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Stanistaw Kieityka

ON DIFFERENTIABILITY OF THE SOLUTION OF SOME
FUNCTIONAL EQUATION OF THE DYNAMIC PROGRAMMING

1. Let us consider the functional equation of the dynamjo
programming (see [1])

(1) £(x) = max [s(y) + hix-3) + £((a-d)y + bx)] , f£(0) =0
O<y<x

where g and h are the given functions, a and b are
the given numbers, f 1is the unknown function.
" We assume that
(a) g and h are functions defined and continuous on the
interval [0,+ o) '
(b) g(0) = h(0) =0
(c) a,b € (0,1)
[ d
(d)l 2 m(c®) < +o0, where m(x) = max max {|g(y)| ’ |h(y)”,
n=0 Osysx
¢ = max(a,b).
With the eguation (1) there is connected the sequence
of approximationse

N £,(x) = oA [a(3) + h(x-y)]

f,(x)

) h{x-y) £ .((a-b)y + bx)} Nn=2,3,.e0
oo [2(0) + n(x=3) + 2 ((asoly + b
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2 S.¥iett ka

Let Pn : [0,+oo) ——2[0’+°°, (n=0,1,2,0..) Dbe point-to-
-set transformations given by the formulas

F (x) = {ye [O,x] | f(x) = g(y) + h(x-3) + f[(a-b)y+bx]}
(30 {7 (x) = {3 e [0,d] | £;(x) = a(3) + h(x-3)] |
P (x) = {y € [O,x] | f,(x) = g(y)+h(x-y)+rn_1 (a-b)y+bx]}

n=2,3. (X}

In this paper we shall deal with problems connected with dif-
ferentiabllity of the solution of the equatim} (1) in the ca-
se when the sets given by formulas (3) are one-element sets
for every .x = O,

2. Let X =71 =R

We shall cite some definitions and theorems necessary in
this paper.

Definition 1. 4 point-to-set transformation
P: X —-—2I is called upper semi-continuous at a point X, € X
it the fact that {xn} cX, x,—=~—X,, J,€ P(xn) implies
the existence of a subsequence {yn} c Y convergent to some
7, € P(xo).

Definition 2 4 point-to-set transformation
P: X — 2Y is called lower semi-continuous at a point x, € b §
if for every sequence { n] c X, X, —— X, and for every
'yo e P(x_ ) there exists a sequence {yn} c Y such that
Io € Plxy) and 3, — 3.

De finition 3. A point-to-set transformation
P: X ——-2I lower semi-continuous and upper semi-continuous
at a point X, € X will be called continuous at the point X,

Theoren 1. If a transformation F: X ——2Y is
continuous and a tunction P G —---R1 is continuous, then
the transformatiom Fy X — 27 given by the formula F(x) =

= {3 € P(x)lp(x,y) = ma? plx, z)} is upper semi-~continuous
x)

{where Gy = {(x,y) € IxY| xeX, Y ¢ F(x)] is the graph of
a transfopmation F).
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Some functional equation 3

Theorem 2. If functions g and h fulfil the
assumptions (a) - (d) and have derivatives at a point zero,
then the function f defined by (1) has a derivative at. the
point zero and

£'(0) = max [5%é%l, 9%£gl] .

Theorem 3. Let the funoctions g and h fulfil
the assumptions (a) - (d) and let they be continuously diffe-
rentiable on [0,+c0). Then for x > 0 there exist derivati-
ves in the directions 1 and -1 of the terms of the sequence
(2) and

(21 (x;1) = y‘;:(rx) {% g'(y) + L (X-y)}

t,(x;=1) = y;;:?x) {‘Y; g'(y) + SL v (x-y)}
(4) J

fr'l(x;1) = y‘.l;:?x) {% g (y)+ x-Ty h' (x=y )+ [(a-b)%d- b]f!"_1 [(a-b)y«rbx;’:

\fl"(x;-1 )=y:;zz(xx){% g'(y)+ *—;1 b'(x-y )+ [(a-b%«, b] £ [(a-b )y+bx;-1]},

where the transformations P : [0,+ o) -—-2[0'*“) (n=1,2,...)
there are given by formulas (3).

Definition 1 can be found in [2] and [3], Definition 2
in |4 | and Definition 3 in [3]. Theorems 1, 2, 3 are proved
in {3], [5], [6], respactively.

3. From Theorem 3 we obtain

Corollary 1. Iet the functions g and h
fulfil the assumptions (a) - (d), let them be continuously
differentiable on [0,+eo) and let the sets images F,(x)

(n = 0,1,2,...) given by formulas {3) be one-element sets
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4 S.Kiettyka

for x> 0, Then for x > O there exist derivatives of terms
of the sequence (2) and

£1(x) = max[g’ (y,(x)), b'(x-3,(x)]]

(5)

f;l(x) max{g' (3,(x)) + afr'l_1 [(q-b)yn(x) + hx],

h' (i-vn(x)) + 0L, [(a-b)yn(x) + bx]},

where {yn(x)} = Fn(x) D= 1,2,...

Proof. According to Theorem 3 (see note 2 in [6])
the derivatives of terms of the sequence (2) for x > 0 will
be given by formulas

[, v,(=x) x-y, (x) ,
f.,(x) = 1x g’(y1('x)) + ; h (x-y1(x))
(6) 9 .
, {(x) x-y.(x) |
£ (x) = ynxx g' (yp(x)) + 23— h' (x-y,(x)) +
(x)
+ [(a-b) ynxx +b] f;1_1 [(a-b)yn(x)+bx)] 0=2,35e00

Taking into account the differentiability of g and h we
obtain f.I

y.'(x) =0 .and then g’(y1(x)) - h' (x-y1(x)) < 0,
()<y1(x) <x and then g’ (y1(x)) -hn (x-y1(x)) = 0,
y1(x) = x and then g'(y1(x)) - h'(x-y1(x)) >0,

i.e. f;(x) = max [g’(y.l(x)), h' (x-y1(x))] .

Analogously in the case f_ (n = 2,3,...) we have
¥, (x)}) = 0 end then

g (y,(x)) - h' (x-y (x)) + (a-b)fr')_1[(a-b)yn(x)+bx} < 0,
0<y, (x) <x and then
&' (y,(x)) - 0" (x-y (x)) + (a=b)f_, [(a-b)yn(x)+bx] = 0,
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Some functional eguation 5

¥o(x) = x and then
g’(yn(x)) - h' (x-yn(x)) + (a'b)f;x-1 [(a-b)yn(x)+bx] z 0,

i.e. for n = 2,3'000

f;l(x) = max{g’(yn(x)) + af, . [(a-b)yn(x)+bx], :

h' (x-yn(x)) + blez-1 [(a-b)yn(x)+bx]} .

In the case when the transformations given by formulas (3)
are one-elements for x > O we shall use the denotation
Fn(x) = [yn(x)} (n = 0,1,2,eee) where Ypt [0,+°o)——[0,+oo).
In this case the upper semi-continuity of the transformations
Fn coincides with their continuity and hence it follows that
the functions yn(x) (n = 0,1,2,0..) are continuous on
[O,+o~). The following lemma holds,.

Lemma 1. Let the sets given by formulas (3} be
one-element sets for x 2 O. Then the sequence {yn(x)}
(n=1,2,00s) 1is uniformly convergent to yo(x) on every
interval [O,i], X > 0.

Proof .l Let [xn}c[o,i] » X, —x,. In view of the
compactness of the set [O,i] and by the definition of the
sequence {yn(x)} ({n=1,2,...) there follows the existen-

ce of a subsequence {yn (xn )} of a sequence {yn(x)} con-
k

vergent to some J € [O,i .

By virtue of the continuous convergence of a sequence of
the continuous functions {fn(x)} to the continuous function
f(x) we have 1lim fnk(xnk) = f(xo) _i.e. f(xo) = gly) +

+ h(xo—y) + f[(a-b)y + bxo] and hence we obtain {5 =
= {yo(xo)} = Po(xo). Taking into account that Po(xo) is
the one-element set we obtain jy (x,) —y,(x ). Thus we have
proved the continuous convergence yn(x)} on [O,i],

Now we shall prove

"Lemma 2. If the assumptions of Corollary 1 are
fulfilled, there exists a number L >0 such that then for every
sequence {xn}c[o,i] (where X »0 1is arbitrary and fixed)l is
l£;(x,)| < L.
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6 S.Kiextyka

Proof. If x =0 then (see [5]) the sequence
fx'l(o)} is convergent and bounded. Let X>0 and let
xn}c [O,i] be an arbitrary and fixed sequence, Let us de-
note

M= gegex mu{oil;f,['h (x-3)|, oﬂsi;ixls’ 3} -

Wwe shall show by induction that
|f;1(xn)| < (1+cte.o+c® 1)U for every n.

For n = 1 we have

If'1(x1)| < max {Ig (31(x1))'| , |h' (x1 - y1(x1))” < M.

Let us assume that
' k-1
|fk(xk)| < (14c+eee+c )M, where k 2 1,

We shall prove the following inequality

Ifi{+1(xk+1)| < (14c+e..+c¥) M.

Xndeod

! . '
Tien gy )| < max {{a" (7 (g g ) vaty [(a-0dyy g (xy g Debmy )

Ih (xk+1'yk+1 (xk+1 ) “bfl': [(a-b)yk+1 (xk+1 )+bxk+1]|}s
< 2ax {[g (Tyepq (x| o [B' (xyq = 3y g (m g} +

+ C!f}‘([(a—b)ykn(xk“) + bxk”]I < M + c(l4cte.otcET) M,
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Some functional equation 7

where the last inequality follows by the arbitrariness of the
sequence {xm]. Thus for an arbitrary sequence {xn} c [O,i]

[fx'l(xn)l < (14040004 MST;I_—O K.

Hence, if we shall denote L = 1170 M we shall obtain the
thesis,.

Now we shall prove five theorems.

Theorenm 4, If the assumptions of Corollary 1
are fulfilled, then the seguence {f;‘(x)} is convergent in
any interval [O,i'], X >0,

Proof. In view of Lemma 2 there follows the existen-
ce of finite limits A, = lim f,(x) and B, = _1lim f,(x)

for xe€ [0,':']. let Ko = {nk} and So = {ns} be these sub~

sequences of natural numbers for which Ao = 1lim fx'1 (x) and
k

B, = lim fx'x (x). By virtue of the fact that for x > 0

({fr'x(o)} ig convergent, see [5]) we have

\ ¥u(x) x - 3,(x)
£(x) = —B— g (3,(x)) + —5— h'(x - 3,(x)) +
Ynlx) ,
+ [(a-b) Ml b] £l [(a-b)yn(x) + bx]

by the continuity of g', h' and by the uniforml convergen-
ce of {yn(x)} to yo(x) there follows the existence of
the limit

A, = lim £/ (a-b)y,. (x)+bx|.

Analogously one can show the existence of the 1limit

B, = 1lim

1o £ -1 [(a=b)3, (x)4es].

- 675 -



8 S.Kiettyka

Since
fé(x) = max{g'(yn(x)) + afx']_1 Ba-b)yn(x) + be,
h'(x - 3,(x)) + bf;_1[(a-b)yn(x) + bx]}
then

A, = max[é'(yo(x)) + ah,, h' (x - yo(x))-+bA1]

B, = max[g’(yo(x)) + aB,, h'(x - yo(x))-+bB1].

Hence it follows that the following dlternative is true

4

g‘(yo(x)) + ad, and B, b4 g’(yo(x)) + aB1

or

Ao

h'(x—yo(x)) + hA1, and Bo 2 h'(x-yo(x))+ bB1.
Prom this alternative the following one follows

Ao - B, < a(A1-B1-) or A, - B, < b(A1-B1)

and hence we obtain the inequality
A, - B < max[}(A1 - B1), b(A1 - B1ﬂ .
Analogously we obtain the linequality

4, - B, 2 -max[a(4, - B,), b(a, - B,]].

This and the previous inequalities can be writtea in the form

A, - B0| < max{alA1 - B1|, e
Taking into account the existence of liamits 31 and B1

we can analogously prove the existence of limits

bla, - B1|} < cfay -z
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Some functional equation

: ' A A
A, = lim fnk-2 [(a-b)ynk_1(x1) + bx1]

, B
B, = lim fns_z[(a-b)yne_1(x?) + bxb],

where x* = (a=b)y,_ (x) + bx and L = (a-b)y_ (x) + bx.
1 ny 1 ng
Hence ye obtain the inequality

|4, - B,| < c2|A2 - B

0 2

By 1teration we have the inequality
- p -
,Ao B,| < ¢ |Ap Bpl,
where

N A A
4, = lim fnk_p[}a-b)ynk_p+1(xp_1) +oxp o],

) B
By = lim fns_p [(a-b)yns_pﬂ(xg_’) + bxp_1] )

- A A
Xo_q = (a-b)ynk_p+2'(xp_2) + bxp_z,
B _ B
Xp_q = (a-b)yns_p+2(pr_2) + X o

From Lemma 2 there follows the existence of a number L > 0
such that |Ap - B I <L for x e[o,i] and for every p,
.60 |Ay - B_|< ch.

Thus for every &€ > 0 there exists P, that for p > Py
|A° - Bo|< ¢ and hence Ao

Theoremn 5. Let the functions g and h fulfil
the assumptions (a) - (d) and let them be differentiable on
[O,+m). If the equation

= Boo
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10 S.Kieztyka

(7) G(x) = max{g'(s(x)) + a6 [(a-b)s(x) + bx},

h' (x-8(x)) + bG[(a-b)s(x) + bx]}

for x > 0 and for the fixed function e(x) such that
0<e(x)<x has a solution in the class G of bounded func-
tions on every interval [O,i], x > 0, then this solution
is unigue,

Proof. et G and G be solutions of the equa-
tion (7). The following alternative is true

G(x) = g'(s8(x)) + aG [(a-b)s(x) + bx]

and

G(x) = g'(s(x)) + aG[(a-b)s(x) + bx]
or

G(x) = h' (x-8(x)) + vG[(a~b)s(x) + bx]
and |

G(x) 2 b'(x-8(x)) + bG[(a-b)s(x) + bx]
i.e.

(8) G(x)-a(x)smax{a[(}((a-b)e(x)+bx) -,_C—}((a-b)s{x)-rbx)] ,

b [G( (a-b)s(x)+bx) - G( (a-b)s(x)+bx)]}.

On the other hand by anaiogous reagsoning, we have

(9) G(x)-ﬂé(x)z-max{a [G((a-b)s(x)+bx) - 5((a-b)e(x)+bx)] ,

b{G((a-b)é(bex) - 5((a-b)s(x)+bx)]} .

In view of the inequalities (8) and {9) we have
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Some functional equation 11

(10) IG(x)-(—}(x)Is {lnax a|G((a;b)a(x)+bx)-§((a-b)s(x)+bx)| ,
bIG((a;b)s(x)+bx)-(—}((a-b)s(x)+bx)|}s

<c max|G((a-b)a(x)+bx)-5((a-b)e(x)+bx)| .

Then by (10)

Let us denote u(x) = sup
Oszsx

we have IG(x) - G(x)| < q }n(cx).
By iterations we shall obtain the inequality

|G(x) - a(x)l < c¢Pu(e®x).

If in the last inequality we pass to the limit with n—= oo ,

we shall obtain for every x e [0,X] the equality G(x) = G(x).
Theorem 6, If afunction f being the solution

of the equation (1) has the continuous derivative, then at a

point X, > 0 this derivative is given by the formunla

(1) £'(x ) = max[g'(s(x,)) + af’((a-b)s(x ) + bz ),

h' (x,-8(x;)) + br'(l(al-b)S(xo) + bxo)] ’

where s 1is the arbitrary |selector for P, (given by formu-
la (3)) and g, h fulfil the assumptibns (a) - (d) and are
differentiasble on [0,+ o).

Prooft. Let s be an arbitrary fixed selector for
P, i.e. 8 : [0,400) —[0,4) and s(x) e Py (x) for eve-

ry x2 0 (where P, is given by formula (3)).
8(x_)

Then 8, defined by formula 8,(x) = 2 x (x_> 0)
1 1 X, o

will be a selector for the transformation P such that
P(x) = [O x] for x 2 0.

Let us denote T(f£,y) = g(y) + h{x-y) + f[(a-b)y+bx]

Since s, is a selector for F but not necessarily a se-
lector for Po’ we have
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12 S.KieXtyka

s(x_)
fx +ix) - £(x ) S T[f’ xoo (x°+Ax)] - T[f,S(xo)]
Ax - Ax
when Ax > 0 and
e(xo)
(x 205 - 2(x,) 7|t e (xgeax]] - 2 [f,0(x,)]
Ax S g Ax

when Ax < 0.
Tending to the limit in above inequalities when Ax — ot
and Ax — 0~ respectively, we obtain the inequalities

x x_ - 8(x,)
f;(xo)z xoo G'(B(xo)) + _0__1_‘_,__0_

h' (x, - 8(x,)) +

+ [(a-b) Bi:°) + b]f; [(a-b)s(xo) + bxo]. :

' B(Io) [ » x() - B(xo) '
£ (x)) < x, & (slx)) + X, h'(x, - s(x,)) +
(x )
+ [(a_b) ® z: + b]f_'_ [(a-b)e(xo) + bxo].

By the arbitratiness of a selector and by the continuity of
a derivative we have
%o

x;y n’ (xo-y)+[(a-b) -%4» b] ¢’ [(.a-b)y+bx1°]} =

max L g'(y)
yeFo(xo){xo gy

%o

min [ls'(yn

e r ;y h’(xo-y)-f» [(a-b) 4’7‘;5 b]f' [(a-b)y+bx°]} .

';x

Since the functions g, h and f have the derivatives for
x > 0O, then depending on s(xo) we have the following cases:
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Some functiomal equation 13

s(xo) 0 and then h' (xo)+bf'(bxo)> g'(0) + af'(bxo),

s(x,) = x and then g'(xo)+af'(a.x°)sh'(0) + bf’(axo),

)
O<s(xo)<x° and then g'(s(xo)) + af'[(a-b)s(xo) + bxo] =

= h' (xo-é(xo)) + bf'[(a-b)s(xo) + bxo},

i.e. f'(xo) = max{g'(s(xo)) + af’ [(a-b)s(xo) + bxo],
n’ (xo-s(xo)) + be' [(a—b)s(xo) + bxo]}.

Theorem 7. Let the assumptions of Corollary 1
be fulfilled. If there exists a derivative of the solution
of the equation (1), then

(12)  £'(x) = max{g’(yo(x)) + af’ [(a-b)yo(x)+bx],
h' (x-yo(x)) + be’ [(a-b)yo(x)+bx]}

and when this derivative is bounded then it is a limit of the
convergent sequence {f;(x) .

Proof, Since for x2 0 Fo(x) is one-element set
and there exists the derivative £, by Theorem 6 we obtain
its form. et x_> 0O bYe an arbitrary fixed point.

o
Let us consider the cases:

(@) 0<y,{x,)<x,,
(B) ¥o(xy) = x4,

By the uniformly convergence- of yn(x)} to yo(x) and by
the continuity of y,(x) (n=0,1,2,¢+.) in the case (a) the~
re follows the existence of the neighbourhood O(xo) of a
point X, and the existence of a number n, such that for
n>n, and xeo(xo), 0<yn(x)<x. Hence for xeo(xo) and
n>n

)
ah' (x-y,(x)) - ba' {y (x))

a-b *

f;l(x) =
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14 S.Kiextyka

Hence there follows the uniformly convergence {f;(x)} on
every cloged interval contained in O0(x ). Thus lim f;(xo) =
= £'(x,). A

Let us consider the case (p). On account of Theorem 4
there follows the existence of the limit 1lim fA(xo) = A,

N ~eoe

whence by (6) there follows the existence of the limit

nl_.i_mm o [(a-b)y (x,) + bxo] =B and

A = max[g'(x ) + aB, b'(0) + bB].

Since we have assumed the existence of the derivative of
a function £, then according to Theorem 6 in the neighbour-

hood of a point x, this derivative is given by the formula

£'(x) = max{g’(yo(x)).+ af'[(a-b)yo(x) + bx],
h'(x-yo(x)) + bf’[(a-b)yo(x) + bx]}.

At a point x, we have

+

f'(xo) = max[?'(xo) af’(axo), h'(0) + bf'(axoﬂ .

Let us denote

£'(x) for x # x, and x # ax
G(x) = A for x=x

B for x

&

This function fulfils the equation

G(x) = max{g’(yo(x)) + aG[(a-b)yo(x) + bx],
h'(x—yo(x)) + bG[ﬂa-b)yo(x) + bx]}.

By the uniquenese of the solution of the above equation and
by the existence of the derivative of the function f we
obtain A = f'(xo) and B = f'(axo) whence 1lim fé(Fo) =

n eoo
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Some functional equation 15

= f' (x,). Analogously as in the case (B) one can prove that
in the case (7) the theorem also is true.

Theorem 8. lLet the assumptions of Corollary 1
be fulfilled. If there exists a continuous derivative of the
function f given by the equation (1) and if

(13) £.10) 5 b.(9)
then there exists X > 0 such that for xc¢ [O,i] it 1s
¥,(x) = x.

Proof., let us suppose the contrary. Therefors one
of the following cases must holds:
(1) there exists X >0 such that for x € [0,X] it 18 3 (x)=0
(11) int{xe [0,%]] 0 <y (x) <z} =0, x>0
In the case (i) we have f(x) =“h(x) + £(bx) for x e [O,E].

By iterations we have f(x) = 2= h(br&)' for xe [O,i]. The
n=0

L] \

series of the derivatives 2_. b%h'(b®x) is uniformly conver-
n=0

gent in the interval [O,E]. Henoce the derivative £’ of the

solution f 18 given by formula f'(x) = 2_ b%h' (b%x) for

n=0
xe€ [O.i] . By continuity of £ we have £ (0) = gg ' (x).
[ od ] b <
Hence 1lim £'(x) =2_ b%h (0) = hj{%l o .

x-0+ n=0 ]
On the other hand by Theorem 2 we have f'(0) = E-Ti_%-)

contrary to the continuity of a derivative at the point zero.
Let us assume now that the case (i1i) is true. Let

xoe{xe[o,i” 0<y°(x)<x} (x > 0),

i.e. O<yo(x°)<x°.
According to the uniformly convergence of {yn(x)] to

yo(x) there follows the existence of a neighbourhood O(xo)

of the point x  such that for x e O(xo) and n greater

than some n, we have 0<yn(x)<x.
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16 S.Kiettyka

Then for x ¢ O(xo) and n > n, we have

, ah' (x - y_(x)) - bg' (y,(x))
fn!(x) = . a-b . .

Hence by the continuity of g', h' and f' and by the uni-
‘from convergence of [yn(x)} to yo(x) it follows that for
x e 0(x,) (0(x,) 1is the closure of 0O(x,)) we have

ah’ (x-y_(x)) - bg' (y,(x))
(14) £'(x) = xyoxa-b = 312 :

——0,

Let {xn} be an arbitrary sequence such that X,

{xn}c{x € [O,J':]I O<y°(x)<x} .

From the continuity of the derivative f' at the point zero
it follows that 1lim f'(xn) = £'(0)s According to Theorem 2

) T

£ (0) = £,10)

Hence and by (14) we have
ab’ (6) - bg' (0) _ g'(0)
a-b T-a

contrary to the inequality (13). ,
Notice 1. If in Theorem 8 the inequality (13)

is replaced by the inequality 5;52’ < h1£g) without any
change of the remaining assumptions, then one can prove the
existence of X > 0 such that for x ¢ [0,?] it is yo(x) =0
Notice 2. If the assumptions of Corollary 1 are
fulfilled, then by Jegorov’s theorem (see [7]) we can prove
that the sequence {f;l(x)} is almost uniformly convergent
on [o,i], X >0 (the sense of this convergence is follow-
ing: if in the set [0,'5] one omits all the points enclosed
in correspondingly selected open intervals with arbitrarily
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small overall length then the sequence {fA(x)} is uniformly
convirgent on the remaining set). Hence it follows that in

the interval [O,i] except the open set witih arbitrarily small
overall length there exists the continuous derivative of the
function f being the limit of the uniformly convergent se-
guence {f;(x)}.

Notice 3. The case considered in this paper is
more general than the one considered in [8] where the author
have assumed that the functions g and h are strictly con-
vex on [Or+°~). If one assumes the strict convexity of the
functions g and h, then the transformations given by for-
mulas (3) have one-element sets images for x 2> O.
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