DEMONSTRATIO MATHEMATICA
Vol XOV No 3 1981

Janina Wolska - Bochenek

ON SOME NON-LOCAL MOVING BOUNDARY VALUE PROBLEM

1. Introduction

We shall deal with the following bounday value problea;.
Determine functions u, = u,(x,t), u, = uy(x,t), & = s(t},
satisfying in

(1) 9.={(x,t) : 0<x<s(t), 0<t<T}

the system of two differential equations

2 2
au du
(2) >y TE-TE=0,  (a=1,2)
31 3§ dx

and the boundary conditions

(3) | uy(x,0) =@, (x), 0<x <8(0)=s,
(4) uy(s(t),t) =0, 0 <t <7T,
Du1
(5) 7= I = £(t), 0<t <T,
X=
(6) o2 o2 (t) T
- = , 0<t<T,
F'x:O FIx:s(t) &
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2 J.Wolska-Bochenek

2 a
(7) EE; dyy 3;11x=a(t, =-8'(t), 0<t<T,

where the functions % (= 1,2), £, g, and the constants
8 daa' A are given.

The problem (2) - (7) may be treated as a generalization
of the moving boundary value problem for the heat equation,
the so-called Stefan problem. Problems of Stefan type have
been considered for over a century. In particular, the one-
-dimensional Stefan problem concerning the melting of ice
was discussed by many authors, chibfly by A.Dacev [1],
G.W.Evans [2], A.Friedman [4]. A.Pasano and M,Primicerio [3],
L.Rubinstein [6] and the literature quoted here .

In our paper we shall chiefly base on the results of
G.W.Bvans [}oc.citJ , respectively modified, in view of the
non-local boundary condition (6).

The problem (2) - (7) arises in the theory of diffusion
in three component systems (for instance metal alloys [5]).
Concentrations of two components are to be determined from
the boundary data. Condition (7) results from the law of con-
gervation of mass on the free boundary.

Problem of the similar type was recently considered in

[}, 8]

2. Definition of solution and list of assumptions
Let us denote

o’

2
(8) 522

c'(t) c(0) = o
x=8(t) ’ °
Definition. The set of functions {u1,u2,s}
will be called a solution of the problem (2) - (7}, if:
1° s is non-negative and continuously differentiable

in <0,7T),
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2° a (x= 1,2) are non-negative and continuous in Q ,

u

a2y du

and 3 2“', g% are continuous in Q , besides -3;& are con-
x

tinuous for 0 < x <s8{t), 0 <t <171,
3° ac'(t) + g(t) <0 in <o0,T),

4° the equations (2) - (7) are satisfied.

In order to solve the problem (2) - (7) we admit the fol-
lowing assumptions: '
I. The given square matrix D = [daj]2x2 is constan?t,

det D > 0, daJ >0, (a,j=1,2),

1I, The functions ¢, ({a = 1,2) are continuously differen-
tiable in <0,s >, (pa>0 in <0,s,>, and 9o (8(t)) = 0,

III. the function f is continuous in <0,T) and f <0 in
<90,T),

IV. the function g is continuous in <0,T) and g <0 1in
<0,T),

V. the constant A satisfies the condition A<1.

3. Integral equations equivalent to the problem (2)-(7)

To establish the existence of the solution of the problem
{(2)-{7) let us integrate the equations (2) over the domain Q
taking into account the boundary conditions (3)-(7) and ad-
mitting that T = ¢ 1is variable.

Namely let us evaluate

t s(7) 3% a%u du
1 2 1
(9) f j (d11 —a—x—2-+d12—a-;2—-'3-t——>dx d7T = 0,
0 0
t s(r) 3211 32 3
1 o %% _
(10) f f (d21 —ax—2'+ d22 —m—- -at—)dx dT =0
0 0

with boundary conditions (3)-{(7).
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After changing the order of integration and remarking
that from (7) and (8)

du _o8(t) - dpp e'(t)
X lx=s(t) 41 '
da ‘ ,
Ta|, o = BlE) + A,
we get the system
s(t)
(11} s(t) + dyp Ac(t) =85+ dyp c A+ ! pq(x)ax -
t s(t)

- dy, g £(t)dt - ap, [ altlat = [ u,(x,t)ex,
o

a d,.,d d
(12) 3%% s(t) + [?zz(l-1) + —ngfl] c(t) =-a%% 8, +
d..d s(t)
+ I:dzz(k—ﬂ +—1§—1%1—] f ¢p2(x)dx - dy, f f{t)at -

t s(t)
- 4, f a(t)dt - f u,(x,t)dx.
0 0

According to the suppositions I, V, the determinant of the
system (11), (12) is not equal to zero, thus we get from
(1), (12)

s(t) s(t)
(13)  s(t) =ay [ wixtlex+ gy [ uy(x,t)ax + P (5),
0 L4 0
s(t) s(t)
(14) c{t) = a, f u1(x,t)dx + pz I uz(x,t)dx + Fz(t),
0 .
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where we have denoted:

(
d11d22\1-1) d,.d

o < 212%1 - b w112
17 A-1] det D * M1 7 A-1) det D

t15)
d ~-d

X = TA7T det D * P = AT det D

and F1, F2 are given continuous functions defined by the boun--
dary data

¥ f, 8, BO,L, daj’ €y l@,d = 1,2).

4. Approximating solutions to the problem (2) - (7)
Let us define

(16) elM(e) =8, V1) = ey,

and by inducv¥ion

S(n)(t) S(n)(t)
(17) s{P*1)(g) =Qy I ugn)(x,t)dxﬂ-p1 I u(;)(x,t)dxi-
0 0
+ F1(t),
aln)(y) o{n) (4)
(18) olm*1)(4) =0, , f usn)(x,t)dx+ﬁ2 f u(;)(x,t)dx+
0 0
+ Py(t),
(n)

{n =1,2,0..), where ug’, uén) denote the solution of the

problem (2) - (6) in SZn

(19) Q = {(x,t) : 0 <x <s(n)(t), 0 <t <T},

n
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with [p(n)(t)]' in the boundary condition (6) i.e.

32u(n) au‘“’

2
(20) Z daj ja—x-g-— -3t = 0 in Qn,

J=1
(21) w8 (x,0) = g (x), 0<x <s?0) =5,
(22) u&n)(s(n)(t),t) =0, 0<t<T,
auin)
(23) = p(t), 0 <t <T,
ax %=0
aln) '
(24) 7%— 0==ut)+A[¢nNtﬂ , 0<t <T,
X=

Lenonma Te Under the assumptions I - V there exists
the unique solution of the auxiliary problem (20) - (24),
s(n), [k(n)]' being supposed to be given.

Proof. According to the supposition I the matrix D
has eigenvalues A., Az, which are positive and single., Thus,
similarly as in [71 one can transform the system {20) into two
separate equations of heat conduction type with boundary con-
ditions being linear combinations of the conditions (21)-(24).
Existence and uniqueness of such problems follows e.g. from
the results of A.Fasano and M.Primicerio [}oc.cit{]. Thus,
there exists a solution ugn), uén) of the auxiliary problem
(20)-(24) and is unique.

Lemma 2. If

(25) ua(x't) = lim'[ufln)(x,ﬂ], (Q¢= 112)

N oo

form a solution of the problem (20)-(24) with

(26) s(t) = lim [s(‘”(t)],

n = oo
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(27) ¢'(t) = 1lim [c(n)(t)]',

n-=oo
then the boundary condition (7) is satisfied.
Proof. Taking into account that ug, 0, satisfy

equations (20) we may differentiate equations (13), (14) with
respect to t and find that

S a2 I
o 1% dx=s(v) ’
with
du,

= gl(t) + Ac'(t),
LEJN P + A -

Lemma 3, If the functions u, (x = 1,2) as the
limits of iteratioms (25), with 8 and c¢' being the limits
(26}, (27), form a solution of the problem (20)-(24), then
u, form the solution of the problem (2)~(7) in the sense of .
definition.

Proof. Itis evident that uy, (o= 1,2) satisfy
the differential equations (2) and the boundary conditions
(3) - (6) because they satisf{ equations (20) - (24) in the
limiting case s(t) = 1im s'®)(t), with c(t) = lim c(n’(t),

N =00

The fulfilment of the boundary condition (7) was proved in the
‘Lemma 2.

It remains to show that the functions uy and B are
nonnegative and satisfy conditions 1°, 2° of the definition,
and the function c¢' satisfies the condition 3°. Non-negati-
veness of the functions uy results from the maximum princip-
le applied to the system (2) transformed into two heat conduc-
tion equaticns [7]. Their other properties are easily proved.

Non-negativenesa of the function s and condition 3° re-

sult from equations (13), (14) and
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( ’ - )
s' = 1lim [g‘n)] . ¢ = lim Lc(n)j .

n ~oco n —e—oo

The continuity of the functions s’ and ¢' i: alsc evident.
The proof of existence of approximate solutions defined
by (17), (18) ard of their convergence does not differ essen-
tially from that of G.W.3vans [2] and from the general prin-
ciples of the method of successive approximations., This re-
sults from the fact that the type of equations (13), (14},
is the same as the type of the equation obtained by G.W.ivans.
Thus we cen formulate the following
Theoremn. I{ the assumptions I - V are satiafied,
then there exists for sufficiently small t a solutizao of
the problem (2) - (7) in the sense of definition formulated
in part II.
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