

Krzysztof Witczyński

ON SOME PROPERTIES OF THE CHARACTERISTIC
OF A PROJECTIVE TRANSFORMATION

We shall say that a transformation $\varphi: P_n \rightarrow P_n$ has a property 1 if every point of P_n lies in an 1-dimensional subspace $H \subset P_n$ invariant under φ . Obviously, for every projective transformation φ of P_n onto itself there exists at least one integer 1 such that φ has the property 1 ($0 < 1 < n$). Let φ have property m , and let φ do not have property k for all $k = 0, \dots, m-1$. Then m will be called the characteristic of φ - in symbols $\text{char } \varphi$ (see [1]).

Certainly, the defined notion has a geometrical character. The question arises how to find the characteristic of a projective collineation which is algebraically determined.

Let $P_n(F)$ denote the n -dimensional projective space over the field F . Projective collineations in $P_n(F)$ will be written in the matrix form $y = Ax$ ($A = [a_{ij}]$, $a_{ij} \in F$, $\det A \neq 0$). In this work we shall consider fields of characteristic 0.

Lemma 1. Let F be a field, let F' be an extension of F , and let $A = [a_{ij}]$ be an $(n+1) \times (n+1)$ matrix such that $a_{ij} \in F$. If φ and φ' are nonsingular collineations in $P_n(F)$ and $P_n(F')$, respectively, determined by the same formula $y = Ax$, then $\text{char } \varphi = \text{char } \varphi'$.

Proof. First of all, notice the $\text{char } \varphi \leq \text{char } \varphi'$. Let F_0 be the smallest subfield of F containing all num-

bers a_{ij} . Let next φ_0 denote the transformation $y = Ax$ of $P_n(F_0)$. If $\text{char } \varphi_0 = n$, then obviously $\text{char } \varphi = n$. Assume that $\text{char } \varphi_0 = m < n$. This means that for every point $x \in P_n(F_0)$ the points $x, Ax, \dots, A^{m+1}x$ are linearly dependent. It follows from this that the rank of the matrix X columns of which are $x, Ax, \dots, A^{m+1}x$ is not greater than $m+1$ for every $x \in P_n(F_0)$. Hence all minors of X the degree of which is greater than $m+1$ are equal to zero for every $x \in P_n(F_0)$. Since these minors are homogeneous polynomials of the variables x_0, \dots, x_n , all coefficients of them must be equal to zero. This ends the proof.

Thus we have shown that the characteristic of a projective transformation depends of its matrix, only.

Assume now that F is an algebraically closed field. Then every collineation φ in $P_n(F)$ has in an allowable coordinate system the matrix of the form [2]

$$(1) A = \begin{bmatrix} (\alpha_1) & & & & \\ A_{e_1} & \dots & 0 & & \\ \vdots & & \ddots & & \\ \vdots & & & \ddots & \\ & & & & (\alpha_r) \\ 0 & \dots & A_{e_r} & & \end{bmatrix}, \quad A_e(\alpha) = \begin{bmatrix} \alpha_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ \vdots & & \ddots & 1 \\ \vdots & & & \ddots \\ 0 & \dots & \alpha & \end{bmatrix}, \quad 0 \neq \alpha_i \in F, \quad \sum_{i=1}^r e_i = n+1.$$

Certainly, we may assume here that if $\alpha_{i_1} = \alpha_{i_2} = \dots = \alpha_{i_k}$, then $i_k = i_{k-1} + 1 = \dots = i_1 + k - 1$ as well as $e_{i_1} < e_{i_2} < \dots < e_{i_k}$. Then using Segre's symbols we may characterize as follows [2]

$$(2) \quad [(e_{h_0+1}, \dots, e_{h_1}) (e_{h_1+1}, \dots, e_{h_2}) \dots (e_{h_s+1}, \dots, e_{h_s})],$$

where $h_0 = 0$, $h_s = r$.

Lemma 2. Let φ be a collineation with the matrix of the form (1). Then $\text{char } \varphi = n$ if and only if $\alpha_i \neq \alpha_j$ for $i \neq j$.

P r o o f . The necessity is evident. We shall prove the sufficiency. The condition $\alpha_i \neq \alpha_j$ implies the existence of exactly r fixed points of φ , and consequently r hyperplanes invariant under φ . If $n = 1$, then the lemma is obvious. Assume its validity for $n = k-1$, and consider $n = k$. If the characteristic of φ were equal to $k-1$, then there would exist an infinite number of hyperplanes invariant under φ , which is not possible. Suppose that $\text{char } \varphi < k-2$. Let us denote by H_1 the hyperplane $x_{e_1} = 0$. Obviously H_1 is invariant under φ . It is evident that the matrix of $\varphi_{/H_1}$ has the form (1), where $\alpha_i \neq \alpha_j$ for $i \neq j$. From the inductive assumption it follows that $\text{char } \varphi_{/H_1} = k-1$. On the other hand, $\text{char } \varphi_{/H_1} \leq k-2$, since $\text{char } \varphi < k-2$. In view of this contradiction we infer that $\text{char } \varphi = k$. q.e.d.

L e m m a 3. Let F be an algebraically closed field. If φ is a nonsingular collineation in $P_n(F)$ and U is a hyperplane invariant under φ , then it can be found an allowable coordinate system in which φ has the matrix of the form (1) and U has one of the following equations

$$x_{e_1-1} = 0, \dots, x_{e_1+e_2+\dots+e_r-1} = 0.$$

P r o o f . Let us denote the hyperplanes mentioned in the thesis by the symbols U_1, \dots, U_r , respectively. Obviously, there exists a coordinate system such that the matrix A of φ has the form (1), and its submatrices are ordered as in (2). The transformation $y = Ax$ induces the transformation $u = A^T v$ of hyperplane coordinates (if $x \in u$, then $Ax \in v$). U is associated with some of eigen-values of A , say α_1 . Then there exist numbers $\lambda_i \in F$ $i = 0, \dots, h_1-1$ not all zero such that $U = \lambda_0 U_1 + \dots + \lambda_{h_1-1} U_{h_1}$. Assume that $\lambda_i = 0$ for $i < m-1$ and $\lambda_{m-1} \neq 0$. Take into account the formulae

$$(3) \quad \begin{aligned} u_{e_1+\dots+e_{i-1}+j}^* &= \lambda_{m-1} u_{e_1+\dots+e_{i-1}+j} & j=0, \dots, e_i - e_{m-1} \\ u_{e_1+\dots+e_i-e_m+j}^* &= \lambda_{m-1} u_{e_1+\dots+e_{i-1}-e_m+j} - \lambda_{i-1} u_{e_1+\dots+e_{m-1}+j} \\ & & j=0, \dots, e_m - 1, \end{aligned}$$

$u_k^* = u_k$ for all remaining indices

where $i = m+1, \dots, h_1$.

One can check easily that the formulae (3), determining a new coordinate system, preserve the matrix A of φ and at the same time they transfer the equation of U onto $x_{e_1+\dots+e_m}^* = 0$ (see analogous Theorem I, § 3, VIII, [2]).

Lemma 4. Let F be an algebraically closed field, let φ be a nonsingular collineation in $P_n(F)$, and let k be an integer such that $\text{char } \varphi \leq k \leq n$. Then φ has property k .

Proof. If $n = 1$, then clearly the lemma is true. Assume that it is true for $n \leq s-1$, and consider $n = s$. Now we have two possibilities: $m = \text{char } \varphi = s$ or $m < s$. Since the first case is trivial, we shall deal with the second. The inequality $m < s$ implies that there exists a fundamental subspace of φ the dimension of which is not less than 1 (Lemma 2). Hence there exists a pencil of hyperplanes invariant under φ . Through each point of $P_n(F)$ passes a hyperplane belonging to the pencil. Let H be one of those hyperplanes. If $\text{char } \varphi_H$ were greater than m , then there would exist a point $B \in H$ such that the points $B, \varphi_H(B), \dots, \varphi_H^{m+1}(B)$ would be linearly independent which contradicts the assumption $\text{char } \varphi = m$. Thence $\text{char } \varphi_H \leq m$, and with respect to the inductive assumption φ_H has properties $m, m+1, \dots, s-1$. q.e.d.

Theorem 1. Let F be an algebraically closed field of characteristic 0, and let φ be a collineation in $P_n(F)$ elementary divisors of which are described by the symbols (2). Then $\text{char } \varphi = \sum_{i=1}^s e_{h_i} - 1$.

Proof. Since the theorem is evident in the case $h_i - h_{i-1} = 1$ for $i = 1, \dots, s$ (Lemma 2), we may assume that e.g. $h_1 \geq 2$ (i.e. $\text{char } \varphi < n-1$). Then for $n = 1$ we obtain only one transformation characterized by $[1, 1]$, i.e. the identity. This means that the thesis holds in this case. Assume now that the theorem is true for $n = k-1$, and consider $n = k$. As previously, we denote hyperplanes $x_{e_1-1} = 0, \dots, x_{e_1+\dots+e_{r-1}} = 0$ by U_1, \dots, U_r , respectively. According to the inductive assumption, we have $\text{char } \varphi_{/U_1} = \dots = \text{char } \varphi_{/U_{h_1-1}} = \sum_{i=1}^s e_{h_i} - 1 = m$. Now there are two possibilities: $e_{h_1} = e_{h_1-1}$ or $e_{h_1} > e_{h_1-1}$. If $e_{h_1} = e_{h_1-1}$, then $\text{char } \varphi_{/U_{h_1}} = \text{char } \varphi_{/U_{h_1-1}}$. If however $e_{h_1} > e_{h_1-1}$, then $\text{char } \varphi_{/U_{h_1}} = \text{char } \varphi_{/U_{h_1-1}}$. From this, with respect to Lemma 3, we infer that $\text{char } \varphi_{/H} \leq m$, where H is an arbitrary hyperplane invariant under φ . Hence, according to Lemma 4, $\text{char } \varphi = m$. q.e.d.

Now, let F be an arbitrary field of characteristic 0. Then every nonsingular collineation φ in $P_n(F)$ has in some allowable coordinate system the matrix of the form

$$(4) \quad A = \begin{bmatrix} A_1 & & & \\ & \ddots & & 0 \\ & & \ddots & \cdot \\ & & & \ddots \\ 0 & & & A_t \end{bmatrix}, \quad A_i = \begin{bmatrix} 01 & \dots & 00 \\ \vdots & & \vdots \\ \cdot & & \cdot \\ 0 & & 1 \\ -a_{ir_i} & \dots & -a_{i1} \end{bmatrix},$$

where a_{ij} are coefficients of invariant factors of φ , $a_{ir_i} \neq 0$ for $i = 1, \dots, t$.

Theorem 2. If F is a field of characteristic 0 and φ is a nonsingular collineation in $P_n(F)$ the matrix of which has the form (4), then $\text{char } \varphi = r_t - 1$.

Proof. By extending \mathbb{F} to an algebraically closed field $\bar{\mathbb{F}}$ we may write the matrix of φ in the form (1). One can easily see that the degree of the maximal invariant factor is equal to the sum of degrees of maximal distinct elementary divisors of φ , i.e. $r_t = \sum_{i=1}^s e_{h_i}$.

REFERENCES

- [1] K. Witczyński : Projective collineations as products of cyclic collineations, Demonstratio Math. 12 (1979) 1111-1125.
- [2] W.V.D. Hodge, D. Pedoe : Methods of algebraic geometry, Cambridge, 1947.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF WARSAW
Received January 23, 1981.