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ON DECOMPOSITIONS OF QUASI - LEIBNIZ D-R ALGEBRAS

Introduotion

In the present paper we consider D-R algebras in the sen-
se of [2] and [‘5]-, which satisfy an additional condition, na-
mely the so-called Quasi-Leibniz condition (shortly: QL~con-
dition). We have distinguished three types of such algebras,
namely ‘B1, B2, B3 (see [1], [2]). In this paper we shall in-
vestigate algebras of the type E3 and theirs decompositions
onto direct sums. We shall characterize such decompositions
and give conditions for their existence. First let us recall
some definitions,

Let here and in the sequel X be a commutative algebra
over a field K of scalars., We assume that the multiplica-
tion in X is not trivial. Denote by L(X) the set of all
linear operators acting in X. PFor a given operator A ¢ M{IX)
its domain vi‘ill be denoted by ‘0A (e!)A is a subalgebra of X).
The set of all right invertible operators acting in X will
be denoted by R(X) (cf. [3]).

Definition 1 (cf. [2]). & right inwertibde
operator A ¢ L(X) is said to be a QL-operator if there exists
d € K such that

(1) D(xey) = Dxey + xeDy + d*Dx-Dy for all x,y € dp.

In [2] we have shown that the constant d in (1) is uniquely
determined by D. We will demote this constant by dD. Deao~-
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2 Z.Dudek

te by QL(X) the set of all (L-operators in X and by
QL™(X) the set of all GL-operators in X, having theirs uni-
versal constant dD different from zero, i.e,

(2) QL(X) = {Ae L{X): A is a QL-operator in x},

(3) QL*(x) = {AeQL(X): 9 €K},

where K* = kK\{o0].
It is easy to show that for each e K and DeQL(X) we
have (cf. [2])

(4) a DeQL(X),
d
(5) daD‘ED'-

Definition 2 (cf. [2]). A multiplicative
opergtor A€L(X) is said to be an M-operator if its domain

&A is a subalgebra of X and (A-I)e R(X}, 1i.e.

(6) A(x-3) = Ax-Ay for all x,yed,,

(7) BReL(x),d)R=x and DR = I,

where I denotes the identity operator in X.
Denote the set of all M-operators in X by M (X).
Theoren Te There is one-to-one correspondence
between QL*(X) and & (X)x KE® given by the formulas

(8) $: QLY (X) —M(X) x E*, é(D) = (I + dpeD, dp),

(9 7A@ x® —qrt(x), ¢ (a0 = § (4 - 1),
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Quasi~Leibniz D-R algebras , 3

Proof ., Denote the components of the map ¢ by ¢1
and 62 respectively. We have

(10} $(D) = (¢,(D), é,(D)) = (I+dpeD,dp).

Let now DeQL*(X) and x,yed, =9 . Then we obtain
D $4(D)

(11) ¢,(D)(x-y)=(I+dpeD)(x+y) = x>3+d(Dxey+x-Dy+dp-Dx+Dy) =
= ¢1(D)X‘¢1(D)y‘

Of tourse, the operator ¢1(D) -1 = dpeD is right invertib-
le, which proves the first part of Theorem 1.

let now AeM(X) and d e K*. Then the operator
¢$-1(a,d) = %—“-I) is right invertible, because A is an
M-operator.

Let r,yed, =J « Then

$=1(a,d)

(12) ¢71(8,0)(xo3) = Ha-T)(xe3) =F(Alxe3)-x:3) = JlAx-23-x.3)=

= -}(Aony-x-Ay-Ax.y+xq+Ax-y-x~y+Ay-x-xoy) =
=&(Ax-x)(Ay-y) + g-(Ax-x)y + -}(Ay-y)x =

= ¢ (A,d)xe3 + x¢7 A,y +

+ a¢™(a,d)x-¢71(4,d)3.

Definttion 3 (cf. [2],[4]). I£ D isa
QL-operator in the algebra X, then we say that the pair (X,D)
is a QL-algebra (or quasi-Leibniz D-R algehra). If R 1is a
fixed right inverse of D, then the QL-algebra (X,D) will be

denoted by (X,D,R). We say that a QL-algebra (X,D) is genera-~
ted by an operator AcdM(X) 1if
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4 Z.Dudek

(13) D =9""(a,ap),

where ¢~1 is as in (9).
Proposition 1. If AeM(X) is a homomor-

phism of a subalgebra J)A with unit e 1into X and the
QL-algebra (X,D) is generated by A, then

(14)' D0=0.

Proof follows immediately from (13).

Since now we shall consider only such QL-algebras where
is a subalgebra with unit e of X, .
Definitio n 4. A givern QL-algebra (X,D) with
unit e e D, is said to be of the type Reg® if

Dy

(15) Die C‘DD fOI‘ i = 0'1,2’...'k.

If a QL-algebra (X,D) is of the type Regk for all k=0,1,.c0,
then we say that (X,D) is of the type Reg *°.

Open question: Does exist a QL-algebra of the type Regk,
which is not of the type Reg™?
For given subsets A, B of an algebra X we denote by

< A>B the set

n
(16) <y = {ye Xx: 4 = 3= Z ajbj}.
neN a1,...,aneA J=1

Byyeessb €B

If A is a finite subset of X, i.e. A = {31....,an}'.
then we write

(17) <‘>B = <a1.oo.'an>Bo

Corollary. If B=X and A-{ao},then
<a,> is a two-sjded ideal generated by 8,3 in other words
X
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Quasi-Le'ibniz D=-R algebras 5

(18) <ao>x = {ztsno T2 ¢ I}.

If B = X then we will denote the set <x >, shortly by
<x°>.
Definition 5 (cf, [2]). A given QL-algedbra
(x,D) 1is said to be QQL-decomposable if there exist non tri-
vial subalgebras 11,12 of X such that

(19) I=X @ X, d; = (x,nd;) ® WpN X))
and
(20) D: Xy —— Xy for J = 1,2

A QQL-decomposable QL-algebra (X,D) is said to be QL-decompo-
sable if (11,D|x1) and (12,D|x2) are QlL-algebras.

Theorem 2. IfaQL-algebra (X,D) is QQL-decompo-
sable onto algebras x1 and 12 then

(21) X =<e,> @ <oy,

where 8,5 6, are units of 11 and 12 respectively.
Proof. Since x=x1@xz,_wehavex1-x~2=0.
We shall show that

(22) e =0, + 6,

Assume that e = ¢y + S, for soms elements 0, € 11. °2€x2'
Then 0y + 0y, =0 = 02 = 012 + 022 + 2c1c2 = c12 + 022 and
¢y = c12, Cy = 022. On the other hand we have that for all
elements x, ¢ 11 and X, € 12

(23) Xy, = Xy°0 = X, 00, + X,Cy = Xy0Cy,
(24) Xy = Xp00 = X004 + XpeCH = Pye0p,
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6 Z.Dudek

which implies that

(25) cy =e, and o, = 6,.

It follows from (23-25) that x,c <e1> end X, c<92>.
For each x € X we have

(?6) X =X, 4 Xy
where X, € X‘, xzexz, which implies that
04°X = €,°X, = X, € x1, 8,°X = €5°X, = xze.xz,
80
e, >c iy, <ep>cX, and X, =<6, X, = <e,d,

Of course, from Theorem 2, we have for both 11 and X, that

(27) x1 <e1>x = <e1>x1o

(28) X,

Froposition. If the only ideapotents in
a (L-algebre {(.,D) are e and O then (X,D) is not decompo-
£3ble,

Froof. ILet (X,D) bs (GL-decomposable onto X,

and 12 with units e, and e, regpectively. Then we have

e 2>x = (o 2>x20

5 a2 e 2442
(22) a =@ 8,  + e, = e, +e,.

Hence ey = 0 or e, = 0, which contradicts to our assum-
ptions that 11 and x2 are not trivial algebras,
~n immediate consequence of (1) is the eguality

(30) De{(x + d*Dx) = 0 for all xé Op {ef. [1]).
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Quasi-leibniz D-R algebras 1

The equality (30) gives three possible cases
£1: De = 0O,
B2: D= - }I,
E3: De #0 and D# - LI and De(x + deDx) = 0

for all xe¢ 'DD’
let (X,D) be a QL-algebra. Denote by DE the set

(31) liE={yeI: De-y =0}-i
Proposition 3. Por a given QL-algebra (X,D)

the set DE 1is a two-sided ideal in X,
Proof, If xeX, yeDE then (x-y)+De =

= x(y-De) = 0, Also, if x,y € DE then (x+y) € DE.
Theorem 3. If (X,D) is a QL-algebra and

IE = {0} then

1.

Quj—

(32) D= -

Proof. Since DB = {0} then froam (30) we have

Qs

(33) De = -

Let x ¢ “DD' Then we obtain

(34) Dx

D(x-e) = Dxee + Xx+De + deDx.De =

Dx + x(- %e)ﬂ- d-Dx-(- s—e) =

H

Dx-%—x-Di:-‘]i—x.

Theorem 4. If (X,D) is a (L-algebra and
DE = X, then

(35) De = O.
Proof., Since DE = X, we have for y = e,

DG')V'DOSO.
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8 Z.Dudek

Since now we assume that (X,D) is a QL-algebra such that

(36) 0 #1IE £ X.

Theorem 5, If (X,D) is a QL-algebra and
O # DB # X then

(37) DE =<e + d De>,

(38) ker D c DE,

(39) DE is an algebra with unit (e + d De),
(40) <De>is an alg;ebra with unit (- d De),
(41) <De> is a two-sided ideal in X,

(42) X =<De> ® De.

Proof. In order to prove formula (37) suppose that
yJ € <&¢e +d De>, Then Desy = x+(e + d De)De = O for an x,
which implies y e DE.

Let now y € DE, Then y =ye =3 (e + deDe - deDe) =
= y(e + dDe). In order to prove formula (38) suppose that
x € ker D. Then from (30) we have De.x = De(x + deDx) = O.
In order to prove formula (39) observe that DE is closed with
respect to the operations in X. Hence it is enough to show
that

(e + dDe)2 = (e + dDe).

From (30) we have for x = e that

(43) De = - d (De)2.
Thus
(44) -dDe = (-dDe)?
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Quasi-Leibniz D-R algebras 9

and
(45) (e + dBe)? = 62 + 2dDe + a2(De)? = (e + dDe).

In order to shoy formalla (40), observe that <De> is closed
respect to operations in X and apply (44). Formula (41) fol-
lows just from the definition of <De>.

For the proof of,formula (42) consider an arbitrary x ¢ X.
We have the decomposition

(46) X =X+ Xy

where x, € <De >, X, € DE and

(47)' x, = x+(-dDe),
(48) x, = x+(e + dDe).
Henoe

(49) X =<De> + IE.

Let now y € <Dse> N DE., Then

(50) J = ye(-dDe) = ye(e + dDe) = ye(-dDe}e(e + dDe) = 0,

so <De> N DE ={0} and
(51) X =<De> @ IE.

Proposition 4. If (X,D) 4is a (L-algebra
1

of the type Reg' then
(52) D, N DE =<e + dDe>4,D,
(53) -DDﬂ <De> = <De>3D.
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Froof. To prove formula (52) suppose that
ye<e +dDe>p . Then y = x-{e + dDe) for an xquD.
D

Since e,De,e + dDe € ‘DD’ we have x+(e + dDe) € ‘DD‘ Thus
y e DEN ‘DD and <e + dDe}c«DD N DB. The converse inclu-
sion is obvious. In the same way we prove (53).

Theorea 6. If (Xx,D) is a QL-algebra of the
type Reg1 and O # DE # X then (DE, D'DE) is a Ql-algebra
with unit (e + dDe),

Proof. Theorem 5 implies that DE is an algebra with
unit (e + dDe). Prom Proposition 4 we have that

‘DD NDE = <& + dDe:>Jb =RDDIDE.

To prove Theorem 6 it is enough to show that D and its right
inverse R are invariant on DE:

(54) D: DE — DB
and
(55) R: DE —DE.

If x e ‘DDﬂ DE then from {(30) we have

O = De(x + dDx) = De x + De dDx = d De Dx.

Therefore Dx € DE and (54) is true.
Putting in (30) Rx_ instead of x we have

O =De Rx + d DRx = De Rx.

Then Rx € DE- and (55) is true.

Theorem 7., Let (X,D) be a (L-algebra of the
type Reg1 and O # DE ¢ X. Then ({X,D) is (L-decomposable
ontn QL-algebras of the types E1 and E2 if and only if

(56) Dze = ".% Deo
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Proof. Necessity. If x=x1@1(2,e=e1+62
and (X1,D|x1) is of the type E1, (X2,D|x2) is of the type

E2 then
(57) D% = D(De, + De,) = D(O + De,) = D(- ;—62) =
1 1
= - gDhe, =~ 3 De.
Sufficiency, Let D% = - ;—De.
Put
(58) X, =<e + dbe>,
(59) X, = <~ dDed.

(X‘I’DIX1) and (X2,D|x2) are QL-algebras with units, which

follows from (56) and Theorems (5)-(6). Prom Theorem 5 we have
that X = X1 + 12 which proves sufficiency.

Theorem 8, Let (X,D) be a QL-algebra of the
type Reg™ and ker D # [0} and {0} # DE # X. Then
(x,D) is QQL-decomposable onto algebras XI. X7, with units
eI, ep respectively, such that

(60) ker DlxI = {0},

(61) ker D c X;,

(62) (X.,D|» ) is a QL-algebra.
1 IxI a algebra

Proof. Define the following sequences:
(63) = dDe, X = DB =< >
e(1) = ¢ * (1) (1074
(64) 8(1) = "dm’ 1(1) =<m'r>=<°(1)> x
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12 Z.Dudei

(65) .(k+1l = e(k) + dlb(k) for k = 1,2,..e
(66) olkel) -dDe(, for k = 1,254,
(67) ) ¢ =< £ K=2,3000
(k) = *°(0)? 3,y
(68) x(k) o el x £or Kk = 2,3,..s
(k-1)

From the assumpt’on we have that X # X(” ¥ {0}, which
implies that also X # X' 4 {o].

It x(k+1) = {0} for a k 2 1 then from Theorem 3 we
heve that D= - § I on X, which implies that ker D= {0},

If x(k”) = X(k) then from Theorem 4 we have that De(k) =
= {0} ana putting

k
(69) - 9 x93,
=1
(70) Xy = Xy

we obtain the reguired decomposition (cf. [3]).
Lot now X(k) # {O} and x(k, /4 x“m) for each
k = 1,2,9.. . Putting

k=1
(12) I = () Xy
k=1

we obtain the desired decomposition (cf. [3]). The units in
II apd XI are

(73) GI = @ O(k).
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(74)

oy =6 - eI,

respectively.
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