particolare classe di varietà a connessione affine, Atti Accad. Naz. Lincei, 6 (1949) 702-707.
- [5] M. Kucharski : Elements of the theory of geometric objects. Katowice 1969.
- [6] E. Siwek : Sur les domaines de transitivité du groupe de transformations des composantes d'un tenseur covariant du second ordre, Ann. Polon. Math., 10 (1960) 217-224.
- [7] J.A. Schouten : Ricci-Calculus. Berlin-Göttingen-Heidelberg 1954.
- [8] D. Stygar : Włókna tranzytywne tensora dwukrotnie kowariantnego w przestrzeni trójwymiarowej. Doctoral Thesis, Technical University of Warsaw, Warsaw 1974.
- [9] A. Zajtz : Komitanten der Tensoren zweiter Ordnung, Zeszyty Nauk. Uniw. Jagiello. Prace Mat. 8 (1964) 1-53.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY, SZCZECIN
Received April 2nd, 1979.

