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ON CERTAIN NONLOCAL PROBLEMS FOR A PARABOLIC SYSTEM
OF PARTIAL DIFFERENTIAL EQUATIONS

1. Introduction

In the present paper we give the solution of some nonlo-
cal problems for a parabolic system of partial differential
equations. Nonlocal problems of the types (N1), (N2), (N3)
admit broad physical interpretations, e.g. in diffusion pro-
cesses, These problems are closely related to some problems
already investigated in literature, es.g. in [1], [4]. The me-
thods used there consist in reducing the corresponding nonlo-
cal problem to a boundary problem in the half-plane for a sys-
tem of equations,

The cardinal inconvenience of the method proposed by Bidel-
man [4] consists in the fact that, even in the case of one
equation, this reduction of the starting-problem leads to a
limit problem for a system of equations,

The method presented in this paper makes possible the re-
duction of some nonlocal problems to a system of Volterra or
Fredholm integral equations. We shall make use of the results
established by the author in papers [2] and [3], in particular
of the construction and properties of the matrix function
M(x,t). We recall that if D is a matrix such that re A>0
for any eigenvalue A of the matrix D, then by M(x,t) for
xe R, t >0, we shall understand the sum
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2 M.Majchrowski

oD
(1.1) M(x,t) =1 + 29 _ exp [-kzyrztn]coe ksx.
k=1 '

The vector-function u(x,t) is said to satisfy the system
of equations (=) in ( if

- 2= -
(») %%—: D g—%-+ f(x,t),
x
vhere
u1(x,t)
D= [d55] 5,521,000 ,n, ilx,t) = | TI0
un(x,t)
f1(x,t)
f’(x,t) = EEEEXX) in the domin Q = (0,1)X(O'T)' T<°°o
fn(x,t)

The matrix D = [dij] is assumed to be such that the system
of equations (») is parabolic in the sense of Petrovski, i.s.
that

(1.2) re A >0 for any eigenvalue A of the matrix D.

Introduce the following notations:

t
(1.3) E}(x,t) = -Df Mx(x,t-s)Z1(s)de
: 0
t
{(1.4) E;(x,t) =D f Mx(x-1,t-a)ié(s)ds
0

(1.5) E}(x,t) = % DM(x-s,t)-M(x+s,tﬂ E}(s)da

O Sy -2
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t 1
{1.6) 54(x,t) = %Il [I(x-e,t-r))-l(xﬂ,t-l})] E(s,7)_ ds d7
00

where g, E1, Ez, §'3 are some fixed functions.

2. Solution of the problems (N1i) and (82)

Consider the problem (N1):

Find a vector-function u{x,t) satisfying the system of
equations (#) in the domain ¢, continuous in Q@ and such
that

(2.1) ulo,t) = £,(¢)  te (0,T)
(2.2) alx,0) = £5(x)  x e (0,1).

It is required, moreover, that at a point # € (0,1) the
equalities
al1,t) - Gle,t) = h(t)
(2.3) _ t e (0,7)
f3(1) - f3(u) = h(0)
should hold, where ?(x,t), f:(t), f_3(x), h(t) are given
functions.,
By means of the substitution

1 t
(2.4) Vix,t) = Q(x,t) - x [ [?(1,8) -F(O,s)]ds - f ?(O,B)ds
0 0

we reduce the problem to the problem {N1%):

v

- v -
(2.5) —7%'= D —;§ + alx,t)
with the conditions
(2.6} vio,t) = g,(t) t e*(0,1)
(2.7) v(x,0) = g5(x) x e (0,10,
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where
' glx,t) = £(x,t) - x[f{1,t) - £(0,t)] - £(0,t)
2(0,t) = gl1,t) = 0
(2.8) { t
g,(t) = T.(¢t) -j flo,s)ds t e (0,T)
o
E-B(x) = ?3(:() x e (0,1).

The condition (2.3) takes the form

(2.9) V(1,t) - V(x,t) = H(t) t e (0,7),
where
- t
H(t) = n(t) - (1-x)j [Fh,s)-?(o.s)]ds.
0

By Theorem 8 of paper [3] the solution of this problem can
be set in the form

(2.10) Vix,t)

t
D f Mx(x—1,t-s) E}(s)ds + iix,t),
0

where
I
(2.11) Fx,t) = -D f K (x,t-8) &,(s)ds +
0
1
e 3 J [alx-8,t) - U(xss,t)]T,(0)d8 +
0
t 1
+ 3 f f [ux-s,8-p)-tilx+s,t-n)]els, )ds ag,
00
(2.12) g,(t) = v(1,t)  t e (0,T)
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provided that the given functions satisfy the respective
assumptions,

Hence we may state the following

Theoren 1. If
1° F,(t) is plecewise of class C' for t ¢ (0,T),

2° h(t) is piecewise of class C' for t e (0,T),
3° f}(x) is the sum of its Pourier series, x ¢ (0,1},

4° ¥(x,t) is of class ¢ in (hence g(x,t) satisfies the
assumptions of theorem 8 of paper [2]), then there exists a
solution of the problem (N1).

Proof. Combining formulas (2.9) and (2.10) we in-
fer that the function Eé(tl must satisfy the following sys-
tem of Volterra integral equations of second kind

t
(2.13) 8y(t) = D [ M (x-1,t-8) Byls)ds + H(t) + Fla,t).
0 ! N

It is8 easy to show that if A 1is the operator mapping the
space L2<O,T > into itself, defined by the formula

t
(a4 ¥)(¢) i D f lxc!-1,t—s)VTe)ds,
(]

then

Ky k-1
l(,Ak v) t||Ens—°—(V£:_$—n—|v||L2 K= 1,2,000

for some constant C > O,
It follows that

ka

| ¥ v||L2 < d?ﬁ’"v"Lz k= 1,2,...

that is
k

"Ak" s (k-1)!

k = 1,2,.@.
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Hence we conclude that there exists exactly one solution of
the ecuetion (2.13) in the space 22<0,T> and is given in
the form

(2.14)  gy(t) = T(v) + Fla,t) + D AM(H(+)+ Flx,*)) (1),
k=1

This solution is continuous and piecewise of class C1,.which
follows from assumptione 1°-2°, By assumptions 3°-4° and theo-
rem 8 of paper [3] it follows that formula (2,10) defines a
solution of the problem (X1*). Hence, by virtue of formula
{(2.4) we get the solution of the proposed problem (N1), Q.E.D.

Consider now the problem (N2):

Find a vector-function u(x,t) satisfying the system of
equations (#) in the rectangle (, continuous in its closu-
re C, such that

(2.15) w (0,t) = £.(t)  te (0,7)
(2.16) a(x,0) = f5(x) x € (0,1)
(2.17) W (1,8) - alx,tlult) =B(E)  (0,1),

where ;]t) is a given vector-function and f;(t) is a given
scalar function,

Lpplying, as in the case of problem (N1), the substitution
(2.4) we reduce our problem to the problem (N2%):

—— 2’
(2.18) 3‘t’=nf—§+ a(x,t)
X

with the conditions

(2.19) v(0,t) = g4(%) t e (0,T)
(2.20) ¥(x,0) = &4(x) x e (0,1),
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where

alx,t) = f(x,t) - x[f(1,t] - £(0,t)] - £(0,t)

8(0,t) = g(1,8) = 0

t ol ——

1"1(1;) -j [£(1,s) - f(0,8)]ds, t e (0,T)
0

£5(x) x € (0,1).

84(t)

E}(x)
The condition (2,17) takes the form
(2.21) v (1,t) -{u(t)V(x,t) = H(t),
where

t
(2.22) (%) = K(t) - (1 -F(tm[ £1,8) - £(0,s)]as +

—-—

£(0,s)ds.

O ot

-F(t

By Theorem 9 of paper [3] the solution of the problem
(N2 ) can be set in the form

t
(2.23) V(x,t) = D] M(x-1,t-8)8,(s)ds + F(x,t),
where
%
(2.24)  F(x,t) = -D] M(x,t-s)Z, (s)ds +
)

+ %— [M(x-s t) + W(x+s, tﬂ g3(s)ds +

+ %— M(x-s,t—7)+m(x+s,t-7)] Els,y)ds dp,

|
I
t)

" C‘s—‘

gt a (1,t), t ¢ (0,T)
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provided that the given functions satisfy the respective as-
sumptions,

let us now state the

Theorem 2. It

1° f}(t) is piecewise of class c! for t e {o,1)
° h(t) is piecewise of class ¢l for t ¢ (o,T)

o]

2
37 u(t) is continuous and bounded for t € (0,T)

4* ?}(x) is the sum of its Pourier series, x e (0,1)
5

° ;ﬁx,t) is of class C2 in Q (hence @g(x,t) satisfies
the assumptions of Theorem 9 of paper [2]),
then there exists a solution of the probleam (K2).
Proof. Combining formulas (2.,21) and (2.23) we find
that the function Eé(t) must satisfy the equation

ot
(2.25) By(t) = p(t) D[ Me-1,t-8)g,(alds + £(x,t) + H(t).
0

By an argument similar to that of Theorem 1 we easily show
that there exists a unique solution 3 (t), pilecewise of
class C1. of the equation (2.25). This solution defines, by
means of formulas (2.23) and (2.24), a solution of the prob-
lem (N2).

3. Solution of the problem (N3)

Consider the problem (N3):

Find a vector-function ulx,t) satisfying the system of
equations (%) and such that

(3.1) ulo,t) = lim alx,t) = £,(¢) for t e (0,T)
x-0t

(3.2) u(1,t) = 1lim u(x,t) = ?2(':) for t ¢ (0,T).
) x-=1=

It is required, moreover, that for a fixed T e (0,T) the
equality
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(3.3) a(x,0) - p(x) alx,T)) = hix) for x e (0,1)

should hold, where E f.1, f.z, h are given vector-functions
and p(x) is a scalar function such that

(3.4) o<y(x)s1.

Theorem 3. If the eigenvaluss of the matrix D
sre real, then the problem (N3) has at most onme solution.
Proof. 1If ﬁ](x,t) and Fz(x,t) were distinct
solutions of the problem (N3), then u(x,t) = El(x,t) -
- E’z(x,t) would be a solution of the following homogeneous
problem:

'y u
T-= D ] (X t) € Q
i ax ’

u(0,t) = u(1,t) =0

u(x,0) - plx) F(x,To) = 0,

\

Let K be a real nonsingular matrix such that the matrix
B=KDK ' is of the canonical Jordan form. Setting K U = v
we find that V(x,t) is a solution of the following problem:

f- 2
vV_onpdvVv
t =B 3

ix

v(0,t) = ¥(1,t) =0

L v(x,0) - u(x) 'v.(x,'l‘o) = 0,

Considering one blook of the matrix B we have
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(Bv 1 T ] "azv 1
_Lat A1 0 —
dx
. A1 .
. 1 .
A 2
avn ] Vo
]| IR

If vk(x,o) #F 0, then it would follow from condition (3.4)
that vk(x,To) > vk(x,o) for x e (0,1). But this is in con-
tradiction with the maximum principle applied to the last equa-
tion in this block. Therefore vk(x,t) = (0, Substituting
vk(x,t) = 0 into the last but one equation in this block,
we find, applying once more the meximum principle for the
heat equation, that vk_1(x,t) = 0, Repeating this argument
as many times as necessary we infer that v(x,t) = 0, whence
alx,t) = k-1 v(x,t) = 0, which completes the proof of the
theorem.

We now turn to the problem of existence of a solution of
problem (XN3),

Theoren 4, Agsume that:

1° F(x,t) is of class c? in q, flo,t) = £f(1,t) =0
2 for t ¢ (0,T),

2° f}(t), fé(t) are piecewise of class C
3° h{x) 4is the sum of its Fourier trigonometric seriss,
4° p(x) is continuous and of bounded variation.

Then the problem (N3} has a solution.

Proof., FProm Theorem 8 of paper [3] it follows that
if there exists a solution of the problem (N3} such that
a(x,0) = f}(x) is the sum of its PFourier trigonometric series

and if the given functions f: f1, fé satisfy assumptions
1°-2°, ther this solution may be represented in the form

(3.5) alx,t) = W (x,t) + Lix,t) + 5'3(x,t) + Uylx,t),
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where ui(x t), i= 1 2, 3 4, ure defired by forzulas (1.3)-
-(1.6) for g = &, 31 = fi, i=1,2,3. ~rou the nonlocal
condition (3.3) we infer ihat f (x) ertisfies the following
system of IFredholm integrel e uations of second ind:

(3.6) f5(x)=3 plx) } [(x-s,2 ) kilx+5,2 )] T, (5)ds+Fx,1 ),
0

where

(3.1 Flxt) = p(x) [ox, )+ (x,8)+0,(x,t)] + Rix).

Formula (1.1) implies that

(- -
M(x-s,To)-M(x+s,To) = 4 Z exp [-kzﬂzToD:lsin kfixesin ks

k=1
thus, the kernel of the system of equations (3.6) is conti-
nuous and bounded. For the system of equations (3.6) to have
a solution in the space of veotor-functions continuous for
x € <0,1> it is necessary and sufficient that the system of
equations

1
(3.8) Plx) = %,.L(x) I [M(x-s,To) - LI(x+s,To)]'E(s)ds
0

should have only a null solution.
In fact, assume that plx) is an identically nonzero so-
lution of the system of equations {3.8). Then the formula

Wx,t) = %j [i(x-8,t) - M(x+s,t)]5'(s)ds

defines an 1den’clcally nonzero solution of the problem (N3),

where T = o, f1 =0, f2 = 0, h = 0, This follows from equali-
ty (3.8) and from the properties of the matrix function M(x,t).
However, this is in contradiction with the above established
Theorem 3, This means that the unique solution of the
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12 M.Majchrowski

system of equations (3.8) is the zero solution., This proves,
too, that there exists a unique continuous solution f-(x)
of the system (3.6) for arbitrary given functions f, £1
It is easy to see that, under the adopted assumptions, this
solution determines a solution of the problem (N3). Taking
into account (3.6), the uniform convergence of the series

—~—

f;,h.

1
f DH(x—s,To) - M(x+e,Toﬂ f;(s)ds =
0

=

2 :E: exp[-_k2 2p D] sin kmx j f.(8) sin krs ds,
k=1

as well as the properties of the integrals u (x,t), u2(x t),
u (x,t) established by the author in paper [3], and the as-

sumption 4%, we infer that £, (x) is for xe <0,1> the sum
of its Fourier trigonometric series. Hence formula (3.5) re-

presents the solution of the problem (N3),
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