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VARIETIES OF ORTHOMODULAR LATTICES
WITH A STRONGLY FULL SET OF STATES

1. Introduction

In this paper we study some equational classes of ortho-
modular lattices. The lattice of varieties of orthomodular
lattices has been gstudied by Bruns and Kalmbach ([1], [?]).
Varieties studied here are contained between the variety TSFSS
of orthomodular lattices with a full set of two-valued states
and the variety SFSS generated by orthomodular lattices with
a strongly full set of states. We show that any of these va-
rieties is not finitely based. We show also, using Birkhoff’s
Theorem, that the class of orthomodular lettices with s full
set of two-valued states forms a variety.

2. Basic definitions and properties

As in [1], an orthomodular lattice (abbreviated oml) is
considered as an universal algebra (L;A,v, ',0,1 ) with the
binary lattice operations A and v, the unary orthocomple~
mentation operation ' , and the two nullary operations (con-
stants) @ and 1, the smallest and lsrgest clement of the
lattice. If some subalgebra of L is a Boolean elg:bra, then
we call it a Boolean subalgebra. %e write & lb, if a < b'
and aCb if a and b commute (i.e. the subalgebra genera-
ied by set {a,b} is a Boolean subalgebra).

Recall that.a state on an oml L is a map & : u»=<0,1>CR
gach that o 9) =1 and if e,b e i, ald, then wla vb) =
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2 R.Godowski

= m(a) + m(b)e 4 two-valued (or dispersion free) sta-

te is one assuming only the values 0O and 1. If m is

a state, then agb implies m(a)gm(b)e A set {mt|t eT}
of states on L 1is said to be full (strongly full or strongly
ordered) 1f for any a,bel

[/\ mt(a)cmt(b)] => a<b
teT

([/\ (n,(a) = 1=>m(b) = 1)] =>acgb, respectively).
teT

Any strongly full' set of states is full. The converse is fal-
se {see the oml PNS, in this paper)., On the other hand if a
set of two-valued states is full, then it is strongly full.
The class of omls with a full set of states we denote

by FSS. The class of omls with a strongly full set of (two-
-valued) states we denote by SFSS (TSFSS respectively). Thus,
by definition TSPSSC SFSSQFSS. Oml I‘28 presented below on
the Greechie diagram

m{a) = 1 =mn(b') = 1
but agbd .

b

is an element of SFSS - TSFSS. All omls F‘NSn are elements of
FSS-SPSS.

Definition 1, A Boolean block - embedding
of an oml L is a map.  f : L —— B, where B 1is a Boolean
elgebra and for any a,b € L, the following conditions hold:

(Bbe 1) f(a') = [£(a)]’

(Bbe 2) alb<> f(a)l f(b)

(Bbe 3) alb =>f(avb) = f(a)v £(b).
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Orthomodular lattices 3

Lemma 1. Iet L be an oml; B be a Boolean al~
gebra and let £ be amap f : L —B. Then f is a Boolean
block - embedding iff for any Boolean subalgebra A g L, the
restriction £ to A 1is a monomorphism of Boolean algebras.

Definition 2. A partial field of sets (see
[4] [5]) is a non empty family M of subsets of a set X,
such that for any A,Be M the following conditions hold:

(PFS 1) Ae M =>XNAeM

(PPS 2) [A,BeM, ANB = §] =>AUBeM.

Lemma 2. If a partial field M of subsets of
a set X forms a lattice under inclusion, then it is an ortho-
modular lattice where A' = X\A, 0=¢, 1 =X, and for any
A,Be M, ALlB iff ANB = ¢.

Lemma 3. et L be an oml. Then the following
conditions are equivalent:

(1) 1L has a full set of two-velued states,
(2) There exists a Boolean block ~ embedding of L.
(3) L is isomorphic to a partial field of sets.

The proofs of the above lemmas are straightforward and

we can omit thea.

3. The variety TSPSS

In this section we prove the following

Theorem 1. The class TSFSS of orthomodular lat-
tices with a full set of two-valued states forms a variety.

It is easy to show that TSFSS ies closed under taking of
subalgebras and products. As a consequence of two udermentio-
ned Lemmas we obtaln that TSPFSS is closed under homomorphic
images.

Lemma 4. et a partial field of sets M forms an
oml; D,A,Be b, such that ANBgCD, If h : Il =1L 1is a ho-
momorohism of M to some oml L, such that h(D) =0, then
h(A) Lh(B).

Pnoof. It is a well known fact that & is the sam
of mutually orthogonal elements & = (AAB)v (4AAB') v hy, whe-

re A1=AA(A'vB)A(A'vB'). Thus we have:
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h(a) = h(AAB)vh(AAB')vh(A1). Since AABSD, and
h{(D) = 0 then h(AAB) =0. We show that h(A1) =0, In
fact:

A,AD'SAND'SAND'SB . Thus 444 D'S A,AB' = 4.
Now n(D') =1 and h(A;) = h(A,)An(D') = h(a,AD") = h(g)=
=0. Therefore we have h{a) = h(AAB')., Similarly h(B) =
= h(A'A B) and so h(A)Lh(B).

Lemma 5e 'Let' a partial field M of subsets of
a set X be an oml, et h be an ppimorphism from M onto
an oml L and h be a canonical epimorphism from the Boolean
algebra 2x of all subsets of a set X onto the quotient Boole-

an algebra 2x/J where J = {AcX| V acA_ n(a ) =0
) )
A eM

is an ideal of the Boolean algebra zxogenerat'ed by h'1({0}).
Then there exists a Boolean block - embedding ¢ : L —— 2x/J.

Proof. The situation described above is ilustrated
by the diagram

" id - oX
. +| canonical
epimorphism |h b\ ¢pimorphism
1 ___.T_——’ZX/J

First, we prove, that if h(A) = h(B), then h(A) = h(B).
We denote AAB by P and AvB by Q. Then h(P) = h(A4) =
= h(B) = h(¢), and PSQ. Therefore P'N QeM and h(P'N Q)=
=0 . Hence h(P'NQ) =0 and h(F) = h(Q). Since PcASQ,
then h{a) = h(P). Similary h(B) = h(P), Therefore h(A) =
= h(B).

Now, we define

¢ (h(a)) =: h(a).

We shell show that (¢ is a Boolean block -~ embedding, i.s.
thet the conditions (Bbe 1) - (Bbe 3) hold.
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Orthomodular lattices 5

(Bbe 1). ¢([n(4)] ) = ¢(h(a')) = R(a") = (n(a)] -
= [p(ata))]" .

(Bbe 2). " =>" If h(a)Lh(B), then h(AAB') = h(a)
and h(A'A B) = h(B). Thus ¢(h(4)) = h(AAB') and p(h(B)) =
= h(A'A B). Since AAB'L A'"AB, then h(AAB')Lh(A'A B).
Therefore ¢ (h(A))Le(h(B)).

(Bve 2). "<e=" If h(A)L h(B), then h(anB) = ¢/J, i.e.
ANBeJ. Hence there exists DeM such that h(D) = 0 and
ANBSD. Thus, by Lemma 4, h(A)Ll h(B).

(Bbe 3). If h(A)Lh(B) then h(A) = h(AAB') and
h(B) = h(a'A B). Hence h(A)v h(B) = h(AAB')vh(a' A B)
= h((AAB')v(A'AB)) = h{((AAB')U(A'A B)). Thus:
¢(h(A)v h(B)) = B{(aAB')U(a'A B)) = h(aAB')vih(a' A B)
= p(h(AAaB'))vip(h(a'A B)) = ¢(h(a))vy(n(B)).

4, The omls FIGISn

All varieties of omls studied in Bruns, Kalmbach [1] and
[2] are finitely based. The main result of this section is
the following

Theorem 2. Let V be a variety of omls such
that TSFSSQVE SFSS| where SFSS is a variety generated by
omls with a strongly full set of states, Then V is not fi-
nitely based.

To prove this theorem (using the method of Model Theory
- gee ([3], Thm 4.1.12)) we define for any natural number
n 3 3, the oml FNSn. We s8ill show that for any n » 3, FNSn
is not in the variety SFSS and that the ultraproduct of the
FNSn’s corresponding to a nonprincipal ultrafilter on
{3,4,5,...} is contained in the variety TSFSS.

Definition 3. TheFNSnieanomloflengthB
with 5n+1 atoms presented below on the Greechie diagram:
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a,

FNS

Lemma 6. For any n » 3 the oml FNS, is not con-
tained in the variety SFSS.

Proof. For simplicity we give the proof for the ca-
ge n = 3, For other n’s the proof is similar,
Let z, =: xiv(xi/\x:'j), uy =: xjv(xj'_/\x;',), i=1,2,3;
i+1 {mod 3). Let 2z = z(x1,x2,x3) =1 2,4 22"23‘
u = u(x1 ,x2,x3) =3 Uy Ay Aug. We prove that the equality

.
"

(SF) : z(x1,x2,x3) = u(x1,x2,x3)

is true in all omls with a strongly full set of states. First,
observe that if m is a state, then m(zi) = m(xi) +
+ m(xi/\xj) and m(ui) = m(xj) + m(xj'_ij). Now let m(2z) = 1.

3
Then m(z1) = m(z2) = m(zB) = 1. Hence 3 = E m(zi)
3 3
= i: m(x;) + m(xiAxi) = 2= mf{u). Therefore u(u,)
=1 i=1
= m(u2) = m(u3) = 1. Thus z<w, i=1,2,3, and hence z <u.
Similarly u<z. Now observe that in F’!IS3 2(81,62,83) 0
and u(a1,32,33) =0. Therefore FNS3¢ SFSS .
Remark. Just as above we can show that if p is
a permutation on the set {1,2,...,n}, q =: p-1, then the

squality

n n
i/‘\1 (!iV(xiAxé(i)” = 1/-\—1 (xiv(xi/\xq(i)))

is true in all omls with a strongly full set of states.

- 730 -



Orthomodular lattices

Lemma T et I"NSn, n= 3,4,5... are olms given by
Definition 3 and let F be a nonprincipal ultrafilter on the
set {3,4,5,...}. Then the ultraproduct

o
PAN =: [ ] FNS,,p belongs to the variety TSFSS.

n=3
Proof., It is easy to ahow that the FAN is an oml

of cardinality continuum of length 3. We denote by A the un-
derlying set of FAN. Then A = \J A,, where T is a set

teT
of cardinality continuum; for any te¢T, Ag is the under-

lying set of some subalgebra FANt of FAN, isomorphic to oml
schematically presented on the Greechie diagram below. More-
over, if t # 8, then A NAg ={0,z,z‘ .1}.

nt

/ 1
I | \
| ]
| !

We shall describe the full set of two-valued states on PANt

z bt 84,1t
m1't 1 0 0
m, o 1 0 1

14
InB’t' 0 0 0
1 n<k

m 1 0
4,k,t O0n>k

0 0 n=k,k+1 0 ngk+1
5,0k, 1 o, k1 | | 1 noket
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8 R.Godowskl

2 bn,t an,t
1 n=k
6, k,t| © [0 ndk 0
0 n=k 1 n<k-1
l.n7’k’t ° [1 n#k [O n>k
0 n=k 0 ngk
m?”k’t ¢ {1 n#k {1 n>k

for any integer k

Using the above states it is easy to construct the full set
of two-valued states on FAN.

Remark. Since the variety of omls is arithmetical,
then we have proved that the oml FAN generates a variety which
has no finite basse,

5. Open problems and conjectures

The class SFSS of omls with a strongly full set of states
is obviously closed under subalgebras. The SFSS is also closed
under products. If {L.}, n ‘is a family of omls from SFSS
and for any teT, {mt,s}eest is a strongly full set of sta-

tes on L., then we obtain a family S = {ﬁt,s lteT, ae;St}

of states on the product L =: [ | L., where @, _(a) =:
_ teT t t,s
=: my s(.a(t:)) for aelL., The set S is strongly full but it
14

need not be the set of all states on L.

It h:L —--L1 is an epimorphism of orthomodular latti-
ces and the set {ma}aeA is the set of all states on L, then
put

A, =: {aeA| x/e\L [h(x) = 0=>ma(x) = 0]}.

It is easy to show that if g is a state on L1, then m(x) =:

=: g(h(x)) is a state on L, i.e. m = m, for some acA.
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Orthomodular lattices 9

Moreover ae.Ao. Therefore svery state on L1 is of the form
gglh(x)) =: m(x) for aeca,.

These two remarks give us some information about ultra-
products and homomorphic images of omls from the class SFSS.
But we cannot prove or disprove the following two conjectu-
res:

(1) The class SPSS is closed under ultraproducts (i.e.
forms a quasivariety)

{2) The class SFSS is closed under homomorphic images
(i,e. forms a variety).
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