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ON SOME CLASS OF NONLINEAR PROCESSES
WITH A MEMORY IN CONTINUOUS TIME

Introduction
In [1] we have introduced the notion of a (a,k)-computa-
tion as a continuous function x : <0j;+e0)—= R satisfying
the condition
k
(1) x(t) = [ als)x(t-k+s)ds for all t >k,
0

where & :R—[R 1is a non-zero polynomial and k denotes a
positive number, (a,k)-computations seem to be useful in de=-
scribing some linear processes investigated in continuous time
and which are characterized by a "memory" whose length is k
time units. Such processes occur in many technical, economical
and biological problems, e.g. in control theory, renewal theo-
ry, in the description of cells reproduction [2] etc. Basic
properties of (a,k)~computations were investigated by Zakow-
ski in [3], [4].

In this paper we introduce the notion of a CGFk-process
as a continuous function x : <0;+ eo)—= R satisfying some
integral, generally nonlinear condition (6). CGFk~-processes
seem to be useful in the description of some class of conti-
nuous processes, generally nonlinear, with "memory" whose
length is k. We have also considered some qualitative pro-
perties of CGFk-processes,
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2 esakowski

1. Zasic notavions and definitions

let R dencte the set of all real numbers and k denot:
an erbitrary pocitive number. By A and A1 we denote the
following sets

(2) Az{(s,t,u)elR3:OgsskAt>kAueR}
and
(3) - A1 = {(t,V)e RZ : t2kAve IR}.

Let F :A —R and G : A1 — R be continuous functions.
e assume that there exist positive numbers LF and LG such
that for every s e <0;k>, t»k, L,0€R and ¥v,v € R the

ipequalities

(4) |P(s,t,3) - B(s,t,0)|< Lp- |-
and

(5) l6(t,%) - 6(t,%)| < 140 |¥-F]
hOldo

Definition: The gontinuous function
X : <03+ 00)—= R fulfilling for all t3k the condition

'
(6) x(t) = G(t, f F(s,t,x(t-k+s))ds)
0

is said to be CGFK-process (continuous GPk-process).

If G(t,v) = v and PF(s,t,u) = a(s)eu, where a: R—R
is a non-zero polynomial, then CGFk-process is a {a,k)-compu-
tation introduced in [1}. In this case the condition (6) is
identical with the condition (1). Consequently, the notion
of a CGFk-process is a generalization of the notion of
(¢,k)-computation, Any CGFk-process describes some real, con-
tinuous process which generally is nonlinear and has a "me-
mory"* of length k,
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Some class of nonlinear processes 3

Remark 1, Let f :<03j+o00)— R be an arbitrary
continuous function, For every k > O this function is a
CGFk~process when for example F = 0 and G(t,v) = f(t). for
all t=2k and veR.

If x : <0;+c0)—=—R, then the restriction of x +to the
set U & <0;+900) is denoted by x|U., In particular, if x
is a CGFk-process, then x |<0;k> is called the initial sta-
te of x.

If x : <0j+ee)——R and T 3> 0 then by x, we denote
the function <0j;+ o) —=— R such that

{7) xp(t) = x(t + T) for all t > O.

The set of all real and continuous functions on the in-
terval <O0;a > we denote by c<0;a>'

2. Some properties of the CGPk-processes
It follows from the condition (6) that if f is the ini-
tial state of any CGPFk-prooess then

k
(8) £(k) = o(k, [ Fls,k,2(s))08).
0

Theorem 1. If the function fe C<0;k> satis-
fies the condition (8), then there exists exactly one CGFk-pro-
cess x such that x |<0;k> = f. This CGFk-process is a 1i-
mit of the sequence (xn) of successive approximations, de-
fined as follows:

£(t) for 0t <k

(9) x,(t) =
(k) for t>k

and

£(t) for O0<t <k

k

(10) x,(t) =
G,(t, | P(s,t,xn_1(t-k+s))ds) for t>k
0
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n=1,2,.¢. » The cequence (xn) is e2lmost uni¥ormly conver-

gent on the interval <0+ o).
Proof., Let 6 denote an arbitrary positive number

greater then k. We define the metric space:
(11) cﬁ.k'5’={xec<o;6>le<o;k> =f]
with the metric

(12) 9 (£,%) = sup (e™¥[%(t)-R(¢)]),
<036>

where A is a negative number such that

Ak
e™ -1
(13) Lglp + ——— <1.

The space (11) is complete. On this space we define an opera-

tor A as follows

£(t) for O0<t <k

(14)  a[x(2)] = K
G(t, f Fle,t,x(t-k+a))ds}) for kgt <4,

0
On the basis of (8) we observe that the operator A trans-

forms the space (11) into itself.
In view of {14), (4), (5) and (12) we have for every

t € (k; §> and for every X,x eka’ :
oM | afx(e)] - al3(e]| <

K
< IgeLp g oMk-8)gMt-k+8)|3(¢ ki) - F(t-kes)|ds <

k
= ~ Ak
< LgeLpe 9(%,X) f e Mk=8)4q - LgeLpe o(%,X) - .9_%;1 .
0
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This implies that for every X,% € C;F'd)

Ak ~
¢ (A[E]A[E]) < 1ge1p ST g(5,5).

From this and from (13), applying Banach’s fixed point theo-
rem, it follows 4hat there exists exactly one function

x,€C fk’é) such that x, = A[x,]. Moreover, x, = lim . x
- D oo
where x,, o= 0,1,2,... 18 defhned by (9) and (10} for

te <0;6>. Prom (12) we note that the seguence (xn) is
uniformly convergent on the interval <03;8>. Because & de-
notes an arbitrary positive number greater than k, the proof
is complete.

Remark 2. The application of the metric (9) cau-
ses that there is no contraints imposed on the numbers LG
and Lp in Lipschitz’s conditione (4) and (5).

Theorem 2, If x is an CGFk-process, and, more-
over, if:

1° there exists a continuous function

n?

MF s {(B.t)e R2 s O<s<k/\t>k} —— <034+ o)

such that for every (s,t,u) € A (see (2)) the condition

(15) |F(s,t,u)|< Mp(s,t)e|u]

holds,
2% there exists a function

MG t <kj+o00) —=—< 03+ o0)
such that for every (t,v)e A1 the condition

v

(16) le(t,v)| < my(t)e

holds,
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3° there exists a number to 2 0 for which the function
x |<to;to+k> is nonnegative (nonpositive) and nonzero and,
moreover
k
(17) My (to+k)ef Mpls,t +k)ds < 1,
0

then the function x |<t°;to+k> is not nondecreasing (or
not nonincreasing, respectivelly).
Proof., If the function x |<t°;t°+k> is nonnega-
tive and nonzero, then in view of (6), (15) and (16) we have
k

x(t +k) < My (6 +k)of p(e,t +k)x(t +8)ds.
| 0

Hence we get

k
(18) (t_+k) < M. (t +k). (s,t_+k)ds.
b 4 °+ <t°?:z+k>x “G o+ { MP 8 o+ 8

1t
k
M (t +k) =0  or [ Mo(s,t +k)ds = O
0
then we have x(t°+k) = O. This implies that the function
X <t°;to+k> is not nondecreasing. In the case if
k

My (s +k) [ Mp(s,t +k)ds > O
0

the inequality

x(to+k) < sup x
<t°;1:°+k>

holds on the basis of (17) and (18). On the other hand, there

exists a number ¢ € <t°;t°+k> such that x(c¢) = sup X,
<t°;to+k>
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whence it follows that x(t°+k) < x{0), which completes the
proof for the case of nonnegative and nonzero function
X <t°;t°+k>. In the case when this function is nonpositive
and nonzero, the proof is analogous. Q.E.D.

Theorem 3, If x 1is an CGPk-process and the
hypotheses 1° and 2° of Theorem 2 hold and, moreover, for
every t » k the condition

k
(19) M (t)ef M(s,t)ds <1
0

holds, then there exists a number c¢e<O03;k> such that for
every t » O

(20) |x(t)|g|x(c)|-

Proof. The CGFk-process x 1is a limit of the se-
quence (xn) of successive approximations, defined by .egua-
lities (9) and (10), where £ = x |[<O;k>. Let M = sup |x(t)

<0;k>

On the basis of (15) and (16) we have for every t » k and
n = 1,2,...

k
(21) Ixn(t)|<MG(t)-I MF(s,t)lxn_1(t-k+s)|ds.
0

We observe (see (9)) that |x°(t)|<M for every t > 0. From
this and from inequalities (19) and (21) applying mathemati-
cal induction we get lxn(t)| <M for every t > 0O and
n=0,1,2,000 - Pagsing in this inequality to the limit with
n ——+ oo we get |x(t)| <M for every t > 0. Obviously,
there exists a number ¢ €<03k > such that x(c)l = M, BO
we get inequality (20). Q.E.D.

Corollary 1. If hypotheses 1° and 2° of Theo-
rem 2 and the condition (19} hold, then any CGFk-process is
bounded on the interval <0;+ oo),
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Theorems 2 and 3 generalize some analogous theorems of
the paper [3].

Theorem 4. If x is an CGPk-process and if
there exists a finite limit

(22) lim x(t) = g
« tetoe

and,v moreover, if P(s,t,g) converges for t —— +oo to the
finite limit f(s), upiformly with 8 €< 03k >, i.e. for
every £ >0 there is a 6§ » k such that for every s € <03k >

(23) t> 6 =>|P(s,t,8) - F(s)|<e¢,
then
k
(24) g = lim G(t, I f(a)da).
te=toe )

Proof. Prom the condition (22) we have for every
t>k
k

g +&(t) = G(t,, F(s,t,g +e(t-k+a))de),
0

where ¢ (t) —— 0 if t —— +e, Hence, in view of (4) and (5)

k
g +&(th = G(t, f F(s,t,g)de) + pult),
0

where F(t) —= (0 if t —= +o00, The assumptions imply that
the function F is continuous on the interval <03k>. Con-
sequently, by (5) and (23} we have

(25) g +e(t) = oft, [ Flslas) « a(t),

C -
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where F(t)—-() if t —-— +es, Passing to the liait with

t — + oo in equality (25) we get condition (24). (.Z.D.
Remark 3. In the case if G(t,v) = v and

F(s,t,u) = a(s)ou, where @ :R—R is a non-zero polynomial,

i.e. in the case if an CGPk-process is a (a,k)-computation,

the condition (24) has the form
k

g = I a(s)gds.
0

If g # 0, then this equality is equivalent to the equality
k
f ols)ds = 1
0

given in the papers [1] and [3].

3, Relations between CGFk-processes and k-computable
functions

Theorem 5. If x 18 CGFk-process and if there
exists a number T » O such that for every tok, se€<0jk>,
ve Rand ue R

(26) G(t+T,v) = G(t,v) and P(s,t+T,un) = F(s,t,u)

then the function xq (see (7)) is also a CGFk-process.
Proof. The function xq is obviously continuous,
In view of (6) we have for every t > k

k
x(t+T) = G(t+T, f Fls,t+T, x(t+T-k+s))de>.
o]

Hence, in virtue of (26) and (7)

k
xplt) = G(t, [ Pla,t,xp(t-kes))ds)
0

for all t » k, which completes the proof,
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The orem 6, If x, and x, are CGFk-processes
and the condition (26) holds for T = T, and T =T,, then

(27)  [(xy |<Ty3044k>) = (x, [<Ty3T4k>) ] =
T, 5

=>[(x1 |<T1;+oo)) = (x2|<T2;+°o)) ] .
T1 T2

Proof., According to (7) we have

hy(t) = (x, |<T1;T1+k>)T (t) = x,(t+1,) for te <O3k>
1
hy(t) = (x, |<T2;T2+k>)T (t)
2
Hy(t) = (x, |<Ty35+ =) (%)
1

x2(t+T2) for t e <0;k >

x1(t+T1f for t e <0;+9)

and

Hy(t) = (x2|<T2;+°°))T (t)
2

x2(t+T2) for t € <0;+9e),

It follows from Theorem 5 that the function H1 is an CGFK-pro-
cess with the initial state h1 and the function H2 is

an CGPk-process with the initial state h2. Consequently, in

virtue of Theorem 1, the equality h1 = h2 implies H1 = H2.

Q.E.D.

If the conditions (26) hold for all T » 0, i.e. if the
functions F and G eare constant with respect to the va-
riable t then from Theorem 6 we get for any CGFk-process x
the following conditions

(28) [(x [<Dy30 4k >) = (x [<Ty5T,4k>) ] =>
T1 T2

=>[(XI<T1;+°o)) = (x|<T2;+oo)) ]
T T,

1
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for every T1> 0 sand T2> 0. This condition is a necessary
and sufficient condition of k-computability in the sense of
the paper [5], Consequently, we have

Corollary 2. If the conditions (26) hold for
all T» 0, then any CGFk-process x is k-computable,

We observe that in the linear case, if G(t,v) = v and
F(s,t,u) =q(s)eu where o :R-R is a non-zero polynomial,
the conditions (26) obviously hold for all T3>0, Hence any
(a,k)-computation is k-computable.

The k-computable functions posses many interesting proper-
ties (see [5]). In the special case when the function F and
G are constant with respect to the variable t it follows
from Corollary 2 that CGFk-processes possesses also these
properties,

Note that investigations, given in papers [6] and [7],
concerning (2,Q)-computability also concern k-computability
because any k-computable function is (Z,Q)-computable in the
case if 2 =<03k) and Q =<O3+o00), -
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