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ON DIFFERENTIABILITY OF THE SOLUTION OF SOME 
FUNCTIONAL EQUATION OF THE DYNAMIC PROGRAMMING 

1. Let as cons ider the f u n c t i o n a l equa t ion of the dynamj.0 
programming (see [1]) 

(1) f (x) = max fg(y) + h (x -y ) + f ( ( a - b ) y + bx)l , f ( 0 ) = 0 
0<y<x L 

where g and h are the given f u n c t i o n s , a and b are 
the g iven numbers, f i s the unknown f u n c t i o n . 

We assume t h a t 
(a) g and h are f u n c t i o n s def ined and continuous on the 

i n t e r v a l [0,+ oo) 
(b) g{0) = h (0) = 0 
(c) a^b € (0 ,1 ) 

(d)| X Z m( cQx) < + oo, where m(x) = max max 

c = max(a ,b) . 

With the equa t ion (1) the re i s connected the sequence 
of approximat ions 

(2) 
f^ (x) = max fg(y) + h(x-y) ] 

1 Osysx L 

f n ( x ) = max fg(y) + h(x-y) + f_ J ( a - b ) y + bx)] n=2 ,3 , . . . 
n OSySxL n _ 1 
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2 5 . X i e i t , ; k a 

Le t F q : [ 0 , + oo) — 2 ( P » * 0 0 ) ( n = 0 , 1 , 2 , . . . ) be p o i n t - t o -
- s e t t r a n s f o r m a t i o n s g i v e n by the formulas 

P 0 ( x ) = { y e [ o , x ] I f ( x ) = g ( y ) + h ( x - y ) + f [ ( a - b ) y + bx]| 

( 3 ) | f . , ( X ) = j y t [ o , x ] | f ^ x ) = g ( y ) + h ( x - y ) ) 

P n ( x ) - j j e [0 ,x] [ f Q ( x ) » g i y J + h t x - y J + f ^ [ ( a - b ) y + b x ] j 

n = 2 , 3 . . . 

I n t h i s paper we s h a l l d e a l w i t h problems connected v i t h d i f -
f e r e n t i a b i l i t y o f the s o l u t i o n of the e q u a t i n g ( 1 ) i n the c a -
se when the s e t s g i v e n by formulas ( 3 ) are onet-element s e t s 
f o r every x > 0 . 

2 . Let X = Y = H 1 . 
Te s h a l l c i t e some d e f i n i t i o n s and theorems n e c e s s a r y i n 

t h i s paper . 
D e f i n i t i o n 1 . A p o i n t - t o - s e t t r a n s f o r m a t i o n 

F : I — 2 * i s c a l l e d upper s e m i - c o n t i n u o u s a t a point x Q i I 
i f the f a c t t h a t |x n | c X, xQ — - x Q , yQ e F ( x f l ) i m p l i e s 
tbe e x i s t e n c e o f a subsequence { y Q j c Y convergent t o some 

D e f i n i t i o n 2 . A p o i n t - t o - s e t t r a n s f o r m a t i o n 
Y F : X — 2 i s c a l l e d lower semi -cont inuous a t a point x „ e X 

r i 0 
i f f o r e v e r y sequence <xn| c X^ x n —— xQ and f o r every 
y 0 t p ( x Q ) t h e r e e x i s t s a sequence |yQJ c Y such t h a t 
y n € F ( x n ) and y Q — y Q . 

D e f i n i t i o n 3 . A p o i n t - t o - s e t t r a n s f o r m a t i o n • 
F : X ——2 lower s e m i - c o n t i n u o u s and upper semi -cont inuous 
a t a point x Q t X w i l l be c a l l e d cont inuous a t the point x Q . 

T h e "o r e m 1 . I f a t r a n s f o r m a t i o n F : X — 2 Y i s 
cont inuous and a f u n c t i o n pt Gj, —<- R^ i s c o n t i n u o u s , t h e n 
t £ e t r a n s f o r m a t i o n F j X — given by the formula F ( x ) -
= {y t F ( x ) | p ( x , y ) * max p ( x , z ) | i s upper semi -cont inuous 

1 1 M F ( I ] ' 

(where Gp = | ( x , y ) e X*Y| X E Z, y C F ( x ) J i s the graph o f 
a t r a n s f o r m a t i o n F ) . 
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Some f u n c t i o n a l e q u a t i o n 3 

T h e o r e m 2. I f f u n c t i o n s g and h f u l f i l the 
assumptions (a) - (d) and have d e r i v a t i v e s a t a point z e r o , 
then the f u n c t i o n f def ined by (1) has a d e r i v a t i v e a t - t h e 
point ze ro and 

f (O) . « a , k ^ g l ] . 

T h e o r e m 3. Let the f u n c t i o n s g and h f u l f i l 
the assumptions (a) - (d) and l e t t h e ; be con t inuous ly d i f f e -
r e n t i able on [o ,+ oo). Then f o r x > 0 t h e r e e x i s t d e r i v a t i -
ves i n the d i r e c t i o n s 1 and -1 of the terms of the sequenoe 
(2) and 

i f ' ( x ; 1 ) = U g ' ( y ) + h ' ( w ) } 

f : ( x ; - D = - I n ( i g ' ( y ) + ^ J L h ' ( x - y ) } 

f ; ( x ; l ) = ^ » a x ^ {¿g ' (y ) + JE=I h ' (x-y )+[(a-b)£+ b j f ^ [(a-b)y+bx;" 

f n ( x 5 " l ) =
y ^ i J x ) { x g ' ( y ) + ^ h'(x-y)+[(a-b)^+ b j f ^ [(a-b)y+bx;-l]J, 

where the t r a n s f o r m a t i o n s P n : [ 0 , + «») -— 2 ' + °° ' ( n = 1 , 2 , . . . ) 
t he re are given by formulas ( 3 ) . 

D e f i n i t i o n 1 can be found in [2] and [ 3 ] , D e f i n i t i o n 2 
4 and D e f i n i t i o n 3 i n [ 3 ] . Theorems 1, 2 , 3 are proved 
3 , [ 5 ] , [ 6 ] , r e s p e c t i v e l y . 

(<0 

i n 
in 

3. Prom Theorem 3 we ob ta in 
C o r o l l a r y 1. Let the f u n c t i o n s g and h 

f u l f i l the assumptions (a) - ( d ) , l e t them be con t inuous ly 
d i f f e r e n t i a b l e on [0, + «») and l e t the s e t s images 
(n = 0 , 1 , 2 , . . . ) given by formulas (3) be one-element s e t s 
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4 S . K i e l t y k a 

f o r x > 0 . Then f o r x > 0 the re e x i s t d e r i v a t i v e s o f terms 
o f the sequence (2) and 

f ' ^ x ) = max[g' (y>nCx) J , h ' U - y ^ x ) ) ] 

f n ( x ) = maxjg' ( y n ( x ) ) + a f ^ [ U - b ) y n ( x ) + hx] , 

h ' ( i - y n ( x ) ) + b f n _ i [ ( a - b ) y n ( * ) + bx]J, 

where j y n ( * ) } = ° = 1 . 2 , . . . 
P r o o f . According t o Theorem 3 (see note 2 i n [ 6 ] ) 

the d e r i v a t i v e s o f terms o f the sequence (2) f o r x > 0 w i l l 
be g iven by f o r m u l a s 

, yi(3d) x - y 1 ( x ) , 
f!| (x) = g' ( y 1 ( x j ) + 1 h ( x - y i ( x ) ) 

y (x) x-y (x) 
^ ( x ) = &'(ya(x)) + 1 h ' ( x - y n ( x ) ) + 

+ [ (a-b) + b ] f n - i [ ( a - b ) y n ( x ) + b x ) ] n = 2 , 3 , . . . 

Tak ing i n t o account the d i f f e r e n t i a b i l i t y o f g and h we 
ob ta in f 1 

y ^ x ) = 0 .and then g ' i y ^ x ) ) - h ' f x - y ^ x ) ) < 0 , 

0 < y 1 ( x ) < x and then g ' (y . , (x) ) - h' (x-y., ( x ) ) = 0 , 

y . , (x) = x and then g ' ( y . , ( x ) ) - h ' f x - y ^ x ) ) > 0 , 

i . e . f ! j (x ) = max [ g ' ( y ^ x ) ) , h' ( x - y 1 ( x ) ) ] . 

Analogously i n the case f ^ (n = 2 , 3 » . . . ) we have 
y n ( x ) = 0 and then 

g ' ( y n ( x ) ) - h ' ( x - y n ( x ) ) + ( a - b ) f ^ _ 1 [ ( a - b ) y n ( x ) + b x ] < 0 , 

0 < y n ( x ) < x and then 

( y n ( x ) ) - h' ( x - y n ( x ) ) + ( a - b ) f ^ _ 1 [ ( a - b ) y n ( x ) + b x ] = 0 , 
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Some funct ional equation 5 

y n ( x ) = x and then 

g ' ( y n ( x ) ) - h ' ( x - y n ( x ) ) + ( a - b ) f ^ _ 1 [ (a -b)y n (x)+bx] > 0 , 

i . e . for n = 2 , 3 , . . . 

f ^ ( x ) = max jg ' (y n (x ) ) + [ ( a - b ) y n ( x ) + b x ] , • 

h' ( x - y n ( x ) ) + bf^_ 1 [ (a -b)y n (x )+bx] j . 

In the case when the transformations given by formulas (3) 
t 

are one-elements for x > 0 we sha l l use the denotation 
F n (x ) = | y Q U ) } (n = 0 , 1 , 2 , . . . ) where yQ : [o, + [ o , +««) . 
In t h i s case the upper semi-continuity of the transformations 
F n coincides with t h e i r continuity and hence i t follows that 
the functions y n ( * ) ( n = 0 , 1 , 2 , . . . ) are continuous on 
[o, + °°) • The following lemma holds. 

L e m m a 1. Let the se t s given by formulas (3) be 
one-element s e t s for x > 0 . Then the sequence j y n ( x ) } 
(n = 1 , 2 , . . . ) i s uniformly convergent to y o ( * ) on every 
intei jval [ o , x ] , x > 0 . 

P r o o f .> Let { x n } c [o,x] , x n — I n view of the 
compactness of the set and by the d e f i n i t i o n of the 
sequence | y n ( x ) } ( n = 1 > 2 , . . . ) there follows the e x i s t e n -
ce of a subsequenoe j y n (xQ )| of a sequence { 7 n ( * ) | con-
vergent to some y € [ 0 , 5 ^ . 

By vir tue of the continuous convergence of a sequence of 
the continuous functions t o the continuous function 
f ( x ) we have lim f (x n ) = f ( x n ) i . e . f ( x J = g(y) + 

k k 0 0 

+ h ( x 0 ~ y ) + f [ ( a - b ) y + b x Q J a n d h e n c e we o b t a i n |y| » 
= {y 0 (x Q ) ) = ? 0 ( * 0 ) . Taking into account that i s 
the one-element set we obtain y n ( * Q ) ~~~ 7 0 l x 0 ) * Tbue we have 
proved the continuous convergence p n ( x ) | o n 

New we s h a l l prove 
L e m m a 2 . I f the assumptions of Corollary 1 are 

f u l f i l l e d , there e x i s t s a number L > 0 such that then for every 
sequence [ x n | c [ o , x J (where x > 0 i s a rb i t rary and fixed)J i s 

K M * 1 - -
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6 S.Kieityka 

P r o o f . I f x = 0 then (aee [ 5 ] ) the sequence 
f n ( 0 ) } i s convergent and bounded. Let x > 0 and l e t 
x n | c: be an arbitrary and fixed sequence. Let us de-

note 

max max { max I h (x-y) I , max |g'(y)|) . 
M ~ Osx<x 1 0£y<x 1 Osyix1 11 

Tie shal l show by induction that 

|f^(xn)| < ( l + c + . . . + c n _ 1 ) M for every n. 

For n = 1 we have 

| (x1 )| < max ||g' (y^x^Jjl . |h'(x1 - y., (x , )) || < M. 

Let us assume that 

|f^(xk)| ¡i ( l + c + . . . + c k ~ 1 ) M , where k > 1. 

We shal l prove the following inequality 

l f k + 1 ( x k + i , l - 0 + c + . . . + c k ) M. 

Indead 

f k + 1 < W N m a x ||e' ^k+1 *xk+1 ^ , + a f k C a " b , 7 k + 1 (*k+1 , + b xk+-|]| . 

I h { x k + l " 7 k + 1 <*k+1 > >+ b fic B a " b ' W x k + 1 , + b x k + l ] l H 

^ m a x ( | g ' ( y k + 1 { x k + 1 ) ) | f | h ' ( x k + 1 - J k + 1 ( x k + 1 ) )| ) + 

+ c | f k [ ( a - b ) y k + 1 ( x k + 1 ) + b x k + J | < M + c ( 1 + c + . . . + c k _ 1 ) M, 
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Some functional equation 7 

where the last inequality follows by the arbitrariness of the 
sequence |x m}« Thus for aa arbitrary sequenoe { * n } c [ ° tx ] 

|f;(xn)| < (1+0+...+C11-1) M * ^ M. 

Hence, i f we shall denote L = M we shall obtain the 
thesis . 

How we shall prove five theorems. 
T h e o r e m 4. I f the assumptions of Corollary 1 

are fu l f i l led , then the sequenoe j f^(x) } i s convergent in 
any interval [ °»x ] , x > 0 . 

P r o o f . In view of Lemma 2 there follows the existen-
ce of f inite l imits A « lim f ' ( x ) and B = lim f ' ( x ) 

n — i n—<x> 

for j t f [ o , x ] . Let KQ » jn^J and SQ « |n8j be these sub-
sequences of natural numbers for whioh A. = lim f ' (x) and o nk 

Bq = lim f^ ( x ) . By virtue of the fact that for x > 0 

( j f^(O)J i s convergent, see [5] ) we have 

y_(x) x - y_(x) 
f h ( x ) ' - V " g ' ( 7 n ( x ) J + 5T h ' ( x " 7 n ( x ) ] + 

+ [(a-b) + b ] f n-i [(a-b)yn(x) + bx] 

by the continuity of g' , h' and by the uniforml convergen-
ce of { y n ( x } | to yQ(x) there follows the existence of 
the limit 

A1 = n l i m f n l f - l [ ( a - b , V X , + b X l ' Jli,"^ O® & K k 

Analogously one can show the existence of the limit 

B = lim f ' 1 [( a-b)y (x)+bx~|. 
n —00 a L s 
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8 S.Kieityka 

Since 

t'a{x) * m a i j g ' ( y n ( x ) ) + af^_ 1 [(a-b)yn(x) + bx] , 

h'(x - ya(x)) + b f ^ [(a-b)yn(x) + bx]} 

then 

A q » max [g' (y 0(x)) + a A 1 , h' (x - y Q(x)) + b A ^ 

and 

B q = max[g' (y 0(x)) + aB.,, fa' (x - y Q(x)) + b B ^ . 

Hence it follows that the following alternative is true 

A 0 = g'(y 0(x)) + aA 1 and B 0 £ g'(y Q(x)) + aB 1 

or 

A q = h' (x-y 0(x)) + b A 1 , and B Q > h'(x-y 0(x)) + bB 1. 

Prom this alternative the following one follows 

A o - B o £ a { A1- B1- ) o r A o - B o ^ ,b<A 1-B 1) 

and hence we obtain the inequality 

A q - B q ^ max[a(A 1 - B ^ , b(A 1 - B ^ ] . 

Analogously we obtain the inequality 

A 0 - B q > -max[a(A 1 - B 1 ) , b(A 1 - B 1)] . 

This and the previous inequalities can be written in the form 

l A o - B o l * m « ( a | A l - B j , b | A l - B j ) < c|A1 - ̂  11 • 

Taking into account the existence of limits A^ and B^ 

we can analogously prove the existence of limits 
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Some functional equation 

sod 

A2 - l i m + b * Ì J 

B2 = l i m f ; - 2 [ ( a - b ^ n - 1 ^ i + b * ? ] ' 

where xA - (a-b)y ( x ) + bx and x® « (a-b )y ( x ) •»• bx. 
k a 

Hence ye obtain tile inequality 

lAo - Bol * c 2|A2 " B 2 I -

By i t e ra t i on we haVis the inequality 

lAo - Bol * c P|Ap " B 

where 

p i ' 

AP - l i m V p [ i a " b , S - ^ i x p - i i + 

BP - l i m f n a - p [ ( a - b , y n 8 - p + 1 { l ? - 1 ) + b - p - i ] . 

zp-1 - ^ a " b ^n^-p+2'^ xp«-2' + b x p-2 ' 

xp-1 = ( a " b , 7 n + b x ? - 2 ' 
O 

Prom Lemma 2 there fo l lows the existence of a number L > 0 
such that |Ap - BJ < L f o r x t [ o , x ] and f o r every p, 
3 . e . | Aq - Bq | < cP[L. 

Thus fo r every t > 0 there ex i s ts p that f o r p > p 
|Aq - Bq| < i and hence AQ = BQ. 

T h e o r e m 5. Let the functions g and h f u l f i 
the assumptions (a ) - (d ) and l e t them be d i f f e r en t i ab l e on 
[p ,+ <»). I f the equation 
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10 S.Kieityka 

(7) G(x) « max jg' ( s (x ) ) + aG[(a-b)s(x) + bx] , 

h ' ( x - s (x ) ) + bG[(a-b)s(x) + bx]} 

for x > 0 and for the fixed function B(X) such that 
0<s (x ) <x has a solution in the c lass G of bounded func-
tions on every interval [o»*J• x > 0, then th is solution 
i s unique. 

P r o o f . Let G and G be solutions of the equa-
tion (7) . The following a l ternat ive i s true 

G(x) = g ' ( s{x) ) + aG [(a-b)s(x) + bx] 

and 

G(x) > g ' ( s ( x ) ) + aG[(a-b)s(x) + bx] 

or 

G(x) = h' (x-s (x) ) + bG[(a-b)s(x) + bx] 

and 

G(x) > h' (x-s (x) ) + bG pa-b)s (x ) + bx] 

i . e . 

(8) G(x)-G(x)< max|a[G((a-b)s(x)+bx) - G( (a-b)s(x)+bx)] , 

b[G((a-b)s(x)+bx) - G( (a-b)s{x)+bx)]}.| 

On the other hand by analogous reasoning, we have 

(9) G (X)-G (X)2-max |a [G( (a-b)s(x)+bx) - G((a-b)s{x)+bx)] , 

b{G((a-b)s(x)+bx) - G( (a-b)s(x)+bx)]j . 

In view of the inequa l i t ies (8) and (9) we have 
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Some functional equation 11 

(10) |G(x)-G(x)|£ {max a |G( (a-b)s(x)+bx)-G( (a-b)s(x)+bx) | , 

b |G( (a-b)s(x)+bx)-G( (a-b)e(x)+bx) | J < 

c max|G((a-b)s (x)+bx)-G((a-b)s (x)+bx) | . 

Let us denote u(x) * sap |G(a) - G ( z ) | . Then by (10) 
Oszsx ' 1 

we have |G(X) - G(x)| £ oj~|u(cx). 
By i t e r a t i o n s we s h a l l obtain the inequali ty 

| G(x) - G ( x ) | £ a n a ( o * r ) . 

I f in the l a s t inequal i ty we pass to the l imit with n -— «*> , 
we sha l l obtain f o r every x e [o ,x] the equal i ty G(x) * G(x) . 

T h e o r e m 6« I f a function f being the so lut ion 
of the equation (1) has the continuous der iva t ive , then at a 
point xQ> 0 t h i s der ivat ive i s given by the formula 

(11) f ' ( x Q ) - m a x [ g ' ( s ( x 0 ) ) + a f ' ( ( a - b ) s ( x 0 ) + b : : 0 ) , 

h ' ( x 0 - s ( x 0 ) ) + b f ' ( | f aH) ) s (x 0 ) + b x 0 ) ] , 

where s i s the arb i t rary |sel|ectar for PQ (given by formu-
l a (3)) and g , h f u l f i l the assumptions (a) - (d) and are 
d i f f e r e n t i a b l e on [0, + «*»). 

P r o o f . Let s be an arbi t rary f ixed s e l ec tor for 
F o , i . e . a : [ 0 , + o . ) — [ o , + «*») and s (x ) e FQ(x) f o r eve-
ry z 2 0 (where F i s given by formula ( 3 ) ) . 

e ( x 0 ) 
Then s 1 defined by formula s ^ x ) « x x (xQ > 0) 

w i l l be a s e l ec tor for the transformation F such that 
F(x) = [0,x] for x £ 0 . 

Let us denote T ( f ,y ) « g(y) + h(x-y) + f [ ( a - b )y+bx]. 
Since s.j i s a se lec tor for F but not necessar i ly a s e -

lec tor f o r F 0 , we have 
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12 S.Kieityka 

f(xp+Ax) - f ( x 0 ) ^ T [ f > ^ f o v * » * ] - T [ f > a M 
Sic — Ax 

when Ax > 0 and 

f(x +Ax) - f ( x ) T [ f ' ^ W H " T [ f ' s M 
2 * — < ^ - t : — 

Ax . Ax 

when Ax < 0. 
Tending to the l imit in above inequalit ies when Ax — 0+ 

and Ax —- Cf" respectively, we obtain the inequalit ies 
- s(x ) , 

- r - + - 2 - x h ( x o - 8 ( x o , ) + 
0 0 

+ [ (a-b) + b ] f ; [ (a -b )s (x 0 ) + bx 0 ] , 

f L < x o , S -T2^ B'(B(r0)) +X° ~xBlX°} h'(x - s ( x 0 ) ) + 
0 0 

+ [(a-b) + b ] f l [ ( a -b )s (x 0 ) + b x j . 

By the arbitrariness of a selector and by the continuity of 
a derivative we have 

y £ ? " x 0 ) f c e ' ( 7 ) h ' ( l o - y , + [ ( a - b ) V b ] f ' [ ( a - b ^ + b s i o ] } -

" y £ f o ( x o ) f e 8 ' ( 7 ) h ' U ° - 7 , + t ( a " b ) V b ] f < [ ( a - b , 7 + b X o ] } • 

Since the functions g, h and f have the derivatives for 
x > 0, then depending on s(xQ ) we have the following cases: 
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Some functional equation 13 

s (x 0 ) = 0 and then h ' ( x Q ) +b f ' ( b x Q ) > g ' ( 0 ) + a f ' ( b x 0 ) , 

8 ( x ) = x0 and then g ' ( x Q ) + a f ' ( a x j < h ' ( 0 ) + b f ' ( a x o ) , 

0 < o ( x Q ) < xQ and then g ' ( s ( x 0 ) ) + a f ' [ ( a - b ) s ( x 0 ) + bxQ] = 

= h ' ( x 0 - s ( x 0 ) ) + b f ' [ ( a - b ) s ( x 0 ) + b x j , 

i . e . f ' ( x Q ) = max {g ' ( s ( x 0 ) ) + a f ' [ (a -b )s (xQ ) + b x j , 

h ' ( x o - s ( x o ) J + b f ' [ ( a -b ) s ( x o ) + b x j ) . 

T h e o r e m 7. Let the assumptions of Corollary 1 
be f u l f i l l e d . I f there exists a derivative of the soli lt ion 
of the equation ( 1 ) , then 

(12) f ' ( x ) = max|g' (yQ (x ) ) + a f ' [ (a-b)y0 (x )+bx] , 

h ' ( x - y 0 ( x ) ) + b f ' [ {a-b)y0 (x )+bx] } 

and when this der ivat ive i s bounded then i t i s a l imi t of the 
convergent sequence | f^ (x )| . 

P r o o f . Since fo r x £ 0 i s one-element set 
and there ex is ts the derivat ive f , by Theorem 6 we obtain 
i t s form. Let xQ > 0 be an arbitrary f ixed point. 

Let us consider the cases: 

(a ) 0 < y o { x o , < x o ' 

W *0<*0> - xo' 

(J ) y 0 u 0 ) = o. 

By the uniformly convergence- of |y n ( x ) } by 
the continuity of y n ( x ) (n=0 ,1 ,2 , . . . ) in the case (a ) the-
re fo l lows the existence of the neighbourhood 0(xQ ) of a 
point x . and the existence of a number n such that f o r r o o 
n>nQ and u O f i J , 0 < y n ( x ) < x . Hence fo r x e O ( x 0 ) and 
n >'n_ o 

ah' (x-y ( * ) ) - bg ' (y ( * ) ) 
= — s i * — 0 — • 
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14 S.Kieityka 

Hence there follows the uniformly convergence | f ^ (x ) J on 
every closed interval contained in 0 ( x o ) . Thus lim = 
- f ' ( x 0 ) , 

Let us consider the case (/5). On account of Theorem 4 
there follows the existence of the limit lim = 

n— 
whence by (6) there follows the ezistenoe of the l imit 

lim f ; _ 1 [ (a-b)y n (x 0 ) + b x j = B and n — M 

A = max[g' (x 0 ) + aB, h ' (0 ) + bB]. 

Since we have assumed the existence of the derivative of 
a function f , then according to Theorem 6 in the neighbour-
hood of a point xQ th i s derivative i s given by the formula 

f ' ( x ) = max jg ' (y 0 (x ) ) + a f ' [ (a-b)y 0 (x) + bx] , 

h ' ( x - y 0 ( x ) ) + b f [ (a-b)y 0 (x) + bx]) . 

At a point xQ we have 

f (xQ) = max[g' (xQ) + a f ' ( a x 0 ) , h ' (0 ) + b f ' i a x j ] . 

Let us denote 

G(x) = 

f ' (x) fo r x / xQ and x 4 apcQ 

A for x = x„ o 
B for x = axQ . 

This function f u l f i l s the equation 

G(x) = maxjg ' (y Q (x)) + aG [(a-b)yQ(x) + bx] , 

h' (x-y Q (x)) + bG[(a-b)y0(x) + bx] } . 

By the uniqueness of the solut ion of the above equation and 
by the existence of the derivat ive of the function f we 
obtain A = f ' (xQ) and B = f ' ( a x ) whence lim f'(bc ) = 

n — 
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= f ' (zQ)* Analogously as in the case (fi) one can prove t h a t 
in the oase ( f ^ the theorem also i s t r u e . 

T h e o r e m 8 . Let the assumptions of Corollary 1 
be f u l f i l l e d . I f there e x i s t s a continuous de r iva t ive of the 
func t ion f given by the equation (1) and i f 
(1 3> 

then there e x i s t s x > 0 such tha t f o r x e [o»x] i t i s 
yQ(x) = x . 

P r o o f . Let us suppose the con t r a ry . Therefore one 
of the fol lowing oases must holds> 
( i ) there e x i s t s x > 0 such tha t f o r x € [o,x] , i t i s yQ(x) =0 
( i i ) inf |x e [ o ,x ] | 0 <y 0 (x) < x j » 0 , x > 0 . 
In the case ( i ) we have f (x ) = h(x) + f{bx) f o r x e [o ,x ] . 

By i t e r a t i o n s we have f ( x ) = M b ^ ) f o r z c 0 ,x . The 
n-0 oo " v 

s e r i e s of the de r iva t ives ZH b ' V (b1^) i s uniformly conver-
r -- in"° / gent in the i n t e r v a l | 0 , x j . Henoe the de r iva t i ve f of the 

so lu t ion f i s given by formula f ' (x) • bnh' {b°x) f o r 
r -i * n"° x e 10,xl . By cont inui ty of f we have f (0) •= lim f ' ( x ) . 

^ „ u> m\ x-0+ 
Henoe lim f ' (x) « E b°h (0) - . 

X-0+ n-0 ( a ' ( 0 ) 
On the other hand by Theorem 2 we have f ' ( 0 ) = 

contrary to the cont inui ty of a de r iva t ive a t the point ze ro . 
Let us assume now tha t the oase ( i i ) i s t r u e . Let 

x 0 € {x € [o ,x] | 0 <y 0 (x) < x ] (x > 0 ) , 

i . e . 0 < y o ( x o ) < x Q . 
According to the uniformly convergence of t o 

yQ(x) there fol lows the exis tence of a neighbourhood 0(xQ) 
of the point xQ suoh tha t f o r x t 0(* o ) n g r e a t e r 
than some n„ we have 0 < y „ ( x ) < x . o n 
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Then for x t 0 (x ) and n > n we have o o 

ah' (x - y ( x ) ) - bg' (y ( x ) ) 
f fx r n m a-b 

Henoe by the continuity of g ' , h' and f ' and by the uni-
ftom convergence of ( y n ( x ) } to yQ(jcJ i t follows that f o r 
x t 0 (x Q ) ( 0 (x Q ) i s the closure of 0 ( x Q ) ) we have 

, , , , , ah' (x-y ( x ) ) - b g ' { y ( x ) ) 
(14) f ' ( x ) = ? . 

Let { x n j a n a r b i t r a r y sequenoe suoh that x Q — 0 , 

| x n j c { x 6 [0 ,x] | 0 < y Q ( x ) < x ) . 

Prom the continuity of the derivative f ' at the point zero 
i t follows that lim f ' ( x ) = f ' ( 0 ) . According to Theorem 2 

n — 

f (o) 

Hence and by (14) we have 

ah' (0 ) - bg'(O) = g ' ( 0 ) 
a-b 1 - a 

contrary to the inequality ( 1 3 ) . 
N o t i c e 1 . I f in Theorem 8 the inequality (13) 

i s replaced by the inequality < ^ without any 
change of the remaining assumptions, then one can prove the 
existence of x > 0 such that for x i. [o , x ] i t i s y 0 ( x ) = 0 

N o t i c e 2 . I f the assumptions of Corollary 1 are 
f u l f i l l e d , then by Jegorov 's theorem (see [ 7 ] ) we can prove 
that the sequence ( ^ i * ) } almost uniformly convergent 
on [ o , x ] , x > 0 (the sense of t h i s convergence i s follow-
ing: i f in the set [ o , x ] one omits a l l the points enclosed 
i n correspondingly selected open i n t e r v a l s with a r b i t r a r i l y 
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s m a l l o v e r a l l l e n g t h t h e n t h e s e q u e n c e { ^ i * ) } u n i f o r m l y 
c o n v e r g e n t on t h e r e m a i n i n g s e t ) . Hence i t f o l l o w s t h a t i n 
t h e i n t e r v a l e x c e p t t h e open s e t w i t h a r b i t r a r i l y s m a l l 
o v e r a l l l e n g t h t h e r e e x i s t s t h e c o n t i n u o u s d e r i v a t i v e of t h e 
f u n c t i o n f b e i n g t h e l i m i t of t h e u n i f o r m l y c o n v e r g e n t s e -
quence ( f n ( x ) } « 

N o t i c e 3 . The c a s e c o n s i d e r e d i n t h i s p a p e r i s 
more g e n e r a l t h a n t h e one c o n s i d e r e d i n [ 8 ] where t h e a u t h o r 
have assumed t h a t t h e f u n c t i o n s g and h a r e s t r i c t l y c o n -
vex on [ 0 , + ®«). I f one assumes t h e s t r i c t c o n v e x i t y of t h e 
f u n c t i o n s g and h , t h e n t he t r a n s f o r m a t i o n s g i v e n by f o r -
mulas (3 ) have o n e - e l e m e n t s e t s images f o r x ¿. 0 . 
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