DEMONSTRATIO MATHEMATICA
vd. XV No 3 1981

Adam Obtutbwicz, Tadeusz Swirszcz
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AND THE PROBLEM OF EXTENSION OF ALGEBRAS

O. Historical comments and introduction

An interpretation of a theory 7'1 in a theory 7,
assigns, roughly speaking, terms and formulas of the langua-
ge of T, to terms and formulas of the language of 72 in
such a way that a consequence of .7'1 (a true sentence in
_71) corresponds to a consequence of .7'2 (a true sentence
in ]2). For instance, if .71 is the (equational) theory
of Boolean rings, 72 is the (equational) theory of Boolean
algebras, and ¢ is a mapping from the set of terms of 7'1
to the set of terms of T2 such that
$(x) = x for each variable x, ¢(0) = 0, &(1) = 1,
Dlty+ty) = (D(t,) A (B5,)) ) ALB(£)) A B(t,)),
Q(’G.]'tz) ¢(t1) A(P(tz) for all terms t,, t,

@((t)'1) (¢(t)) for each term t of ‘71

(here +, , =1, denote the operations in a Boolean ring,

and Vv , A, ' denote the operations in a Boolean algebra),
then by extending the mappinmg ¢ to equations in an obvious
way we obtain an interpretation of .7'1 in 72. The concept
of an interpretation of one theory into another was introduced
by A.Tarski, A.Mostowski, R.M.Robinson [27] (cf. J.H.Shoen-
field [24] ). This concept was also more or less explicitly
considered for the case of equational theories (in the sense
of [28]) by W.Felscher [4], [5], where the related noticn of

of .7"1,
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2 A.Obtutowicz, T.Swirszcz

rational equivalence due to A.I.Mal cev |_17] (ch.9, pe59) has
been discussed.

An interpretation 8 of a theory T, into & theory T5
defines a mapping 8" from the class 12 of models qf .7'2
to the class 11 of models of .71. If m is a aodel of .72,
then the model 8Y (m) of .7"1 has the same universe as m
and the primitive operations and relations of 8Y (m) are
recovered accordin'g to the interpretation. For instance, the
interpretation ¢ of the equational theory of Boolean rings
in the equational theory of Boolean algebras defines the map-
ping ¢ given by

m=(h,Vv  ,A,", 0,1) == &' (m) = (&, +, -, '1,0,1), where

as+a, (a1A(a2)')v((a1)'Aa2) and

a,c8, = 81/\82 for all 84485 € 4, and
a~' = a' for each a ¢ A.

It appears that the mapping $* is a bijection, hence the
class of all Boolean rings and the class of all Boolean alge-~
bras are rationaly equivalent in the sense of i.I.lal cev B7].

If an interpretation 8 of J} into Jé is the inclu-
sion of terms and equations, then the mapping 8" sends each
model of J, to its reduct in the sense of Cohn s book [2],
p.220. For instance, if 72 is the equational theory of
Boolean algebras, 71 is the equational theory of distribu-
tive lattices with 0,1, then the inclusion of terms end equa-
tions of J, into J, (being obviously an interpretation
between these theories) defines the mapping from the class of
Boolean algebras to the class of distributive lattices with
0,1 given by

m= (A,Vv ,A,',0,1)r=—mn = (a,v ,A,0,1),

where =n 1is a reduct of m «

The equational theories of groups and abelian groups give
rise to a similar example of a mapping defined by interpreta-
tion between theories. By & generalized reduct we shall mean
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Coastruction of free algebras 3

here the mapping between classes of models of theories de-
fined by an interpretation between theories.

If X, and 12 are equational classes in the sense of
A.Tarski 28]-‘ (i.e. equationaly defined classes of algebras),
then a generalized reduct 6" from .12 into .7(1 induces
a mapping 6" from X, into X, sending each algebra =
of X, to an algebra 8" (m) = P(A)/Q 1in X,; here 4
is the underlying set of m , P(A) 1is a free algebra gene-
rated by the set A in the class X,, and Q is a suitable
congruence (cf. J.Stomidski [25], 2[26]). An example of the
mapping between equational classes induced by a generalized
reduct is the mapping gsending each group to the result of its
abelianization (cf. [23:]). Using another language one can say
that the algebra §" (m) 1is a free algebra generated by the
algebra n = (4, «ss)e

The mappings induced by generalized reducts 8" play an
important role in algebra, because they provide in many ocases
a solution of the following problem of extension of algebras:
does for a given algebra m 1in a class 11 exist an algebra
m in a class 12 such that 7t ocan be hoqmmorphically embed-
ded in Y (m) (of. A.I.Mal'cev [16], J.koé [18], B.H.Neumann
[20] ). J.Sromifiski ([25], [26]) showed that the problem has
a positive solution for an algebra m if and only if 7 can
be homomorphically embedded in 8" (8" (m)). Using this idea
he also proved in [25] that each distributive lattice with
0,1 can be homomorphically embedded in some Boolean algebra
and each semigroup can be homomorphically embedded in dome
ring.

The notions mentioned above were described in an uniform
way for the case of equational classes by F.W.Lawvere in his
thesis summarized in [11], [12]. In Lawvere s approach the
language of category theory is applied other related categori-
cal approaches to universal algebra are in [1], [3], [8], [9],
[10], [13], [14]. [19], [29]. The following dictionary shows
how some notions of universal algebra are translated into Law-
vere s language.
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4 A.Obturowioz, T.Swirszcz

Universal algebra language

Lawvere s language

an equational theory 7

an algebraic theory T, i.e.
a category with distinguished
product families

an interpretation 8 of an
equational theory JH into
an equational theory Jé

a -functor J:ﬂ}-—'-]é pre-
serving distinguished product
families, where T, and T,
are algebraic theories

an equational class X

an algebraic category Alg(T),
i.e. the category of certain
set-valued functiors defined
on an algebraic theory T

a generalized reduct 8"
from an equational class
.x2 into an equational
class .7(1

functor J:T, — T,

an algebraic functjor, i.e.
the functor 7 :A1g(T,) —
—=A1g(7,) induced by a
preserv-
ing distinguished product
families

the mapping 6" from an
equational class JC1 into
an equational class .Xé
induced by a generalized
reduct 8"

a left adjoint to an alge-
braic fanctor 7:41g(T,) —
——alg(T)

In the paper we follow the Lawvere ' s approach by giving
constructions of a free algebra in an algebraic category, of
left adjoint to an algebraic functor, and some conditions fer
the positive solution of the problem of extension of algebras,

1. Notation

1.1, We shall use the following notation:
w.r.t. will serve as an abbreviation for "with respect

to",

2, ?1, ?2 are symbols of variables,
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Construction of free algebra 5

N is the set of all non-negative integers: by a non-nega-
tive -integer we shall mean the finite cardinal number in von
Neumann sense, i.e. O = @, n+1 = {0.1....,n}.

_l!+ is the set of all positive integers {1,2,...}.

n is the set {1,...,n}, in particular 0 = #.

If S and A are sets, then by a family (asls € S) of
elements of 4 we shall mean the function 8 ——a, from S
ifto Al

If x ig an element of X, then q§ will denote the
function from ] into X given by 1+=—x, in particular if
1€ n, then qf:}l_—-—g sends 1 to 1i.

1.2, For all unexplained terms concerning category theory
we refer the reader to S. Mac Lane [15]. If A is a category,
then Ob A denotes the class of all objects of A and A (X,Y)
denotes the set of all arrows of A with domain X and codo-
main Y. The composition of arrows f:X —Y and g:X — 2
will be denoted by g-f. If A 1is an object of a category,
vhen idA will denote the identity arrow for A. The oppo-
site category of a category A will be denoted by A°P, By
a Tunctor we mean a covarient functor.

Set denotes the category uf sets and N denotes the full
.iheategory ol sot wit., Ob AV = {glne E}. If X and Y are
gots, then we whall arite gnwetires XY instead of Set(Y,X).

The symbol A (?1,?2) denotes the hom-difunctor from
AYPy A t: Saby; if 1t ig an errow of A and A 1is an object
of A, thenA (f,A; wili jern~te the value A (f,idA).

The symbol SetA derot=s the category whose objects are
get-valued functors definsd on a category A and whose arrows
are natural transformations.

The notion of a colimit object of a diagram (functor) and
tiie notion of the universal cone from a diagram to a colimit
object are meant as in Mac Lane s book EIS] y Pe67.

2. Algebraic theories
2.1. By an algebraic theory we shall mean an ordered pair
T= (r,1) such that
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6 A.Obtutowicz, T.Swirszcz

1) T 18 a category and I: N°? —— T ig a functor bi-
jective on objects; the object I{(n) will be denoted by [g]
for each ne¢ N and the arrow I(;%) will be denoted by
pr'; for each me !"’, iemnm,

2) the object [O] is a terminal object in T ; the unique
arrow g:[g]—-— [(_)] will be denoted by ln, .

3) the family (pl‘f:[g] — [1_]|i e m) 1is g product family
in T for each m e N*, 1i.e. for each family (fi:[g_] —_—
—-[1_]|1 € m) of arrows of T there exists a unique arrow
h:[g] ———-[g] in T such that prgqh = £, for each i € m;
this unique arrow h will be denoted by <fi:i € o>,

2.2. Let T'= (F,I) be an algebraic theory. By an alge-
braic congruence on 7 we shall mean a congrusnce on the ca-
tegory T (cf. Mac Lane ‘s book [15] , P+52) such that the fol-
lowing condition holds:

(c) it f,g ¢ 7(_[1_1],[9_]) and pr?o_f R[E]:[l] prTog for
all i € m, then ng'Eg. :

If no confusion arisés, we shall omit subscripts in
R[-g ,[m]° It is easy to verify tha1_; if R 1is an algebraic
congruence on T, then the pair F/R = (T/R,I/R) is an alge-
braic theory, where T'/R is the guotient category and I/R
is the functor given by
n »—-—[1_1] for each object n of Nop.
fr—-{g: gR I(f)} for each arrow f of WN°P,

2.3. We shall now describe the construction of algebraic
theories T [] andT ([R:B]. Let 2 = (@ |ne N) be a family
of sete with Q@ nQ =¢ for n# m and let V= {xilien*}
be a set, called the set of variables, such that > 9 # xJ

for i #3J and Vv N U Q, = ¥. We define Q -terms by in-
neN
duction as follows:

1) each element of V U Q, 1is anQ-term,

2) if (til'i € n) is a family of Q-terms and we Q,, then
the expression of the foram o (t1,...,tn) is an Q-term; we
denote this Q-term by o (ti:i € n).

T(Q) will denote the set of all Q-terms.
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Construction of free algebras 7

If (tJ|J¢g) is a family of Q~terms and t is anQ -term,.
then the result of the simultaneous substitution of ¢ for
occurrences of variable x, in t, denoted by [xj/tj;;j € g]t,
is defined by induotion as follows:

o . _ ’
1 [xd/tj.;j € mJw=w for each we 2, and

t. if kenm,

[‘Jﬁtd’;’ e nx = .
X otherwise;

2° 1f anQ-term t 1s of the form w (t],...,t;), where

weQ, and (t'1|1 € n) 1is a family of Q-terms, then

n
[xj/tjz;j € E]t =m([x3/t3:3 € g]t;:i € n).

The  -terms and the simultaneous substitution give rise
to the category T [SZ] whose objeots are the 86t8] 0,1,2,¢¢0 0,000
and whose arrows from n to m for m >0 are families
((td,n)lj € m), where ty for each j € m is anQ-term such
that |naJ|:{1|xi occures in td or 1= 0} < n; we also assu-
me that there is the unique arrow from n to 0 denoted by
18, The compoeit‘.ion. of arrows in T [Sl] i8 defined by using
simultaneous substitution, e.g. for £ = (t,m)sm — 1 and
8 = ((tj.n)l:) € mlin —m

fog = ([xa/tjz;j € E]t,n):_g —=1.
In the case h = ((tk,0)|k €n):0—n and 1%:im —0 we
assume that
hot™ = ((t,,m)]k € n)im — n.

The category F[Q] and the functor I:N°P — T [Q] given

by
n~—=n for each objeet n and by
£ '——((xf(i),nlli € m) for an arrow f:m —n of NV

forn an algebraic theory, denoted by 17'[9] .
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8 A.Obtutowiecz, T.Swirszoz

Let E be a set of ordered pairs of Q-terms, called a set
of Q-equations, and let ~ g De the smallest algebraic congru-
ence on the algebraic theory ¥ [Q] such that

it (t,t’') € B, then (1:,::1)~E (t',m),

where m = ma.x{:jlx'1 occures in ¢t or xJ occures in t’
or j = o}.

The quotient algsbratc theary T'[2]A will be denoted by
_?'[SZ ;E] and (t,m)A; will denote the set (t',m)l(t’,m)~E(t,m)}.

3. Algebraic categories

3¢1. Let ' = (7,I) be an algebraic category. By a J -al-
gebra we shall mean an ordered pair & = {4,G), where A 1is
a set and G:T —Seét is a funotor such that G(I(f)) =
= Set(f,A) for each arrow f of the category N , or equh.-
valently, the following two conditions hold:

1) (o] = a9,

- 2) ¢(pr])
If fe ﬂ'([g],[l]) and a function from n to A 18 pre-
sented in the form of (ai|i € n), then we shall write so-
metimes G(f).(a;|i e n) for (G(£)((a;]1 e n))I(1).

3.2. Let T = (7,I) be an algebraic theory. A useful
example of.a ¥F-algebra is the F-glgebra a, = (A,,G ), where
Ay =17'([z_1],'[1]) and the values Gn(f) for fe F([g],[g]) are
equal to the composition of the following functions:

Set(q?,A) for each m ¢ l_U+, iem

-1

n,m

7([],2) M [a]. [a]) 22 Ai;

90,k
Af ——=T([n],[x])

hewe is given'by

9E9E

(f;:[n] —[1]]1 € Ep—<t;:1 € k>,
and 9;1,111 is given by
b (pr] eh:i € m) for esen reT ([n],[a]).

- 584 -



Construction of free algebras 9

‘ In an obvious way n,m .9232? idﬂ [2]-[2]).9‘_139 *%n,m =
= ldSet(g,An)‘

3.3. We shall denote by Alg(T) the category whose objects
are all T-algebras and whose arrows from a T-algebra a= (4,G)
to a T-algebra & = (B,L) are the ordered triples ¢ = (a,f,#),
where f is a function from the set A to the set B such that
the family (Set(g,f)l[g] € ObT) is a natural transformation
from the functor G to the functor L.

It is easy to verify that each natural transformation a
from the functor G to the functor L determines in the 'unique
way a function gitA— B such that “[g] = Set(n,g) for each
n € N.

The category Alg(T') is called an algebraic category cor-
regponding to T .

We define the forgetful functor U:Alg(¥) —— Set by
a —=A for each I-algebra a = (4,G),
¢ —=f for each arrow ¢ = (a,f,& of Alg(T).

3.4. The T-algebra a, = (An,Gn) defined in 3.2 has the
following property. ILet 7 piB —-An be a function given by
i »-—--pr:'l1 (1 € n), and let a= (A,E) be a T'-algebra, while
u:n—— A 1is an arbitrary function. For the function u the~-
re exists a unique arrow (a,,h,a) in Alg(F) such that
hoe fn = e The function h:An—-- A 1is given by

£+ (G(£)(u))(1) for each ¢ e'ﬂ‘([r_x],[l]) = A,

3.5. We shall show how to represent a category of equa-
tionaly defined algebras by some isomorphic algebraic cate-
80Ty,

Let the family Q be as in 3.2, We recall that an Q -al-
gebra (cf. Cohn’s book [2]) is an ordered pair # = (4,0p),
where A is a set and Op = (opw|we§‘JNSln) is a family of

functions op :Set(n,A) — A (we Q,, n e K). Bach Q-algebra
A& = (A,0p) determines in the unique way the function I["]
from the set T(Q) to the set Set(Set(V,a),A), called the
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10 A.Obtutowioz, T.Swirszcz

interpretation of Q-terms in & , such that the following
conditions hold:
1) [xi]](v) = v(xi) for each variable x;, and each
v e Set(V,A), [w] (v) = op(q) for each we R, and each
v e Set(V,A), where q is a unique function from 0 to 4,
2) if anQ-term t is of the form u(t1,...,tn), where
we &, and t.l,...,tn are Q -terms, then

ﬂt]l(v) = op,,( [t]ﬂ(v),...,[tn](v)) for each v ¢ Set(V,A).
let E be a set of Q -equations (cf. 2.3 ). We shall say
that an Q -algebra # satisfies E (or briefly # is an
(Q3;E)-algebra) iff [t](v) = [t’] (v) for each (t,t') ¢ B
and each v ¢ Set(V,4A).
Let Alg(Q;E) be the category whose objects are all
(2;E)-algebras and whose arrows from an (Q;E)-algebra # =
= (A,0p) to an (Q;E)-algebra #' = (A’ ,0p') are the ordered
triples ¢ = (A,f,#), where f:A-——4'" is a homomorphism
from # to #'. The category Alg(Q;E) is called a category
of equationaly defined algebras, Each (Q;E)-algebra &£ =
= (A,0p) determines in the unique way the T [SZ ;E] -algebra
a = (4,6) such that G((t,n)l/g)+(a;|1 € n) =
= lit]([xi/ai:i € g](v)) for each family (aili € n) of ele-
ments of A and each v € Set(V,A), where [?] is the in-
terpretation of Q -terms in & and [xilaizi € g](v) is de-
fined by

if Jen,
([x3/e5:14 € n](v))(xg) = K B

v(xj‘) otherwise.

To prove this it is sufficient fto note that
if ns :uza.x[;]lx:j occures in t or J = 0}, then

[[xi/ti:i € g]t]](v) = [t]([xi/[ti](v):i € ﬂ(v)).

Each I[Q;E]—algebra o= (A,G) determines the Q -algebra
&[a]= (A,0p) such that for each we Q, and n >0
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Construction of free algebras 1

opu.(a1,...,an) = G((o(x1,...,xn),n)/~3)-(a1|1 €n)

and for each we 2,

op, (9} = (G((w,0)/~g)(q))(1), where q 1is the unique
function from 0 %o A. Since the interpretation [?] of
Q=-terms in &[a] satisfies the following condition

[tlw = G((t,n)/~g)e(vixy)|ie g).

# a is an (Q;E)-algebra.
By straightforward verifiocation we obtain that

and & =4f,

Flagg) =% 0]
hence Alg(y'[S?.;E]) and Alg(Q;E) are isomorphic categories.

3.6, et T = (7,I) be an algebraic theory and let
a = (A,G) be a T-algebra. By a I-congruence on a we shall
mean an equivalence relation Q on the set A satisfying
the following condition: for each m e N*, fe 7’([:1_1],[1]),
and for all u, w € Set(m,A) if u(i) Q w(i) for each i ¢ m,
then (G(£)(u))(1) Q (G(£)(w))(1). Let a/Q denote the
set {a’e A]a’ Q a} for any I-congruence Q on a T-algebra
a=(A,G) and any a in A, It is easy to verify that if
Q 1is a T-congruence on ¢ , then the ordered pair a/Q =
= (A/Q,G/Q) 1is a T~algebra, where A/Q 1is the quotient set
and G/Q:7T— Set 1is the functor given by
(6/Q)([a]) = set(n,A/Q) for each n ¢ N,

((6/Q)(£))((u(1)/Q]1 € n)) = ((G(£)(u))(3)/Q|] e m) for each
feT ([g],[n_!]). We shall say that «/Q 18 a quotient T-al-
gebra.

Mcreover, the ordered triple tq = (a,h,&/Q) 1is an arrow
from o to a/Q in Alg(T), where h:A —A/Q 1is a function
given by h(a) = a/Q for each element & of A.

Let a= (A,G) and & = (B,L) be two I-algebras and let
¢ = (a,8,4) be an arrow from o to & in Alg(F). The
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12 h.Obtutowicz, T.Swirszoz

function g:A — B gives rise to the T-~congruence Q on
$
o defined by
an a' iff gla) = gla’').
We shall call Q a T -congruence induced by § .
The ordered triple v, = (x/Q,,r,#) - is an arrow from
x/Q, to & in Alg(l), where the function r:A/Q$—°-B
is given by r(a/Qf) = g(a) for each a € A.

4, The constructien of free I'-algebras

4.1. By a free I'-algebra generated by a set X we.mean a
T-algebra ay = (A, »Gy) equipped with a function py:X ——Ay
such that for each I'-algebra &= (A,G) and each function
f:X—— A there exists a unique arrow ¢ :ay —— a in A1g(T)
such that the following condition holds (a) Ulpleny =1,
where U is the forgetful functor from Alg(T)} to Set.

We construct a free T-algebra ay = (AX,GX) generated by
a set X 1in the following two steps:

1° We construct the set Ax as a colimit object of the
diagram [:E+X —=Set, where E{X is the comma category gi-
ven by the inclusion functor E:/N ——Set and the set X, i.e.

0b EBiX = U Set(g,x), EtX(u,w) = {(u,h,w):w-h=u},
nelN

and the functor [ 1is given by
uv—-ﬂ'([x_m],[l]) for each object u:n —X of BiX,
(u,h,w)—=T(I(h),[1]) for each arrow (u,h,w) of EIX.

We shall use in this step the fact that E+X 1is a filter-
ed category (cf. [6]), for the definition of a filtered cate-
gory we refer the reader to Mac Lane ‘s book [15] » Pe207.

2% We construct the functor Gx: T'—Set as a colimit
object of the diagram [':E}X —= Set given by
u+=G, for each object u:p-—X of EiIX (for G, see 3.2),
(u,hi,w) —= o for each arrow (u,h,w) of EiX, where a is the
natural transformation from G  to G (n and m being the
domains of u and w respectively) given by
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Construction of free algebdbras 13

L] - Q;Ik'ﬂ'(l(h)l. [k]) 9,y for each ke
(for the definition of ¢!, and ¢, , see 3.2).

We shall use in this step the "polntwise™ construction of
‘colimits in functor categories (of. Schubert ‘s book [22] »
p.53); if D:B—-—Setl 1s a diaegram (functor), then a coli-
mit object of D conmstructed "pointwise™ is the functor
H:€ — Setl defined as follows:

i) the value H(C) for Ce Ob€ 1s a colimit object of
the diagram DC:B—'-Set given by
Dy(B) = (D(B))(C) for each object B of B , ‘

Dc(f) =a, for each arrow f of B, where @, is the C-th
component of the natural transformation a = D(f),

11) the value H(f) for £ e €(C,C’') is the unique fun-
ction h:H(C) —H(C') such that heqg o = qg o *(D(B)(£))
for each B € Ob R, where qB’c:DC(B)——H(C) are components
of the universal cone from D, to H(C) and qB,C”DC' (B) —
——H(C') are components of the universal cone from Dg:
to H(C').

We shall also use in this step the fact that "filtered
colimits commute with finite products™ in Set (cf. [22],
pe77), i.e. if B is a filtered category, D:B —— Set is
a diagram, and C is a colimit object of D, then C2 is
a'colimit object of the diagram D(n):B-—Set given by
D(n)(B) Set(n,D(B)) for each object B of B,

D(;)(f) Set(n,D(f)) for each arrow f of B,

" Moreover, if (qp:D(B)——C|B € ObB) is the universal
cone from D to C, then (Set(n,qB)IB € ObB) 1is the uni-
versal cone from D(g) to CB,

4,2. We present the details of the construction in the
step 1°, Since EIX 1is a filtered category, we construct the
colimit object Ay of [ in the similar way as in [22],
pe73, subsection 9.4.2. We define Ax as the quotient set
x*/~, where

- U {(f.,u)lfc F([g],[l]), u € Set(g,x)}

neN
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14 A.Obtuzowioz, T.Swirszoz

and ~ is the equivalence relafion on the set X" defined
in the following way: ,

(fe[n] — [1])yu:p —X)~ (g:[m] —[1],w:m —X) 1ff there exist
ke ¥ and functions vik— X, h' tn —k, h':m——k such that
Veh' =u, veh" =w, and f.I(h') = geI(h"). (cf. [21,
Pe131).

Wo shall use the followling facts:

1) for each object u:n —X of EiX the u-th component
of the universal cone from [ to X*/~ is a function
qu:ﬂ'([z_z],[l])——x'/fv given by q (f) = (f,u)/~ for each
fe 7([n],[1]), where (f,u)/s {(2',u)| (£ ,u") ~ (f,u)}

2) each family {{fi,ui:ni——x)/~,iem) of elements of
X"/~ 18 equal to the family ((f;,usn ——X)/~ |1em), where
D =D, + eee + 0, uin —-—_x is the unique function such that
ued, = £, for ‘31 given by j—=n; # ... + n;_,+3, and
f:'l. = fi' I(ai).

4,3, We present the details of the construction in the
step 2°, Since we construct Gx by using "pointwise"™ construc-
tion and "filtered colimits commute with finite products", we
define Gx by

a) Gyl [g]) = Set(n,X*/~) = (A,)2® for each n € N,

b) the value Gy(s) for seT( g],[g]) is defined as
the unique function h:(AI)E — (A such that for each
object uin — X of EiIX

x)=

h +Set(m,q,) = Set(k,q ) o ((u)(s)),
where q,. are the components of the universal cone from [
to X*/~. 1In particular, for ge 17’([11_1].[1]) we have by
4.2 1) that
Gylg)e((gy,W)/n|L € m) = (g + <gy:le m>,wii,

hence using 4.2 2) we obtaln

(P) Gyla)e((£;,u)/~|t e m) = (g o <fj:iem>,u)/~,
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where u and % are defined as in 4.2 2) for the family

((£5,u5)/~|1 € m).

Now, using 4.3 (p) we have that Gx(prg_l) = Set(q%,Ax)
and hence (4y,Gy) is a I'-algebra.

4.4, Now we shall show that for r;x:x——-Ax given by
x — (14 1 ,q,x::l —X)/~, and for each T-algebra a = (4A,G),
and for eadh function f£:X —— A there exists a unique arrow
¢:ay — a in Alg(F) such that the condition 4.1 (&) holds.

For each function w:m ——X, let /w/:A —— A be the
function defined by .
/w/(g) = (G{g)(£-w))(1) for each ge Ay =T ( g],[l]).
Since Ax is a colimit object of the diagram and for each
arrow (w,t,w’') of E}X we have that /w’/oF(h(t),[l]) = /w/
(because G(I(t)) = Set(t,A) and w' ¢t = w), there exists
a unique arrow h:Ax-—-—A such that for each object w of
E+X the following holds

h'qw = /w/g

or equivalently

() h((g,w)/~) = (G(g)(few))(1).

Using 3.4, 4.3 (p) and 4.4 (7) we see that ¢ = (ax,h,a)
is the unique arrow in Alg(T) such that the condition 4.1 (&)
holds,

4,5. Corollary. The forgetful functor
U:41g(T) —— Set has a left adjoint F such that F(X) = Ay;
the components of the unit p of this adjunction are the
functions 7x defined as in 4.4,

5. The construction of a left adjoint to an algebraio
functor

5.1. Let T = (7,I), T'= (7',I ) be two algebraic theoriec
and let J: 7T —T be a covariant functor such that JeI' = I,
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16 A.Obtukowicz,T.Swirszcz

The functor J induces the functor g :41g(T) ——alg(T’) de-
fined as follows:

Jla) = (A,GeJ) for each T-algebra a = (A,G),

7 p) = (F(a),Ulp),7(#)) for each arrow p:c —d& in Alg(T),
where U:Alg(T) ——Set 4is the forgetful functor (¢f.3.3).
This functor 7 1is called an algebraic functor induced by <.

5.2.  Let J and F be the functors as in 5.1 and let
% = (X,H) be a T'-algebra. We shall construct a T-algebra %
and an arrow a!: #~J(£) in Alg(T’) satisfying the follow-
ing condition:

1) for each arrow ¢ : ¥ —F (&) in Alg(T’) there is a
unique arrow p :% —&in Alg(T) such that

1) J(y) ey = o

Let PF(X) = oy = (Ax,Gx) be the free T-algebra genera-
ted by the underlying set X of the T-algebra z = (X,H).

We shall say that a T-congruence Q on F(X) =a
gular if the following condition holds:

2) if H(£fM{u) = Uig)(v), -then (J(£),u)/~Q(I(e),v)/,
where ~ 1is the equivalence relation defined in 4.2, Let Qg
be the smallest x -regular T-congruence on F(X). We shall
show that the condition 5.2 1) holds for ¥ = F(X)/Q, and
for ';x = (1,U(LQ!) °7x'](F(x)/Qz”' where LQI is defined

X is % -re-

for the T-congruence Q, as in 3.6 and py:X —U(F(X}) 1is
defined as in 4.4, Let ¢ :  —J(#) be an arrow in Alg(T')
and let & :F(X) —— & be the unique arrow in Alg(T) such that
3) U(g)epy = U'(p),
where U':Alg(7T')— Set 1is the forgetful functor. Since
the T-congruence G, on F(X) induced by the arrow & (cf.
3.6) is x-regular, Q, < Q, and henco 6=(F(X)/Q!,S,F(X)/Qf)
is an arrow in Alg(T), wfiere the function s8:U(F(X)/Q,)—~
—— U(F(X)/¢,) is given by 8(c/Qg) = c/Qf. Moreover,
v§°6°LQ = ¢ (for the definition of v§ see 3.6) and hence
x

by 5.2 3) p = v, o6 is an arrow in Alg(T) such that the
condition 5.2 1) i) holds, We shall show that p = v, - 6 is
the unique arrow in Alg(7) satisfying 5.2. 1) i), i.e. if
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J(y') e é‘!: ¢, then ' =1, ¢6. In fact, since F(X) is
a free [-algebra generated by the set X,

p'otq!=§=D§°6° LQ.!
hence using the fact U(LQI) is a surjection we deduce that
p'= vy 6 .

53, Corollamrmy. The functor J :Alg(T)
—— Alg(7’) has a left adjoint # such that ¥ (z) = # =
= F(U'(%2))/Q, for each I'-algebra z ; besides that the compo-
nents of the unit r? of this adjunction are the arrTows éz
defined as in 5.2.

5S¢4, Corollary. Iet ¢ :z—~—7(#& be an arrow
in Alg(T’). If U'(p) 4is an injection, then U'(r}‘z) is an
injeotion.

Proof. Since U’(p) is an injection, the following
proposition is true:
(6)  if (4dpy,a5)/~Qy (14 ,a3)/~, then x =73,
where Q is the T-congruence on F(X) induced by the uni-
que arrow ¢ satisfying 5.2.:3). Since Q, < Q,, U'(7,) 18
an injection by the definition of 5; and by 5.4. (4).

5.5. We shall present certain characterization of the
T -congruence Q,; on F(X) =ayg = (Ax,Gx) defined for a
T'-algebra x= (X,H) in 5.2,

‘lLet a binary relation R, on the set U(F(X)) = Ay = X%/~
be defined as follows:
¢y/~Ry 0,/~ 1iff there exist k,m,ne N, heﬂ‘([lj],[l]), ve X8,
ue X3, and there exist families (f;:[m] — [1]]|iek),
(gi:[g] —-[_‘l_],iel_() of arrows of T’ such that H(f;)(v) =
= H(gi){(u) tor each 1€k and ¢y~ (h e+ <J(fy):iek>,v),
and o,~(h o <J(gy):iek>,u}.

Let now RJ; = R, R?’l = Ri © Rg for each n 21, whe-
~e © denotes the composition of relations.

We prove by induction on n the following two proposi-
tions:
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18 A.Obturowi:z, T.Swirszoz

1) if Q is ¥-regular T-congruence on F(X}, then R';QQ,
2) if f e zr([g],[;]) and c;/~ R" cj/~ for each i € m,
then

The relation R, satisfies also the following condition:

3) if H(£)(u) = H(g)(v), then (J(£),u)/~R(J(g),v)/~.
Since the relation Ry is reflexive and symmetric, we dedu~
ce from 5.5. 1), 2}, 3) that

2 U R2-q,.

nzl
The formula 5.5. 4) can serve as a characterization of Q!.

6. The problem of extension of algebras

6.1, Let T = (T,I), T'= (7,I') be two algebraic theories
and let J:T'— T be a contravariant functor such that
JeI' =1I, Let J :A1g(F) — Alg(T’) be the algebraic functor
induced by J. We shall say that the problem of extension
of a T-algebra z= (X,H) w.r.t. the algebraic functor J
induced by J has a positive solution if there exist a I-al-
gebra & and an arrow ¢ :35-—J(£) in Alg(7’') with U'(¢)
being an injection.

The following proposition is an immediate consequence
of 5.4,

6.2, Proposition. The problem of extension
of a T'-algebra # w.r.t. the algebraic functor } induced
by J has positive solution iff U"?;’ is an injeoction,
where ﬁz.: x —J(#(2)) is the z-th component of the unit 5
of the adjunction determined by functors J , ¥.

6.3. The proposition 6.2 and the characterization of Q,
presented in 5.5 give rise to the followlng necessary condi-
tions for the positive solution of the problem of extension
of a T-algetra z = (X,H) w.r.t. the algebraic functor /J
induced by J.
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Wy) if J(£) = J(g), then H(f)(v) = H(g)(v),

Wy) it (J(£),v)/~ R, (J(g),u)/~, then H(£)(v) = H(g)(u),

W,) if (3(£),v)/~RE (J(g),u)/~, then H(f)(v) = H(g)(u).

The condition le) is equivalent to the following condition:

o) 1 (3(£),(v)~(I(g),u), then H(£)(v) = H(g)(u).
Let us consider the followlng conditions:

(4,) the functor J is full and (J) holds,

(51) R, is a transitive relation and GI}) holds,

%
(5n) Rg is a transitive relation and Llh) holds,

(") the condition () holds for n = 2 and if (J(g),u)/~ RZ
(hyw)/~, then (J(g),u)/~Ry(h,w)/~.

We deduce from 5.5. 4) and 6.2 that each of the conditions
(3p)s (84), (3,), (3") 1e a sufficient condition for the posi-
tive solution of the problem of extension of % w.r.t. J indu-
ced by J.
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