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WITH A STRONGLY FULL SET OF STATES 

1. I n t r o d u c t i o n 
I n t h i s paper we study some e q u a t i o n a l c l a s s e s of o r t h o -

modular l a t t i c e s . The l a t t i c e of v a r i e t i e s of orthomodular 
l a t t i c e s has been s tudied by Bruns and Kalmbach ( [ l ] , [ ? ] ) • 
V a r i e t i e s s tud ied here are contained between the v a r i e t y TSFSS 
of orthomodular l a t t i c e s with a f u l l s e t of two-valued s t a t e s 
and the v a r i e t y SFSS generated by orthomodular l a t t i c e s wi th 
a s t r o n g l y f u l l s e t of s t a t e s . He show tha t any of these v a -
r i e t i e s i s not f i n i t e l y ba sed . 7/e show a l s o , us ing B i r k h o f f ' s 
Theorem, tha t the c l a s s of orthomodular l a t t i c e s with a f u l l 
s e t of two-valued s t a t e s forms a v a r i e t y . 

2 . B a s i c d e f i n i t i o n s and p r o p e r t i e s 
As in [ l ] , an orthomodular l a t t i c e ( abbrev ia ted oml) i s 

cons idered a s an u n i v e r s a l a l g e b r a ( L ; A , V , ' , 0 , 1 ) with the 
binary l a t t i c e opera t ions A and v , the unary orthocomple-
mentation opera t ion 1 , and the two n u l l a r y opera t ions ( con-
s t a n t s ) 0 and 1, the s m a l l e s t and l a r g e s t element of the 
l a t t i c e . I f some suba lgebra of L i s a Boolean e l g s b r a , then 
we c a l l i t a Boolean s u b a l g e b r a . Vie wr i t e a ± b , i f a < b ' 
and aCb i f a and b commute ( i . e . the suba lgebra g e n e r a -
ted by s e t { a i b } i s a Boolean s u b a l g e b r a ) . 

K e c a l l tha t , a s t a t e on an oml L i s a map a : u - » < . 0 , 1 > C R 
each t h a t m{ 1) = 1 and i f a , b e 1 , a l i > t t h « o « ( a v b j = 
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2 R.Godowski 

a m(a) + m(b), A two-valued (or dispersion f r e e ) s t a -
te i s one assuming only the values 0 and 1. I f m i s 
a s t a t e , then a < b implies m(a)<m(b) . A set | m ^ | t e T j 
of s t a t e s on L i s said to be f u l l (strongly f u l l or strongly 
ordered) i f for any a , b € L 

^ A ®t(a) < mjib)] = > a <b 
t«T 

( [ A (m^(a) = 1 =s>m t(b) = 1)] = > a < b , r e s p e c t i v e l y ) . 
teT 

Any strongly f u l l set of s t a t e s i s f u l l . The converse i s f a l -
se (see the oml FNSQ in t h i s paper). On the other hand i f a 
set of two-valued s t a t e s i s f u l l , then i t i s strongly f u l l . 

The c l a s s of omls with a f u l l set of s t a t e s we denote 
by PSS. The c l a s s of omls with a strongly f u l l set of (two-
-valued) s t a t e s we denote by SPSS (TSFSS r e s p e c t i v e l y ) . Thus, 
by d e f i n i t i o n TSFSSCSPSScPSS. Oml L 2 a presented below on 
the Greechie diagram 

m(a) = 1 m(b' ) = 1 
but a ^b ' . 

i s an element of SFSS - TSFSS. All omis PMS„ are elements of n 
FSS-SFSS. 

D e f i n i t i o n 1. A Boolean block - embedding 
of an oml L i s a map. f : L —— B, where B i s a Boolean 
elgebra and for any a,b t L, the following conditions hold: 

(Bbe 1) f ( a ' ) = [ f (a ) ] ' 
( Bbe 2) a l b <=> f ( a ) l f ( b ) 
(Bbe 3) a l b = > f ( a v b ) » f ( a ) v f ( b ) . 

a 
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L e m m a 1. Let L be an oml j B be a Boolean a l -
gebra and l e t f be a map f : L B. Then f i s a Boolean 
block - embedding i f f f o r any Boolean suba lgebra A c L , the 
r e s t r i c t i o n f t o A i s a monomorphism of Boolean a l g e b r a s . 

D e f i n i t i o n 2. A p a r t i a l f i e l d of s e t s (see 
[4] , [ 5 ] ) i s a non empty family M of subse t s of a s e t X, 
such t h a t f o r any A,B e U the fo l lowing cond i t i ons h o l d : 

(PPS 1) A € M = > X \ A eM 
(PPS 2) [A,Be M, AH B = gf] AUBe M. 
L e m m a 2. I f a p a r t i a l f i e l d M of subse t s of 

a s e t X forms a l a t t i c e under i n c l u s i o n , then i t i s an o r t h o -
modular l a t t i c e where A1 = X \ A , 0 = 0 , 1 = X, and f o r any 
A,B € M, A I B i f f AO B = 0. 

L e m m a 3« Let L be an oml. Then the fo l lowing 
cond i t i ons are e q u i v a l e n t : 
(1) L has a f u l l se t of two-valued s t a t e s . 
(2) There e x i s t s a Boolean block - embedding of L. 
(3) L i s isomorphic t o a p a r t i a l f i e l d of s e t s . 

The proofs of the above lemmas are s t r a i g h t f o r w a r d and 
we can omit them. 

3. The v a r i e t y TSPSS 
In t h i s s e c t i o n we prove the fo l lowing 
T h e o r e m 1. The c l a s s TSPSS of orthomodular l a t -

t i c e s with a f u l l se t of two-valued s t a t e s forms a v a r i e t y . 
I t i s easy t o show t h a t TSPSS i s closed under t ak ing of 

suba lgebras and produc ts . As a consequence of two uderment io-
ned Lemmas we ob ta in t h a t TSPSS i s closed under homomorphic 
images. 

L e m m a 4. Let a p a r t i a l f i e l d of s e t s M forms an 
oml; D, A, B € M, such t h a t AO BCD. I f h : M — L i s a ho-
momorohism of M to some oml L, such t h a t h(D) = 0 , then 
h(A) _Lh(B). 

P n 0 0 f . I t i s a we l l known fac t ' t h a t A i s the sum 
of mutually or thogonal e lements A * ( A a B ) v iAAB 1 ) v A.^, whe-
re A1 = A a(a ' v B ) a ( A ' v B ' ) . Thus we have: 
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h(A) = h( A A B ) v h( A A B' ) v h( A^). Since A A B C D , and 
h(D) = 0 then h( A A B ) = 0 . We show t h a t h ( A . , ) = 0 . I n 
f a c t s 

y D ' C ^ d D ' C A n D ' S B ' . Thus A., A D* £ A., A B' = 0 . 
How h ( D ' ) = 1 and hU! , ) = M A ^ A M D 1 ] = h ( A . , A D ' ) = h( 0) = 
= 0 . The re fo re we have h(A) = h( A A B1) • S i m i l a r l y h(B) = 
= h(A1 A B) and so h (A)J_h(B) . 

L e m m a 5. Let a p a r t i a l f i e l d U of s u b s e t s of 
a s e t Z be an oml. Let h be an |Bpimorphism from M onto 
an oml L and h be a c a n o n i c a l epimorphism from the Boolean 

T 

a l g e b r a 2 of a l l s u b s e t s of a s e t Z onto the q u o t i e n t Boo le -
an a l g e b r a 2 Z / J where J = ( a c z | V ACAn h ( A ) = o } 1 AQeM 
i s an i d e a l of the Boolean a l g e b r a 2X gene ra t ed by h ~ 1 ( { o j ) . 

Z 
Then t h e r e e x i s t s a Boolean block - embedding (p s L — 2 / J . 

P r o o f . The s i t u a t i o n desor ibed above i s i l u s t r a t e d 
by the diagram 

epimorphism c a n o n i c a l 
epimorphism 

J 2 * / j 

F i r s t , we prove, t h a t i f h(A) = h ( B ) , then h(A) = h ( B ) . 
We denote AAB by P and AvB by Q. Then h(P) = h(A) = 
= h(B) = h (Q) , and P C Q . There fore P 'n Q e M and h ( P ' n Q) = 
= 3 . Hence h ( P ' r i Q ) = 0 and h(F) = h ( Q ) . Since P c A C Q , 
then h( A) = h ( P ) . S imi l a ry h(B) = h ( P ) . There fo re h(A) = 
= h (B) . 

Now, we d e f i n e 

ip (h(A)) =: h(A) . 

We s h a l l show t h a t ip i s a Boolean block - embedding, i . e . 
t h a t the c o n d i t i o n s (Bbe 1) - (Bbe 3) h o l d . 
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(Bbe 1) . if>([h(A)]' ) = <p(h(A' )) = h(A') = [h(A)]' = 
= [<p(h(A))]' . 

(Bbe 2 ) . " = > " I f h ( A ) ± h ( B ) , then h( A a B1 J = h(A) 
and h( A' A B) = h(B). Thus <p(h(A)) = H ( A a B ' ) and <p(h(B)) = 
= E( a ' a B ) . Since A a B ' I a ' a B , then h( A a B ' ) ± h( A'A B) . 
Therefore ip (h( A)) 1 <p(h(B)). 

(Bve 2 ) . " < = " I f h(A)X h(B), then h(Afl B) = ii/J, i . e . 
A n B £ J . Hence there ex is t s Dell such that h(D) = 0 and 
AH BSD. Thus, by Lemma 4, h (A)±h(B) . 

(Bbe 3) . I f h (A) lh (B) then h(A) = h( A a B1 ) and 
h(B) = h( A' A B) . Hence h (A )vh(B) = h( Aa B' ) v h(A' A B) = 
= h( ( A a B' ) v (A1 A B)) = h( (A A B 1) U (A' A B ) ) . Thus: 
ip(h(A) v h ( B ) ) = h( ( A a B ' ) U(A'A B) ) = h( A A B* ) v h(A' A B) = 
= jpU(AAB')) V(f(h(A'A B)) = (f»(h(A)) v f ( h ( B ) ] . 

4. The omls FNSp 

All var ie t ies of omls studied in Bruns, Kalmbach [ l ] and 
[2] are f i n i t e l y based. The main result of this section i s 
the following 

T h e o r e m 2. Let V be a variety of omls such 
that TSFSSCVG SFSS^ where SPSS i s a variety generated by 
omls with a strongly f u l l set of s t a t e s . Then V i s not f i -
nitely based. 

To prove this theorem (using the method of Model Theory 
- see ([3]» Thm 4 .1 .12) ) we define for any natural number 
n > 3, the oml FNSn. We s i l l show that for any n > 3, FNSn 

i s not in the variety SFSS and that the ultraproduct of the 
PNSn's corresponding to a nonprincipal u l t r a f i l t e r on 
{ 3 , 4 , 5 , . . . } i s contained in the variety TSPSS. 

D e f i n i t i o n 3. The FNSn i s an oml of length 3 
with 5n+1 atoms presented below on the Greechie diagram: 
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PUS-

PUS. 

L e m m a 6. For any n > 3 the oml PSSQ i s not con-
t a i n e d i n the v a r i e t y SFSS. 

P r o o f . For s i m p l i c i t y we g ive the proof f o r the ca-
se n = 3 . For o ther n ' s the proof i s s i m i l a r . 

Let z± = : ^ v U ^ a x . ! ) , t ^ = : ^ v ( i ^ a x J ) , i = 1 , 2 , 3 ; 
j = i + 1 (mod 3 ) . L« t z = = : z^A Z j ^ i ^ l 
u = =: ^ A U g A U y We prove t h a t the e q u a l i t y 

(SF) z f y ^ x ^ x ^ ) = u i x ^ x g . x ^ ) 

i s t r u e i n a l l omls w i t h a s t r o n g l y f u l l set of s t a t e s . F i r s t , 
observe t h a t i f m i s a s t a t e , then m l z ^ = m(x^) + 
+ m ( x ^ / \ x j ) and m( u^) = n ( x j ) + m ( x ^ A x j ) . Now l e t m(z) = 1 . 

3 
Then m(z..) = m ( z 0 ) = m(z^) = 1. Hence 3 = 2 Z ) = 

1 ^ i = 1 1 

3 , 3 
= m(x. ) + m ( x . ' A x J ) = ZZ1 o ( u j ) . T h e r e f o r e m(u^) = 

i = 1 " i = 1 ^ 1 

= m(u 2 ) = m(u^) = 1. Thus z < u 1 , i = 1 , 2 , 3 , and hence z < u. 
S i m i l a r l y u < z . New observe t h a t i n FNS^ 4 0 
and u f a ^ a ^ a ^ ) = 0 . T h e r e f o r e FUS^ 4 SFSS. 

R e m a r k . Just as above we can show t h a t i f p i s 
a p e r m u t a t i o n on the se t | l , 2 , . . . , n | , q • : p~ 1 , t h e n the 
e q u a l i t y 

A ( i i v ( v x ; ( 1 ) ) ] - A 

i e t r u e i n a l l oa ls w i t h a s t r o n g l y f u l l se t of s t a t e s . 
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L e m m a 7. Let FNSn, n = 3 » 4 , 5 , . . . a re olms g iven by 
D e f i n i t i o n 3 and l e t F be a n o n p r i n c i p a l u l t r a f i l t e r on the 
se t { 3 , 4 , 5 , . . . } • Then the u l t r a p r o d u c t 

CO 
FAN =: f~l PNS^p belongs to the v a r i e t y TSFSS. 

n=3 
P r o o f . I t i s easy t o show t h a t the FAN i s an oml 

of c a r d i n a l i t y continuum of l e n g t h 3. We denote by A the un-
de r ly ing s e t of FAN. Then A = O A+, where T i s a s e t teT x 

of c a r d i n a l i t y continuum; f o r any t e T , At i s the under-
l y i n g s e t of some suba lgebra FAN^ of FAN, isomorphic t o oml 
schemat ica l ly presented on the Greechie diagram below. More-
over , i f t / s , then At n Ag = { • , z , z ' , l ) . 

We s h a l l desc r ibe the f u l l s e t of two-valued s t a t e s on FAN 

z V t a n , t 

• l . t 

m 3 , t 

1 
1 
0 

1 

o 
o 

o 
o 

0 
1 
0 

1 n < k 

0 n> k 

" S . k . t 
0 

0 n»k,k+1 

1 i*k ,k+1 

0 n<k+1 

1 n>k+1 
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z b n , t a n , t 

m 6,k , t 0 
1 n=k 

0 n^k 
0 

m 7,k , t 0 
0 n=k 

1 nA 

' 1 

0 

n<k-1 

n > k 

" a . k . t 0 
0 n=k 

1 n^k 

0 

1 

n 4k 

n > k 

for any integer k 

Using the above s t a t e s i t i s easy to construct the f a l l set 
of two-valued s t a te s on FAN. 

R e m a r k . Since the variety of omls i s ar i thmetica l , 
then we have proved that the oml PAN generates a variety which 
has no f i n i t e base. 

5. Open problems and conjectures 
The c l a s s SFSS of omls with a strongly f u l l set of s t a t e s 

i s obviously closed under subalgebras. The SFSS i s a l so closed 
under products. I f | L t J t e T ! i s a family of omls from SFSS 
and for any t t T, |mt 8 J B € g i s a strongly f u l l set of s t a -
tes on L t , then we obtain a family S = {nij. 8 | t e T , e e S t J 
of s t a t e s on the product L =: n L* , where m+ (a) =: 

t€T ' 
= : m+ ( a ( t ) ) for a e L. The set S i s strongly f u l l but i t 

v f O 

need not be the set of a l l s t a t e s on L. 
I f h : L —<— L.j i s an epimorphism of orthomodular l a t t i -

ces and the set {<na}a e^ i s the set of a l l s t a t e s on L, then 
put 

A0 =: | a c A | A ^ [ h ( x ) = 0 = > m a ( x ) = o ] } . 

I t i s easy to show that i f g 'is a s t a te on L̂  , then m(x) =: 
= : g(h(x)) i s a s ta te on L, i . e . m = m for some a e A . cl 

- 732 -



Orthomodular l a t t i o e s 9 

Moreover a e kQ . Therefore e v e r ; s t a t e on L1 i s of the form 
g f l (h (x ) ) =: ma(x) f o r a t kQ . 

These two remarks give us some i n f o r m a t i o n about u l t r a -
products and homomorphic images of omls from the c l a s s SPSS. 
But we cannot prove or d isprove the fo l lowing two c o n j e c t u -
r e s : 

(1) The c l a s s SPSS i s closed under u l t r a p r o d u c t s ( i . e . 
forms a q u a s i v a r i e t y ) 

(2) The c l a s s SFSS i s closed under homomorphic images 
( i . e . forms a v a r i e t y ) . 
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