

Tomasz Traczyk, Mirosław Truszczyński

ON n -HAMILTONIAN GRAPHS OF MINIMAL SIZE

Our terminology follows that of Harary [3]. We consider finite, undirected graphs without loops and multiple edges.

Let $G = (V, E)$ be a graph of p vertices and $0 < n < p-3$. G is said to be n -Hamiltonian iff for every set $U \subseteq V$ of at most n elements, the graph $G-U$ is Hamiltonian.

n -Hamiltonian graphs were introduced and investigated first by Chartrand, Kapoor and Lick [1]. They proved in particular that the size of an n -Hamiltonian graph of the order p is not less than $\frac{p(n+2)}{2}$. Introducing for every p and n an n -Hamiltonian graph of exactly $\lceil \frac{p(n+2)}{2} \rceil$ edges we shall show that this bound is the best possible.

Theorem 1. For every $p \geq 4$ and n , $0 < n < p-3$, there exists an n -Hamiltonian graph of the order p and of the size $\lceil \frac{p(n+2)}{2} \rceil$.

Proof. Let C_p be a graph with the set of vertices $V_p = \{0, 1, \dots, p-1\}$ and having as edges all pairs of the form $\{i, i+1\}$ for $i = 0, 1, \dots, p-1$ (all arithmetic in V_p is done modulo p), i.e. C_p is a (simple) cycle of the length p . Clearly C_p is 0-Hamiltonian and has $\lceil \frac{p(n+2)}{2} \rceil = p$ edges.

Case 1. $n = 1$.

Denote by $G_1(p)$ the graph obtained from C_p by:

- (1) adding to C_p all edges of the form $\{k, p-k\}$
- (2) adding the edge $\{0, \frac{p}{2}\}$ if p is even or the edges $\{0, \frac{p-1}{2}\}$ and $\{0, \frac{p+1}{2}\}$ if p is odd (see Fig.1).

One can effortlessly convince himself that in both cases $G_1(p)$ is 1-Hamiltonian and its size equals $\lceil \frac{3p}{2} \rceil$.

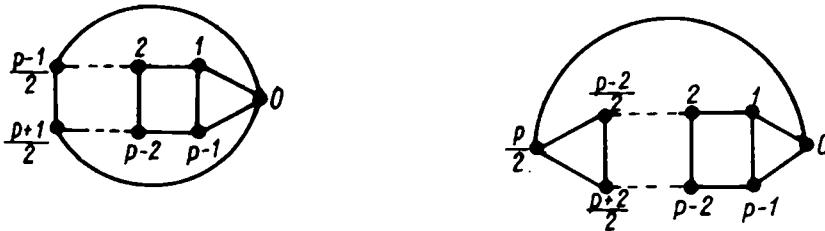


Fig.1

The k -th power G^k of a graph G is the graph obtained from G by joining all pairs of vertices at distances at most k in G .

Case 2. n is even.

Let $n = 2k$ and denote $G_n(p) = (C_p)^{k+1}$. Clearly $G_n(p)$ is $2k+2$ -regular and thus its size equals $\lceil \frac{p(n+2)}{2} \rceil$.

For every two vertices $i, j \in V_p$ denote by $\text{dist}(i, j)$ the distance in C_p between i and j . Clearly

$$\text{dist}(i, j) = \min(i-j, j-i)$$

($i-j$ and $j-i$ are calculated modulo p). Notice that $\text{dist}(i, j) = i-j$ means that there are exactly $i-j-1$ vertices of C_p set after j and before i in the natural cyclic ordering of V_p . For convenience we shall write "between j and i " instead of "after j and before i in the ... etc". Notice that "between j and i " and "between i and j " are different things.

Let us take a set $A \subseteq V_p$, $|A| = s \geq p-2k$. Denote $A = a_1, a_2, \dots, a_s$ and assume $a_1 < a_2 < \dots < a_s$. Let $U = V - A$. Clearly $|U| = p-s \leq 2k = n$. We have to find a spanning cycle in $G_n(p) - U$.

If the distances in C_p between every two consecutive elements of the sequence $(a_1, a_2, \dots, a_s, a_1)$ are not greater

than $k+1$, then the sequence itself is a spanning cycle in $G_{2k}(p) - U$. Suppose this is not the case and let $\text{dist}(a_1, a_s) > k+1$. Consequently, there are at least $k+1$ elements of U between a_s and a_1 . Since $|U| < 2k$, there are at most $k-1$ elements of U between a_1 and a_s . Thus, for every $i = 1, 2, \dots, s-2$ we have $\text{dist}(a_i, a_{i+2}) \leq k+1$ and by definition of $G_{2k}(p)$ a_i is adjacent to a_{i+2} . Now it is clear that the sequence $(a_1, a_3, a_5, \dots, a_s, \dots, a_4, a_2, a_1)$ is a spanning cycle in $G_n(p) - U$.

Case 3. n is odd, $n > 1$.

Let $n = 2k+1$ and denote $G_{2k}(p) = (V_p, E_{2k})$. Furthermore let

$$D = \left\{ \left\{ 0, \left\lfloor \frac{p}{2} \right\rfloor \right\}, \left\{ 1, \left\lfloor \frac{p}{2} \right\rfloor + 1 \right\}, \dots, \left\{ \left\lfloor \frac{p}{2} \right\rfloor - 1, 2\left\lfloor \frac{p}{2} \right\rfloor - 1 \right\}, \left\{ \left\lfloor \frac{p}{2} \right\rfloor, 2\left\lfloor \frac{p}{2} \right\rfloor \right\} \right\}.$$

Notice that for even p 's $\{0, \lfloor \frac{p}{2} \rfloor\} = \{\lfloor \frac{p}{2} \rfloor, 2\lfloor \frac{p}{2} \rfloor\}$. Hence $|D| = \lfloor \frac{p}{2} \rfloor$ in both even and odd cases, and therefore the size of the graph $G_{2k+1}(p) = (V_p, E_{2k} \cup D)$ equals $\lceil \frac{p(2k+3)}{2} \rceil = \lceil \frac{p(n+2)}{2} \rceil$

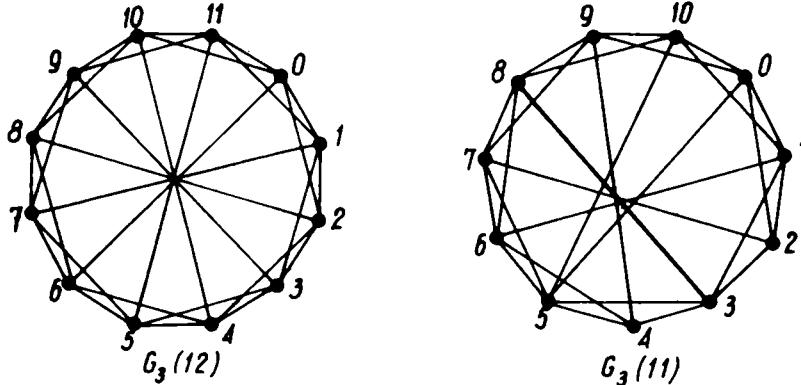


Fig.2

Let us take a set $A \subseteq V_p$, $A = \{a_1, a_2, \dots, a_s\}$ and assume $s \geq p-2k-1$ and $a_1 < a_2 < \dots < a_s$. If $s \geq p-2k$ or every two consecutive elements of the sequence $(a_1, a_2, \dots, a_s, a_1)$

are in C_p at the distance not greater than $k+1$, or for every i between 1 and $s-2$ $\text{dist}(a_1, a_{i+2}) \leq k+1$, then A is the set of vertices of a cycle in $G_{2k}(p)$ and thus in $G_{2k+1}(p)$, too.

Now, assume $s = p-2k-1$. Denote $U = V - A$. Clearly $|U| = 2k+1$. Suppose $\text{dist}(a_s, a_1) = k+2$ and for some i , $\text{dist}(a_1, a_{i+2}) = k+2$.

There are two cases to be considered:

(a) there exists $1, 1 \leq l \leq s-2$, such that $\text{dist}(a_1, a_{l+2}) = k+2$ and $1 < \text{dist}(a_1, a_{l+1}) < k+1$. See fig.4a.

(b) there exists l such that $\text{dist}(a_1, a_{l+2}) = k+2$ and $\text{dist}(a_1, a_{l+1}) = k+1$. See fig.4b.

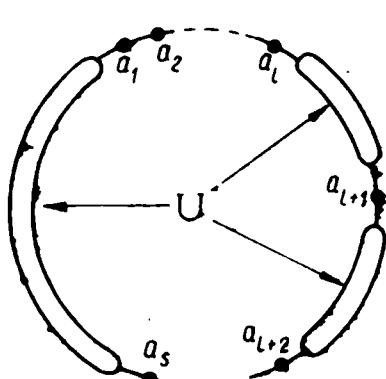


Fig.4a

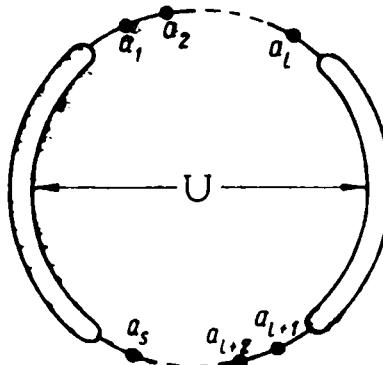


Fig.4b

In the case of (a), $\text{dist}(a_{l+1}, a_{l+2}) < k+1$ and there are no elements of U either between a_1 and a_l , or between a_{l+2} and a_s . Without loss of generality assume $a_1 - a_1 \leq a_s - a_{l+2}$.

Since $k+1 < \lfloor \frac{p}{2} \rfloor$, both $a_1 + \lfloor \frac{p}{2} \rfloor$ and $a_1 + \lfloor \frac{p+1}{2} \rfloor$ belong to the set $\{a_{l+2}, a_{l+3}, \dots, a_s\}$. At least one of them is adjacent to a_1 (thanks to an edge from D). Denote that one by a_d .

Consider the sequence

$$C_1 = (a_1, a_d, a_{d+2}, \dots, a_s, \dots, a_{d+3}, a_{d+1}, a_{d-1}, a_{d-2}, a_{d-3}, \dots, a_1).$$

Its set of elements equals A and every element (except a_1) occurs in it only once. If $a_d \neq a_{1+2}$ then C_1 is a cycle in $G_{2k+1}(p)$. If $a_d = a_{1+2}$ then, since $\text{dist}(a_{1+1}, a_{1+2}) < k+1$ and $\text{dist}(a_{1+2}, a_{1+3}) = 1$, we have $\text{dist}(a_{1+1}, a_{1+3}) \leq k+1$. Thus, a_{1+1} is adjacent to a_{1+3} in $G_{2k+1}(p)$ and the sequence

$C_2 = (a_1, a_{1+2}, a_{1+4}, \dots, a_s, \dots, a_{1+5}, a_{1+3}, a_{1+1}, a_1, \dots, a_1)$
is a cycle in $G_{2k+1}(p)$.

Now, suppose (b) is the case. Then there are no elements of U between a_1 and a_1 , nor between a_{1+1} and a_s . Without loss of generality assume $a_1 - a_1 \leq a_s - a_{1+1}$. As in the case of (a), there exists a vertex a_d , $a_{1+1} \leq a_d \leq a_s$, adjacent to a_1 in $G_{2k+1}(p)$. If $a_d \neq a_{1+1}$ then C_1 is a cycle in request. If $a_d = a_{1+1}$ then by the definition of D $a_1 - a_1 = a_s - a_{1+1}$. Consequently a_1 or a_{1-1} is adjacent to a_s in $G_{2k+1}(p)$. Denote

$C_3 = (a_1, a_d, a_{d+1}, \dots, a_s, a_1, a_{1-1}, a_{1-2}, \dots, a_2, a_1)$ and

$C_4 = (a_1, a_d, a_{d+1}, \dots, a_s, a_{1-1}, a_1, a_{1-2}, a_{1-3}, \dots, a_1)$.

If a_1 is adjacent to a_s then clearly C_3 is a cycle in $G_{2k+1}(p)$ and if a_{1-1} is adjacent to a_s then C_4 is a cycle. Q.E.D.

The following simple corollary is a consequence of the Theorem, case 2.

Corollary 1. For every Hamiltonian graph G and for every integer $k \geq 1$ G^{k+1} is $2k$ -Hamiltonian.

Further obvious results of similar nature can be obtained using well-known theorems of Sekanina (the cube of every connected graph is Hamiltonian) and Fleischner (the square of every 2-connected graph is Hamiltonian).

Corollary 2. For every connected graph G and for every integer $k \geq 1$ $G^{3(k+1)}$ is $2k$ -Hamiltonian.

Corollary 3. For every 2-connected graph C and for every integer $k \geq 1$ $G^{2(k+1)}$ is $2k$ -Hamiltonian.

REFERENCES

- [1] G. Chartrand, S.F. Kapoor, D. Lick: n -Hamiltonian graphs. *J. Comb. Theory* 9 (1970) 308-312.
- [2] H. Fleischner: The square of every two-connected graph is Hamiltonian. *J. Comb. Theory* B16 (1974) 29-34.
- [3] F. Harary: *Graph Theory*. Reading 1969.
- [4] M. Sekanina: On an ordering of the set of vertices of a connected graph, *Publ. Fac. Sci. Univ. Brno* 412 (1960) 137-140.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF WARSAW

Received June 12, 1980.