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A CONSTRUCTION OF FREE ALGEBRAS 
AND THE PROBLEM OF EXTENSION OF ALGEjBRAS 

0 . H i s t o r i c a l commenfts and i n t r o d u c t i o n 
An i n t e r p r e t a t i o n of a theory 7^ i n a theory J 2 

a s s i g n s , roughly speaking, terms and formulas of the l a n g u a -
ge of 7 1 to terms and formulas of the language of 7 2 i n 
such a way t h a t a consequence of ( a t rue sentence i n 
T ^ ) corresponds to a consequence of ( a 'true sentence 
in 7 ^ ) • For i n s t a n c e , i f 7^ i s the ( e q u a t i o n a l ) theory 
of Boolean r i n g s , 7 2 i s the ( e q u a t i o n a l ) theory of Boolean 
a l g e b r a s , and $ i s a mapping from the s e t of terms o f 7^ 
to the s e t of terms of 7 2 such t h a t 
$ ( x ) = x f o r each v a r i a b l e x , $ ( 0 ) = 0 , $ ( 1 ) = 1 , 
* ( t 1 + t 2 ) = ( K t , ) A ( # ( t 2 ) ) ' ) A ( ) ) ' A $ ( t 2 ) ) , 
$ ( t 1 » t 2 ) = $ ( t 1 ) A i ( t 2 ) f o r a l l terms t ^ t 2 of 7 y 

$ ( ( t ) ~ 1 ) = ( $ ( t ) ) ' f o r each term t of 

(here + , - 1 , denote the o p e r a t i o n s i n a Boolean r i n g , 
and v , A , ' denote the opera t ions i n a Boolean a l g e b r a ) , 
then by extending the mapping $ t o e q u a t i o n s in an obvious 
way we o b t a i n an i n t e r p r e t a t i o n of 7^ i n 7"2. The concept 
of an i n t e r p r e t a t i o n of one theory i n t o another was introduced 
by A . T a r s k i , A.Mostowski, R.U.Robinson [27] ( c f . J . H . S h o e n -
f i e l d [ 2 4 ] ) . This concept was a l s o more or l e s s e x p l i c i t l y 
considered f o r the case of e q u a t i o n a l t h e o r i e s ( i n the sense 
of [28]) by W.Fe lscher [ 4 ] , [ 5 ] , where the r e l a t e d n o t i o n of 
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2 A.Obtuiowicz, T.Swirszcz 

r a t i o n a l equivalence due to A.I.Mai cev [17] ( c h . p . 5 9 ) has 
been discussed. 

An in terpre ta t ion 8 of a theory 7^ into a theory 7"2 

defines a mapping 0* from the c lass JTg of models qf 7 2 

to the c lass JĈ  of models of 7^. It m i s a model of 72t 
then the model Qv (m) of 7^ has the same universe as m 
and the primitive operations and r e l a t i o n s of 8 V (m) are 
recovered according to the in terpre ta t ion . For instance, the 
in terpre ta t ion $ of the equational theory of Boolean rings 
in the equational theory of Boolean algebras defines the map-
ping given by 

m = (A, v , A , 1 , 0 , 1 ) $ v (m) = (A, + , •, ~ 1 , 0 , 1 ) , where 

a.j+a2 = (a 1 A ( a 2 ) ' ) v ( (a 1 ) ' A a 2 ) and 

a^>a2 = a^ A a 2 for a l l a<]»a2 £ A» ^ ^ 

a"^ = a' for each a e A. 

I t appears that the mapping i s a b i s e c t i o n , hence the 
c lass of a l l Boolean r ings and the c lass of a l l Boolean alge-
bras are rat ionaly equivalent in the sense of A.I.Liai'cev [17]. 

I f an interpretat ion Q of T^ into 7 2 i s the i n c l u -
sion of terms and equations, then the mapping Q" sends each 
model of J 2 to i t s reduct in the sense of Cohn's book [ 2 ] , 
p.220. For instance, i f J 2 i s the equational theory of 
Boolean algebras, 7^ i s the equational theory of d i s t r ibu-
tive l a t t i c e s with 0 , 1 , then the inclusion of terms and equa-
tions of J\| into J 2 (being obviously an interpretat ion 
between these theories) defines the mapping flrom the c lass of 
Boolean algebras to the c lass of d i s t r ibut ive l a t t i c e s with 
0,1 given by 

tit = ( A , V , A , ' , 0 , 1 ) » — n = ( A , V , A , 0 , 1 ) , 

where n i s a reduct of « . 
The equational theories of groups and abelian groups give 

r i s e to a s imi lar example of a mapping defined by in terpre ta -
t ion between theor ies . By a generalized reduct we shal l mean 
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Construction of f ree algebras 3 

here the mapping between c l a s s e s of models of theor ies de-
fined by an i n t e r p r e t a t i o n between t h e o r i e s . 

I f X , and X^ a r e aq national c l a s s e s in the sense of 
A.Tarski [28] ( i . e . equationaly defined c l a s s e s of a l g e b r a s ) , 
then a generalized reduct 8V from X^ i n t o X^ induces 
a mapping 8A from X^ in to X 2 sending each algebra tt 
of X1 to an algebra f?A (n) = F(A)/Q i n X2; here A 
i s the underlying set of it , F(A) i s a f ree algebra gene-
rated by the set A in the c l a s s and Q i s a su i tab le 
congruence ( c f . J .SIomii iski [25] , An example of the 
mapping between equational c lasses induced by a generalized 
reduct i s the mapping sending each group to the r e s u l t of i t s 
abe l ianizat ion ( c f . [ 2 3 ] ) . Using another language one can say 
that the algebra 8* (rt) i s a f ree algebra generated by the 
algebra rt = (A, . . . ) . 

The mappings induced by generalized reducts 8V play an 
important r o l e in a lgebra , beoause they provide in many oases 
a solut ion of the following problem of extension of a lgebras : 
does for a given algebra n in a olase Xy e x i s t an algebra 
m in a c l a s s X^ such that n can be homomorphically embed-
ded in flv (to) ( c f . A . I . M a i ' c e v [ 1 6 ] , J . L 0 6 [18] , B.H.Neumann 
[20] ) . J . S i omiiiski ( [25] , [26]) showed that the problem has 

a positive so lut ion for an algebra n i f and only i f 71 can 
be homomorphically embedded in 8V ( 9 * ( t ) ) . Using t h i s idea 
he a lso proved in [25] that each d i s t r i b u t i v e l a t t i o e with 
0,1 can be homomorphically embedded in some Boolean algebra 
and each semigroup can be homomorphically embedded in sjome 
r i n g . 

The notions mentioned above were described in an uniform 
way for the case of equational c l a s s e s by F.W.Lawvere in h i s 
thes i s summarized in [11] , [12]. In Lawvere's approach the 
language of category theory i s applied other r e l a t e d c a t e g o r i -
c a l approaches to universal algebra are in [ 1 ] , [ 3 ] , [ 8 ] , [ 9 ] , 
[10], [13], [14], [19], [29] . The following dict ionary shows 

how some notions of universal algebra are t rans la ted in to Law-
vere 's language. 
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4 A.Obtuìowioz, T.éwlrszcz 

Universal algebra language Lawvere's language 
an equational theory J an algebraic theory T , i.e. 

a category with distinguished 
product families 

an interpretation 8 of an 
equational theory 7^ into 
an equational theory T2 

a functor J:^ J2 pre-
serving distinguished product 
families, where T^ and T2 

are algebraic theories 
an equational class X an algebraic category Alg(J), 

i.e. the category of certain 
set-valued functiors defined 
on an algebraic theory T 

a generalized reduct 8V 

from an equational class 
X2 into an equational 
class Xj 

an algebraic funct)or, i.e. 
the functor % :Alg(T2) — -
— — Alg(F.j) induced by a 
functor JsTj—- T2 preserv-
ing distinguished product 
families 

the mapping flA from an 
equational class X^ into 
an equational class X2 

induced by a generalized 
reduct 8V 

a left adjoint to an alge-
braic functor ¡f :Alg(7T2)—-
——AlgiE,) 

In the paper we follow the Lawvere 'a approach by giving 
constructions of a free algebra in an algebraic category, of 
left adjoint to an algebraic functor, and soma conditions for 
the positive solution of the problem of extension of algebras. 

1. Notation 
1.1. We shall use the following notation: 
w.r.t. will serve as an abbreviation for "with respect 

to", 
?, ?.,, ? 5 are symbols of variables, 
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Construction of free algebra 5 

N i s the set of a l l non-negative integers! by a non-nega-
tive integer we shall mean the f inite cardinal number in von 
Neumann sense, i . e . 0 =, 0, n+1 = |o ,1 , . . . ,nJ . 

N+ is the set of a l l positive integers j l , 2 , . . . | . 
n is the set [ l , . . . , n j , in particular 0 = 0 . 
I f S and A Eire sets, then by a family ( a . Is e S) of S I 

elements of A we shall mean the function s >——a_ from S ' B 
iiffc-© A. 

T 
I f x is an element of X, then w i l l denote the 

function from 1 into X given by 1 i—— x, in part icular i f 
n -

i t n, then qpjl.—1- n sends 1 to i . 
1,2, For a l l unexplained terms concerning category theory 

we r e f e r the reader to S. Mac Lane [ l5 ] . I f A is a categox'y, 
then Ob A denotes the class of a l l objects of A and A (X,Y) 
denotes she set of a l l arrows of A with domain I and codo-
main Y. The composition of arrows f :X — Y and g:X — Z 
wi l l be denoted by g « f . I f A is an object of a category, 
¡.hen idA w i l l denote the identity arrow for A. The oppo-
s i te category of a category A w i l l be denoted by By 
a .functor we mean a cov^riant functor. 

denotee the category of eeta and IN denotes the f u l l 
of sot w : l : . Ob ZV - [ n|neN j . I f X and Y are 

bets, then wo whali *~ i te soajotiireo X^ instead of Set(Yj,X). 
Th.fi symbol 2) 'ierioto« the hom-'oifunctor from 

A t ; Set; i f t in an arrow of A and A is an object 
of A , then A ( f ,A ; wili. ' e n t e the value ^ ( f , i d , ) . 

The symbol Se t^ denotes the category whose objects are 
eet-valued functors defined on a category A and whose arrows 
are natural transformations. 

The notion of a col imit object of a diagram ( functor ) and 
the notion of the universal cone from a diagram to a col imit 
object are meant as in Mac Lane's book [15] , p.67. 

2. Algebraic theories 
2.1. By an algebraic theory we shal l mean an ordered pair 

T= (2T,I) such that 
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6 A.Obtuiowicz, T.Swirszcz 

1) r 1b a category and I : A/op — T i s a functor b i -
j ec t ive on objec ts ; the object I(n) w i l l be denoted by [n] 
f o r each n t H and the arrow 1 ( 3 ° ) w i l l be denoted by 
pr£ fo r eaoh me S*, i e m, 

2) the object QofJ i s a terminal object in f ; the unique 
arrow g:[n]—— [o] w i l l be denoted by ! n , 

3) the family (pr°:[m] —— [ l ] | i 6 m) i s a.product family 
in V f o r each m e 5+, i . e . f o r each family ( f i : [ s ] —— 
—— [ l ] | i € m) of arrows of T there e x i s t s a unique arrow 
h : [ n j —""[s] i n T such that pr"o h = f^ f o r each i e m; 
t h i s unique arrow h w i l l be denoted by < f ^ : i e m>. 

2 .2 . Let T = ( 7 , 1 ) be an algebraic theory. By an a lge -
braic congruence on TT we sha l l mean a congruence on the ca-
tegory T ( c f . Mac Lane's book [15] , p.52) such that the f o l -
lowing condit ion holds: 

(c) i f f , g € 7 ( [ n ] , [ m ] ) and p r ® o f R r - | r^i pr® o g f o r 
a l l i e m , then * ®r f l] , [H]«-

I f no confusion a r i s e s , we sha l l omit subscr ip ts i n 
R [n ] [m]' i s e a f l y t o tha t i f R i s an algebraic 
congruence on T , then the pair r / R = (2T/R.I/R) i s an a lge -
bra ic theory, where JT/R i s the quotient category and I/R 
i s the functor given by 
n >—— for each object n of 
f >—-jg: g R 1 ( f ) } fo r each arrow f of W o p . 

2 .3 . We sha l l now describe the construct ion of algebraio 
theor ies T [q] andF ([fl;®]-. Let £ = ( f l j n e N) be a family 
of s e t s with fln n flm = JJ f o r n i m and l e t V = { x 1 | i € H + } 
be a s e t , cal led the set of va r i ab les , such that x^ i Xj 
f o r i i j and V fl U 2_ = 0. We define ft -terms by i n -

neH n 

duction as fol lows: 
1) each element of V U 2Q i s an ft-term, 
2) i f ( t j i e n ) i s a family o f f t - t e rms and cj e Qn , then 

the expression of the form u ( t ^ , . . . , t n ) i s an Q-term; we 
denote t h i s Q-term by u ( t ^ : i e n ) . 

T(Q) w i l l denote the set of a l l ft-terms. 
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I f ( t j | j e m ) i s a family of £ - t e rms and t i s an U - term, , 
then the r e s u l t of the simultaneous s u b s t i t u t i o n of t j f o r 
occurrenoes of var iab le x^ i n t , denoted by [ z j / * j t j £ Si]*» 
i s def ined by induotion as fo l lows: 

1° € m]cj= u f o r each and 

[ x / t j « i e m]xk 

t k i f k € m, 

x^ otherwise; 

2° i f an &-term t i s of the form cj ( t ^ , . . . p t ^ ) , where 
<ue&n and ( t ^ J i « n ) i s a family o f f t - t e r m s , then 

[xj/tjsj £ sJ* 6 s]*!51 € 

The ft-terms and the simultaneous s u b s t i t u t i o n give r i s e 
to the category 2T [fl] whose objeots are ithe setsj 0 , 1 , 2 , . . . , n , . . . 
and whose arrows from n to m f o r m > 0 are f a m i l i e s 
( ( t ^ , n ) | j e m), where t^ f o r each j « m i s an 2 - t e r m such 
tha t maxjilx^ occures i n t j or i = oj ^ n; we a lso assu-
me tha t there i s the unique arrow from n to 0 denoted by 
! n . The composition of arrows i n 2T [a] i s defined by using 
simultaneous s u b s t i t u t i o n , e . g . f o r f = (t,m)sm —— ^ and 
g = ( ( t j ,n) | J e m):n — m 

f o g « ( [ x j / t j s j £ m j t , n ) : n — 

In the case h = ( ( t j ^Oj Jk e n) :0 — n and !m:m — 0 we 
assume t h a t 

h o ! m = ( ( t k ,m) | k c n) :m — n. 

The category 2T [q] and the func tor I : W o p — ZT [fl] given 
by 
n •—— n f o r each object n and by 
f • — ( ( ¿ J »n)| i e m) f o r an arrow f :m — n of IN 
form an algebraic theory, denoted by ZT [fl] . 
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8 A.Obtoíowicz, T.Swlrszcg 

Let B be a set of ordered pairs of S - terms , cal led a set 
of Q-equations, and l e t ~ B be the smallest algebraic congru-
ence on the algebraic theory 7 [fi] such that 

i f ( t , t ' ) e B, then ( t , m ) ~ g ( t ' , m ) , 

where m = max{j|xj occures in t or Xj occures in t ' 
or J = o } . 

The quotient algébralo the ary J* [q]a«= w i l l t>e denoted by 
;e] and (t,m)A>B w i l l denote the set |( t ' ,n)|( t , ,m)~ B ( t , D i ) } . 

3. Algebralo categories 
3 . 1 . Let T = (2T,I) be an algebraic category. By a F - a l -

gebra we shal l mean an ordered pair a. = (A,G), where A i s 
a set and GsT* — S e t i s a functor such that G ( I ( f ) ) = 
= Se t ( f ,A) for each arrow f of the category/W , or equi-
v a l e n t ^ y the following two conditions hold: 

1) G([Q]) = A°, 

2) G(pr°) = Set(q^,A) for each m e i e m. 
I f f « F ( [ n ] f [ l ] ) and a function from n to A i s pre-
sented in the form of (a^ J i £ n)» then we shal l write so-
metimes G(f)•(a^|i e n) for ( G ( f ) ( ( a ± | i € n ) ) ) ( 1 ) . 

3 . 2 . Let T = (W,I) be an algebraic theory. A useful 
example o f . a F-algebra i s the V*-a{Lgebra = ( A n » G n ) # where 
An a n d 1th® values for i e are 
equal to the composition of the following functions: 

b«»e y f l k i s given 'by 

( f i : [ f i ] M l 1 4 € 
a«J i s given by 

h ~ ( pr™ • h : i < m) fo* each h c TT ( [n] , [j j] ) . 
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Construction of free algebras 9 

In an obvious way 9n,m ' = l d * [n], [m])'9^m ' ?n,m = 
= l dSet(m,An) ' 

3 . 3 . We~shall denote by Alg(ZT) the category whose objects 
are a l l F-algebras and whose arrows from a F-algebra a * (A,G) 
to a F-algebra £ = (B,L) are the ordered t r iples ip = (a, 
where f i s a function from the set A to the set B such that 
the family (Set(n,f }|[n] e ObF) i s a natural transformation 
from the functor G to the functor L. 

I t i s easy to verify that each natural transformation a 
from the functor G to thq functor L determines in the unique 
way a function giA—•— B such that arn-| = Set(n,g) for each 
n e N. 

The category Alg{T) i s called an algebraic category cor -
responding to F . 

We define the forgetful functor U:Alg(JT) — Set by 
a h—A for each F-algebra a = (A,G), 
p •—- f for each arrow tp = (a,f,<£) of Alg(F). 

3 . 4 . The J -a lgebra a n = (An,Gn) defined in 3.2 has the 
following property. Let 150 a f u n c - t ^ o n 

i •—— pr£ ( i c n) , and let a = (A,G) be aF-a lgebra , while 
u:n ——A is an arbitrary function. For the function u the-
re ex is ts a unique arrow (<xQ,h,a) in Alg(F) such that 
k * ?a = u* h:An—— A is given by 

f ( 0 ( f ) ( u ) ) ( 1 ) for each f e T ( [n ] , [ l ] ) = An. 

3 . 5 . We shall show how to represent a category of equa-
tionaly defined algebras by some isomorphic algebraic ca te -
gory. 

Let the family fi be as in 3 . 2 . We r e c a l l that an Q - a l -
gebra ( c f . Cohn's book [2]) i s an ordered pair Jk « (A,Op), 
where A i s a set and Op = (op o e u ft ) is a family of 

ncN 
functions op(k):Set(n,A) —— A (<ye ftn, n c N). Each ft-algebra 

= (A,Op) determines in the unique way the function | ? J 
from the set T(ft) to the set Set(Set(V,A),A), called the 
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interpretation of fl-terms in A , such that the following 
conditions hold: 

1) [x j j iv ) = vfx.^) for each variable x i ( and each 
v e Set(V,A), Jtj] (v) = op^tq) for each w e and each 
v c Set(V,A), where q i s a unique function from 0 to A, 

2) i f an fi-term t i s of the form u ( t ^ , , . . , t Q ) , where 
cj t ftn and t 1 , . . . , t n are fi-terms, then 

[ t ] M = op0( [ t j ( v ) , . . . , [ t j ( v ) ) far each v e Set(V,A). 
Let E be a set of SI -equations (c f . 2 . 3 ) . We shal l say 

that an Si -algebra A s a t i s f i e s B (or brief ly A i s an 
(«;E)-algebra) i f f [ t j {v ) = [ t ] (v) for each ( t , t ' ) e E 
and each v e Set(V,A). 

Let Alg(fi;E) be the category whose objects are a l l 
(fl;E)-algebras and whose arrows from an (fi;E)-algebra A = 
= (A,0p) to an (fl;E)-algebra A' = (A' ,0p' ) are the ordered 
t r ip les ip = (A,f,A)f where'' f:A ——A" i s a homomorphism 
from A to A'» The category Alg(2;E) i s called a category 
of equationaly defined algebras. Each (fi;E)-algebra A = 
= (A,Op) determines in the unique way the T [fl ;fi]-algebra 
a(/t) = 8 U C h t h a 1 : C J ( ( t » n ) A ' g ) * ( a i | 1 € n) = 
= [t]([Vj/aj^:i e n](v)) for each family (a^Ji e n) of e le-
ments of A and each v e Set{V,A), where [?] i s the in-
terpretation of fl -terms in ift and [ x ^ / a ^ i € n](v) i s de-
fined by 

( [ x ^ a ^ i e n](v)) (xj) = 
a^ i f i € n, 
v(x j ) otherwise. 

To prove t h i s ' i t i s suff ic ient to note that 
i f n > max|j |xj occures in t or j = o | , then 

" V V 1 € n j t j i v ] = [t]( [ x j / f t j M s i e n](v)) . 

Each F|fl ;E] -algebra at= (A,G) determines the Q-algebra 
= (A,Op) such that for each we and n > 0 
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o p w ( a 1 f . . . , a n ) = G ( ( < y ( x 1 , . . . , x n ) , n ) / ~ B M a l | i e n) 

and for each c f i g 

oPcjfq) = ( G ( ( w , 0 ) A B ) { q ) ) ( l ) , where q i s the unique 
function from 0 to A. Since the interpretat ion [ ? ] of 

Q-terms in A ^ s a t i s f i e s the following oondition 

[ t ] M = G ( ( t , n ) / ~ B M v { x 1 ) | i £ n ) , 

A j-^ i s an (fi ;E) -algebra* 
By straightforward v e r i f i c a t i o n we obtain that 

OLI N \ = OL and A = A , 
U [a] > [«(*)] 

henoe Alg(r[fl;E] ) and Alg(£;E) are isomorphic categor ies . 
3 . 6 . Let T - (2T,I) be an algebraic theory and l e t 

OL - (A,G) be a F-a lgebra . By a T'-congruenoe on OL we sha l l 
mean an equivalence re la t ion Q on the set A sat i s fy ing 
the following condition: for each m e f e 2T ( [m]»[l ] )» 
and for a l l u, w e Set(m,A) i f u( i ) Q w(i) for each i e m, 
then (G( f ) (u ) ) (1 ) Q (G( f ) (w) ) (1 ) . Let a/Q denote the 
set j a ' e A|a' Q a| for any ^congruence Q on a f - a l g e b r a 
a - (A,G) and any a in A. I t i s easy to verify that i f 
Q i s a T-congruence on a » then the ordered pair a/Q = 
= (A/Q,G/Q) i s a r -a lgebra , where A/Q i s the quotient set 
and G/Q: Set i s the functor given by 
(G/Q)([n]) = Set(n,A/Q) for each n e H, 
( (G/Q) ( f ) ) ( (u ( i ) /Q| i e n)) = ( ( G ( f ) ( u ) ) ( J ) / Q | j em) for 'each 
f e T ( [n] ,[m] ) . We shal l say that a / Q i s a quotient T - a l -
gebra. 

Moreover, the ordered t r i p l e iq = (a,h,o/Q) i s an arrow 
from OL to OL/Q in Alg(7) , where h : A — A / Q i s a function 
given by h(a) = a/Q for each element a of A. 

Let a = (A,G) and & = (B,L) be two F-algebras and l e t 
5 = (a,g,«fr) be an arrow from OL to ¿r in Alg(7). The 
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function g:A — B gives r ise to the T-congruence Q̂  on 
at defined by 

a a' i f f g (a) = g ( a ' ) . 

We shall cal l Q̂  a T -congruence induced by $ . 
The ordered tr ip le v^ = (ot/Q^ • is an arrow from 

a/Q^ to ¿r in Alg (F) , where the function r:A/Q^ —— B 
i s given by r(a/Q^) = g(a) for each a € A. 

4. The construction of free ZT-algebraa 
4.1. By a free F-algebra generated by a set X we mean a 

J-algebra a x = (AX,GX) equipped with a function ~~ 
such that for each J*-algebra <*= (A,G) and each function 
f :X — A there exists a unique arrow <p —— oc in Alg(7) 
such that the following condition holds (a) U(y>) • = f » 
where U is the forget fu l functor from Alg{T) to Set. 

We construct a free F-algebra a^ = (Ax ,GX^ generated by 
a set X in the following two steps: 

1° We construct the set A j as a colimit object of the 
diagram l~:E*X — Set, where EH is the comma category g i -
ven by the inclusion functor E:0V—- Set and the set X, i . e . 

Ob E»X = U Set(n,X), E»X(u,w) = {(u,h,w):w . h=u|, 
neN 

and the functor r is given by 
u F ( [ n ] , [ l ] ) for each object u : n X of E»X, 
(u.h.w)-— F (1 (h ) , [2 ] ) for each arrow (u,h,w) of E»X. 

Ve shall use in this step the fact that E»X i s a f i l t e r -
ed category ( c f . [fc]), for the def ini t ion of a f i l t e red cate-
gory we re fer the reader to Mac Lane's book [15} , p.207. 

2° We construct the functor G^: 2T — S e t as a colimit 
object of the dia(gram r':EJX —»-Set given by 
u Gn for each object u:n ——X of EIX ( f o r Gn see 3.2) , 
(u,h,wT'——a for each arrow (u,h,w) of BJX, where oT is the 
natural transformation from G„ to G„ (n and m being the n m — — 
domains of u and w respectivelyT given by 
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Construction of tree algebras 13 

afe] " ?B.k-FiI(h,l»fe]1 ' ?n,k f o r e a o h k e 5 
(for the definition of and y n k see 3.2). 

Ve shall use in this step the "pointwise" construction of 
colimits in functor categories (of. Schubert's book [22], 
p.53); if D : © — S e t C is a diagram (functor), then a coli-
mit object of D constructed "pointwise" is the functor 
HsC—- Set^ defined as follows: 

i) the value H(C) for C e Ob C is a colimit object of 
the diagram Dcs©-»-Set given by 
DC(B) = (D(B))(C) for each object B of© , 
Dc(f) "OCQ for each arrow f of © , where is the C-th 
component of the natural transformation a = D(f), 

ii) the value H(f) for f tC(C,C') is the unique fun-
ction h:H(C) — H ( C ' ) such that h • qB c - qB c# •(D(B)(f)) 
for each B € Obf?, where qfi C:DC(B) — — H(C) are components 
of the universal cone from DQ to H(C) and qfl (B)—-
— H ( C ' ) are components of the universal cone from 
to H(C'). 

We shall also use in this step the fact that "filtered 
colimits commute with finite products" in Set (cf. [22] , 
p.77), i.9. if B is a filtered category, D:©—-Set is 
a diagram, and C is a colimit object of D, then C- is 
a-colimit object of the diagram Djnjsffl—Set given by 
D(nj(B) = Set(n,D(B)) for each object B of B , 
D(~j(f) = Set(n,D(f)) for each arrow f o f ® . 
"Moreover, if (qB:D(B) — — C|B e Ob©) is the universal 

cone from D to C, then (Set(n,qB)|B c Ob©) is the uni-
versal cone from D,„ \ to C-. In) 

4.2. We present the details of the construction in the 
step 1°. Since E H is a filtered category, we construct the 
colimit object A^ of T in the similar way as in [22], 
p.73» subsection 9.4.2. We define A^ as the quotient set 
X*/~, where 

X* - U {(f,u)| f e 2T( [n], [l]), ueSet(nfX)| 
n«H 
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and ~ i s the e q u i v a l e n c e r e l a t i o n on the set X* d e f i n e d 
i n the f o l l o w i n g way: 
( f t [n] —— [ l ] f u : n — ( g s [mj — [ l ] , w s m — X) i f f there exist 
k € H f u n c t i o n s v : k — * - X , h' i n — k , h" :m—— k such t h a t 
v « h ' - u , v h " - v , and f • I ( h ' ) = g . I ( h " ) . ( c f . [21] , 
P . 1 3 1 ) . 

Ve s h a l l use the f o l l o w i n g f a c t s : 
1 ) f o r eaoh object u : n —— X of EJX the u - t h component 

of the u n i v e r s a l cone from to X * / ~ i s a f u n c t i o n 
q t t : ] T ( [ n ] , [ l J ) — 1 * / ~ g i v e n by q ( f ) = ( f . u ) / ^ , f o r eaoh 
f e F ( [ e ] , [ l ] ) , where ( f , u ) / ~ * ( i f ' , u ' )| ( f ' , u ' ) ~ ( f , u ) [ 

2) eaoh f a m i l y ( ( f i f u ^ : ^ — X ) / ~ | i e ¡n) of elements of 
X * / ~ i s e q u a l to the f a m i l y ( ( f ^ , u : n —— X ) / ~ | i e m), where 
n = n^ + . . . + n m , u : n —— X i s the unique f u n o t i o n suoh t h a t 

= f t f o r q^ g i v e n by j <—— n^ + . . . + n i _ 1 + j , and 
f i = f i ° 

4 . 3 . We present the d e t a i l s of the c o n s t r u c t i o n i n the 
step 2 ° . S i n c e we c o n s t r u c t G^ by us ing " p o i n t w i s e " c o n s t r u c -
t i o n and " f i l t e r e d c o l i m i t s commute w i t h f i n i t e p r o d u c t s " , we 
d e f i n e G^ by 

a) G x ( [ n ] ) = S e t ( n , X # / ~ ) = (A^)— f o r each n e H, 
b) the va lue G x ( s ) f o r s « T ( f m ] , [ k ] ) i s d e f i n e d as 

the unique f u n c t i o n h : ( A ^ ) ® —— ( A ^ ) - such t h a t f o r each 
object u : n — X of B*X 

h . S e t ( m , q u ) = S e t ( k , q u ) • ( T ' f a ) ( s ) ) , 

where q u are the components of the u n i v e r s a l Cone from l~ 
to X * / ~ . I n p a r t i c u l a r , f o r g e r ( [ m ] , [ l ] ) we have by 
4 . 2 1) t h a t 

G x ( g M ( g i f w ) / ~ | i € 5) = (g • < g 1 : i e m> , w ) / ~ , 

hejjoe us ing 4 . 2 2) we o b t a i n 

( ? ) G ^ g M i f ^ u ^ Z - l i € m) = (g • e m > , u ) / ~ , 
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where u and are defined as in 4.2 2) fo r the family 

( ( f '±»ui>/—I i e 5 ) . 

How, using 4.3 (0) we have that = Set tq^.Aj) 
and henoe (A^.G^) i s a F-a lgebra . 

4 .4 . How we sha l l show that fo r /^sX—— A^ given by 
x - (id j -^ .q*:!—-X)/—, and f o r each J - a l g e b r a a = ( A,G), 
and f o r eaoh funct ion f:X ——A there e x i s t s a unique arrow 
(p s<*j—- a i n Alg(F) such that the condition 4.1 (a) holds. 

Por eaoh funct ion wsm — X , l e t /w/:Am—— A be the 
func t ion defined by — 

/w/(g) = (G(g)(f . w)) (D fo r each g e Ag = T ( [m] , [ l ] ) . 
Sinoe Aj i s a colimit object of the diagram T and fo r eaoh 
arrow (w, t ,w ' ) of E»X we have that / w ' / * T ( h ( t ) , [ l ] ) = /w/ 
(because G(I ( t ) ) = Set( t ,A) and w' • t = w), there e x i s t s 
a unique arrow —— A such that f o r each object w of 
BtX the following holds 

h » qw = /w/ f 

or equivalent ly 

(ri h((g,w)/~) = (G(g)(f . w ) ) ( D . 

Using 3 .4 , 4.3 (£) and 4.4 ( j ) we see tha t <p = ( a 2 , h , a ) 
i s the unique arrow in Alg{T) such tha t the condition 4.1 (tt) 
holds . 

4.5« C o r o l l a r y . The f o r g e t f u l functor 
U:Alg(j") —— Set has a l e f t ad jo in t P such tha t F(X) = <*x; 
the components of the unit rj of t h i s adjunction are the 
func t ions rj^ defined as in 4.4. 

5. The construct ion of a l e f t ad jo in t to an algebraio 
functor 

5 .1 . Let T = ( T , I ) , J '= (ZT',I } be two algebraic theor ies 
and l e t J : V" be a co var i ant functor such tha t J • I ' = I . 
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16 A.Obtuiowicz,T.Swirszcz 

The functor J induces the functor^ :Alg(F) —— Alg(f') de-
fined as fo l lows: 
J(<z) = (A,G°J) for each F-algebra <X = (A,G), 
?(<p) - (J (a) ,V(<f) JW) f o r each arrow f : at in Alg(F) , 
Where U:Alg(F) Set i s the f o rge t fu l functor ( e f . 3 . 3 ) . 
This functor 2 i s called an algebraic functor induoed by J. 

5.2. Let J and % be the functors as in 5.1 and l e t 
3E = (X,H) be a J-a lgebra . We shall construct a F-algebra x 
and an arrow q : x —Jd) in Alg( F') sat is fy ing the fo l low-
ing condition: 

1) f o r each arrow if : x -—¡f(Jr) in Alg( F') there i s a 
unique arrow yt i x — / i n Alg(F) such that 

1) 9 M ° % = <p* 
Let P(X) = a^ = (A^.Gj) be the f ree F-algebra genera-

ted by the underlying set X of the F-algebra x = (X,H). 
We shall say that a F-congruence Q on F(X) = a^ i s i - r e -
gular i f the following condition holds: 

2) i f H ( f ) (u) = I'{/=,){v) , -then ( J ( f ) ,u)/~ Q(J(g) ,v)/~, 
where ~ is the equivalence re lat ion defined in 4.2. Let Qa 

be the smallest x -regular F-congruence on F(X). We shall 
show that the condition 5.2 1) holds fo r x = FiXj/Q^ and 
for J j = (*,U(IQ ) • 3 (FtD/Qg)) , where is defined 
for the F-congruence Q as in 3.6 and ——U(F(X)) is 
defined as in 4.4. Let ip : x — J (¿ ) be an arrow in Alg( F' ) 
and l e t £ :F(X) ——Jbr be the unique arrow in Alg(F) such that 

3) U{f ) o /¡,x = U ' ( tp) , 
where U' :Alg( 7"') — Set is the f o rge t fu l functor. Since 
the F-congruence Q̂  on F(X) induced by the arrow £ ( c f . 
3.6) i s x - regular , Q^ C Q and henco 6 = (F(X)/Q I,s,F(X)/Q^ ) 
i s an arrow in A lg (F ) , where the function s:U(F(X)/Q2)—— 
—— U(F(X)A,^) i s given by sic/Q^) = c/Q^. Moreover, 
vk»6'Ln = ( (for the de f in i t ion of vt see 3.6) and hence 
I ^x -> 5 
by 5.2 3) f = v. ® 6 i s an arrow in Alg(F) such that the 
condition 5.2 1] i ) holds. We shall show that <p = « 6 i s 
the unique arrow in Alg(F) sat is fy ing 5.2. 1) i ) , i . e . i f 
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Construction of free algebras 17 

<? ( V' i * 7X = then ij)' = Vç ' 6 . In f ac t , since F(X) i s 
a free ZT-algebra generated by the set X, 

hence using the fact U(tQ ) i s a surjection we deduce that 

5.3. C o r o l l a r y . The functor J :Alg(7T) — 
—-Alg (2T ' ) has a l e f t adjoint 7 such that J (as) = x = 
= F(U' (x ) )/Qx for each r'-algebra 3t ; besides that the compo-
nents of the unit ĵ  of this adjunction are the arrows 
defined as in 5.2. 

5.4. C o r o l l a r y . Let ip : x W b e a n arrow 
in A l g ( J ' ) . I f U ' { y ) i s an in ject ion, then U ' t ^J is an 
injeot ion. 

P r o o f . Since U' (p ) is an in ject ion, the fol lowing 
proposition is true: 

l „ .X) induced by the uni-
que arrow £ sat is fy ing 5.2.- 3) . Since Q^c Q^, u ' (<7j) i s 

an inject ion by the de f in i t ion of q and by 5.4. (<f). 
5.5. We shall present certain characterization of the 

T -congruence on P(X) = = ( A x» G x ' defined for a 
F'-algebra x= (X,H) in 5.2. 

• l e t a binary re lat ion R J on the set U(F(X)) = Az = X#/~ 
be def ine^ as fol lows: 
c 1 / ~ E a o 2/~ i f f there exist k,m,neN, h t T{ [k] , [ l ] ) , • e Xe, 
ucX®, and there exist famil ies ( f ^^m] — [ l ] | i e k ) , 

[ » ] — [ l ] I1 € k) of arrows of T' such that H ( r ± ) ( • ) = 
= » ( g j j l iu ) for each i e k and c 1 ~ (h • < J i ^ ) : i e k > ,T) , 
and o 2 ~ ( h • < J ( g i ) : i e k > , u ) . 

Let now R* = R_, R n + 1 = Rn © R_ for each n > 1, whe-X X X X 3( 
-e © denotes the composition of re lat ions. 

We prove by induction on n the following two proposi-
t i one: 

fj'= v. « 6 . 

then x = y , 
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18 A.Obtulowioz, T.Swirszoz 

1 ) i f Q is i - regular ZT-congruenoe on P(X), then R^GQ, 
2) i f f t 2T([m], [ l ] ) and c±/~ Rn c'±/~ for each i € m, 

then 

G x ( f ) . ( c i /~| i € m) R^ G x ( f ) . (c^/~|i £ m). 

The relation Hj satisf ies also the following conditions 
3) i f H ( f ) (u ) = H(g ) (v ) , then ( J ( f ) , u ) / ~ R^iJ(g),v)/~. 

Since the relation H j is reflexive and symmetric, we dedu-
ce from 5.5. 1), 2), 3) that 

4) U R n = Q_. 
n ^ 1 

The formula 5.5» 4) can serve as a characterization of Q . 

6. The problem of extension of algebras 
6.1. Let J = (F , I ) , T'= (2T.X' ) be two algebraic theories 

and let J:ZT'^ZT be a contravariant functor such that 
J • I ' = 1 . Let ] : Alg(ZT) Alg(F ' ) be the algebraic functor 
induced by J. We shall say that the problem of extension 
of a ZT-algebra x = (X,H) w.r .t . the algebraic functor jf 
induced by J has a positive solution i f there exist a ZT-al-
gebra ¿r and an arrow tf i x — j U b ) in Alg( W') with U' ( f ) 
being an injection. 

The following proposition is an immediate consequence 
of 5.4. 

6.2. P r o p o s i t i o n . The problem of extension 
of a ZT-algebra x w . r . t . the algebraic functor ¿F induced 
by J has positive solution i f f is an injeotion, 
where y ,: is theas-th component of the unit rj 
of the adjunction determined by functors J f 7 , 

6.3. The proposition 6.2 and the characterization of Qx 

presented in 5.5 give rise to the following necessary condi-
tions for the positive solution of the problem of extension 
of a F -algebra i = (X,H) w.r . t . the algebraio functor ¡} 
induced by J. 
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UT0) i f J ( f ) = J ( g ) , then H ( f ) ( v ) = H ( g ) ( v ) , 
(Jl^) i f ( J ( f ) , v ) / ~ R 4 ( J ( g ) f a ) A - , then H ( f ) ( v ) = H ( g ) ( u j , 
(JTn) i f ( J ( f ) , v ) / ~ R § ( J ( g ) , u ) / ~ , then H ( f ) ( v ) = H ( g ) ( u ) . 
The c o n d i t i o n (JTQ) IS equ iva len t t o the fo l lowing c o n d i t i o n : 
UTQ) i f ( J ( f ) , ( v D ~ ( J ( g ) , u ) , then H ( f ) ( v ) = H ( g ) ( u ) . 

Let us cons ider the fo l lowing c o n d i t i o n s : 
(d 0 ) the f u n c t o r J i s f u l l and (jTQ) h o l d s , 

Hx i s a t r a n s i t i v e r e l a t i o n and (JT^) h o l d s , 
( 4 R j * i s a t r a n s i t i v e r e l a t i o n and (JTa) h o l d s , 
(4A) the cond i t i on UCD) holds f o r n = 2 and i f ( J ( g ) , u ) / ~ n j 
(h ,w) /~ , then ( J (g ) , u ) / ~ R ^ h . w ) / - . 

We deduce from 5 . 5 . 4) and 6.2 t h a t each of the c o n d i t i o n s 
( d 0 ) , (4 . , ) , ( d n ) , d " ) i s a s u f f i c i e n t cond i t i on f o r the p o s i -
t i v e s o l u t i o n of the problem of ex t ens ion of x w . r . t . J i n d u -
ced by J . 
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