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ON GENERALIZED STRONG NORLUND SUMMABILITY FIELDS

1. Introduction

The convergence fields of generalized strong Norlund sum-
mability have been investigated by Kumar [2], Sinha [6] and
Schaper [5]. In this paper we discuss the relations between
the convergence fields O[N,p,a]L and O[N,par,a.]x, rel,
A > 1. The results are generalisations of known theorems of
Kuttner and Thorpe [3] (a=1, 2= 1) and Schaper [5](1= 1).

2. Preliminaries
et § := {sls :No-—c} bs the set of complex sequen-
ces. If s,t ¢ $, then s»t € § is defined by

n

srt) := (sat) := E Sy b n = 0.
V=0

¥e define % €$ by

&
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s
o]
+
LS
C

S
Tn.-

¥e write t if S tneR and s stn for all n.

8 <
= n
If s e $ we define ac usual As € § by
Aso :t= B
and |s|e $ by |s|, := |s

ABn = Bn - 8



2 R.Schaper

We often use the following abbreviations

1:= {1,1,1,...0,

{1,0,0,...}.

e :
It ocan be easily verified that
Aant :=A(art) = (As)nt = 8 # (AL),
As«l = 8, ane = B8,
We consider now the following sets of sequences:

Q= {a c$ I’n 0 for almost all n},
{ := {s € $|Z |8n| <°°}'
n=0 v
o(t) := {e € $|11m %n = 0} for t €8,
nee=

o(t) := {e e 3| |s]| < K|t } for te $.

let a, pe $ be suth that polo,an#Ofor n=> 0 and
praeQ, then _P:._": is the generaligzed Nérlund mean of
8 ¢ 3. The sequence 8 1is said to be generalized Nérlund
summable to zero if pras e o{pwals [1], [5]. Then we write

o(N,p,a) := {s e $ | pras € o(p*a)}.

If furthermore Apw»x ¢ @ we define generalized strong
Norlund summability. The sequence 8 1is sald to be generali-
zed strongly summable (N,p,o) with index A(A>0) to 6, if

n
{ 5= |apua, |- 188282 - 4[*} € ofpeod
v=0
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Strong Norlund summability fields 3

and this is denoted by 86 [N.p,a.]a_; [2], [6]. Since the,
sequence on the left side is monotonic, this definition is of
use only if |pva| ~—-c0 g8 N —eoe,

We have 5—6[N,p,a], if and only if {e, - 6)— o
[N,p,a,]z, hence we only consider the limits O [N,p,a]l.

If t,AteQ and A >0 we define the set

n

sl(t) := {s € $I{Z|Atv

v=0

%—%vll} € o(t)} .

So we have O[N,p,a.]" 1= {s e $ | psaL8 € 37»“’"“’}' Thus the
structure of the convergence field O[N,p,a]x is determined
by the structure of the set s,'(pua.).

For the remainder of this paper, we shall assume that if
(N,p,a) is a generalized Norlund method, then Py # 0, @, #0
for n 2 0 and p*a e Q. Considering strong summability we
furthermore shall assume ApxqeQ, lim Ip’“,n =oo and A>1

N-=o0

unless mention is made to the contrary.
If pe $ we write P(z) = D_ pvzv and denote the radius
v=0

of convergence of this power series by ¢(p). We use similar
notations with other letters in place of p.

If p, # 0 there exists a k € § such that psk = e, If fur-
thermore ¢(p)> O, then also 9(1:) > 0 and for |z|<9(k)

(1) K(Z) =ﬂ%)-=Zkvzv

holds. o0
We often write Z insted of Z .

3. Representation theorem
We first give a representation.theorem which is an easy
consequence of the definition of [I-Z,p,a]ﬁ sunmability.
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4 R.Schaper

Theorem 1. Suppose that s,(pra) S {xe$|9(x)>1}
for A>0, Then s ¢ o[u,p,a;Lt if and only if there exists a
g € sx(pna) such that

ngz" G(z

AS(2) := Za,v svzv = =

-~ Plz
vazv
for |z|<min(1,9(k)).
Lemma 5 will give conditions that guarantee the inoclusion
s%(pxa)c{x |(x) 2 1}.

4. Inclusion theorem
We first list some conditions ona, p, © € $§. So we have

pea
(2) 1im —2=1 o 4,
N-= 00 Mn

There is an M1 such that for all n, u with n 2 P =20

( p“an-é
\3) p*an <M1o
Apra
n-1 _
(4) r}im”.ﬁ’—(ln—_ 1.

There is an M2 such that for all n, M with n 2u =2 0

(5) <l

Opea

Ap-qn_
n

;

Lzt r, u, ve ¢ be such that

k . ?3
(£) 1 R(z) = U(z2)«V(z)TT (1 - 3-) for |z|<1,
) i=1 i

with Ulz) # ¢, V(E) # O for |g|<1 end § = 1, ¢4 20,
0<|ail<1.

[Let v € § be such that vew = e,

- 552 -




Strong Korlund summability fields 5

7e use the conditions (2) and (3) instead of the condi-
tions of the regularity of (N,p,a). The conditions (2} and (3)
are independent of the conditions of regularity of (X,p,a)
since there are regular (N,p,a) methods which do not satisfy
{(2) and (3) and there are also (N,p,a methods which satisfy
{2) and (3} but are not regular [5].

The conditions (2) and {3) are the exact conditions for
o(pxa) = o{psr=a) and (2)-(5) guarantee s,(pwa) = 8,(psrec)
(see Lemma C and Lemma 2},

Theorem 2. et € ¢ be such that R(0) # 0,
B(1) # 0. Suppose that the conditions (2)}-(5) hold and
¢(p) > 0. Then

O[N,p,aJk €0 N,par,a.],h.

5. Structure theorems

Theorem 3. Suppose that the conditions (2)-(6)
hold with ¢; > 0, v = w = e and (p) > 0, If we define
g := psrTwas, where s ¢ O[ﬁ,p r,aﬁx, then ¢(g) = 1. Let G

satisfy
k T4
(1) 6lz) = qolz) « TT (1 - ;)
1=1
for [z|<1 with ,Gla;) # 0, 74 =¢;, i.e. the root a; of R

with multiplicity 91 is a root of G with maltiplicity

Ti0 74294 Then s € O[N,p,a]l.

Theorem 4. Suppose that (2)-(6) hold with
9; >0, v=w-=-¢eand pe sl(p¢a), then ¢(1) 2 1. Let P sa-
tisfy

k g
(8) P(z) = ,P(z) « [] (1 -%_)

i=1 1

i

for |z| <1 with ,P(a;) # 0, 5, = 0, i.e. the root a; of R is
a root of F with multiplicity Ty If
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K M+
TS CR [N DNl SN o FENEL
i=1 =1 +1

then O[N,p«r,a,]A = {sls =t+d, te O[N,p,a.]’.. de D}.

If R has no zero, then D = ¥ and we get the following
corollary.

Corollary 1. If the conditions (2)-(6) hold
with R(z) # O for |z|<1 and let p € s;(psa), then
O[N,pﬁl‘,a]% = O[Nspoa']l-

Theorem S5e If the conditions (2)-(6) hold with
94 = 0 and ¢(p) > 0, then

0[N,p-r,a.]* = {e |as = weat, t € O[N,p,a]x}.

Theorem 6, If the conditions (2)-(6) hold and
p satisfies the conditions of Theorem 4, then

{s]as

{slas

1}
L}

O[N,p-r,a.]x (wsat) + (wead), teO[N,p,a] , d € D}=

(woat) + f feO[N,p,a] s O € D}.

If A= 1 Theorems 1~-6 hold under the conditions (2) and
(3) instead of (2)-(6); [5]. In [5] we also proved analogous
theorems in the case of ordinary and absolute generalized
Nérlund summability.

The case A= 1 and @a= 1 was treated by Kuttner and Thoxpe
[3] under the condition of regularity of (N,p,l) which is
stronger than (2) and (3); ([5], pe36).

Naturallly in special cases conditions (2)-(6) are not in-
dependent. Let us denote m := ps0o and suppose Amn # 0, n 20,
Then we have

B Zn Aw,Am, ,
m - m, Am *
n v =0 AY »
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Awm, L
Hence lim—E— 1 implies 1lim—p— =1 1if (N,1,Am) 18

n
regular, Since lim Imnl = oo , this means IAml* 1 e 0(m)
(by the well known Toeplitz-theorem [4], p.11).

n

If m is a real sequence, then 1im __An_-1 = implies

the existence of a number N such that all Am with n 2N
have the same sign. Henae by

R-1

> |oa,| - L [om, |5 bm, |

v =0 v =N

and 1lim |m | = oo we got |Am| #1 ¢ O(m).

On the other hand |Am|«#1 € O(m) implies |——-‘£| <My
for all n, u20, since

|oge ] = [Bme1) | < (Jam| w1y, <

< ([am|e1), <¥y |m |
n Amv Am -

m
Since also ——# a3
%y  v=0 %y A4nm,

A
by |—Am:—;“| <M, and IAlnlbl e 0(m), so we get I%ﬂkls

(uniformly in n, u).

We remark that if p e s, (psa) 1is not assumed, ths con-
clusion of Theorem 4 may be false even in simple cases. But
we cannot use the same counterexample as Kuttner and Thorpe
([3], p.393), since in their example p, =0, n20, If we
take a =1 and P(z) := (1-z)~1 + (1-25 » then p, = 2,
Ponst = 1, n 2 0, It follows by

g;; lAp'llﬁ-"-la,pI: =n that p ¢ sl(pul).
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Let K{z) := 1 + 2z end S(3) := (1 + 22)"'. 1If we denote
q := psr and w := Aceress then an easy computation gives
c

n .
0 * 2 9, 94 =5 05, =4, W, =2, % = {-1)", n =2 1. Since

Cp "g-_i.}-lﬂl;*ll},q . |WI¢ Zvno A1 >4, a>1, and

Se(n+t) = (q*l)n, we got ¢ ¢ o(qel), thet means

6 ¢ O[N,pn‘,l]%.
6. Proofes of the theorems
“heorens 1 - 6 are special cases of the general represen-
tation theorems oroved in [5]. These theorems are of the same
structure 93 Theorems 1 - 6 but they deal with some "abstract®
sevs e{m,r,o0) and e(pra) instead of O[N,p,ou]k and s%(p’a).
First we atate tnese general theorems and we prove some sui-

table lemmas on Sl(pfaj.
Let e(m) be a set of sequences such that

e(m) S {x ¢ $lgx) 21} for me$.

(sege e(m) = o(m) or e(m) = Bk(m) under certain conditions
on m).
We defina the aset

{10) e(m,p,a) := {s e $ l pras € e(m)}

where m,p,ae$ with ¢(p) > 0, Po $0, oy #0 for n 2 0.
(Later we will have m = peq and if e.g. e(m) = o(pra), then
e(m,p,a) = o(N,p,a)).

The following theorems are proved in [5].

Theorem A, If the conditions (1) and (10) hold,
then s « o(m,p,o) if and omly if there exists a g ¢ e(m)
sach that

. v ngzv c
aifz) = Zavsvzv = ngz" = P%Z;

for 'z'<ninf1,9{k)l.
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Strong Kérlund summadility fields Y

Theorem B, If condition (10) holds, r e ! with
R(0O) # 0 and

{x]x = ber, b € e(m)} C e(mer)

hold, then e(m,p,a) C e(msr,psr,al.

For the next theorems we need the following conditions:
(11) e(m) is a complex vector space.
(12) e(m) = e{(msr) for any re ! with R(0) # 0, R(1) # 0.
(13) e(m) 2 {xlx = bsr, be e(m}, r e C}.
(14) e(m)2 {x]xh=an+vhv, be e(m), plh) > 1}.

Theorem C. Suppose that the conditions (6),
(10)-(14) hold with 94 >0, v=w=e. If g := prres,
where s ¢ e(msr,psr,a), then 9(g) 2 1. If G satisfies
(7), then 8 € e(m,p,al.

Theorem D. If the conditions (6), (10)-(14)

hold with ¢, >0, v=w = e and p € e(m), then ¢(p) = 1.
If P satisfies (8) end D is as in (9), then

a(mer, par,a) = {s|as =t+d, t e e(m,p,ax), d e D}.
Theorem 3. If the conditions (6),.(10), (12),
(13) hold with- 94 = 0, then :
e(mar,prr,a) = {s]a.s = weat, t e--e(n,p,a)}.

Theorem F. If the conditions (6), {10) -.(15}, .
holq and p sstisfies the conditions of Theorem D, then

e(m»i‘,p-r,a) islas (weat) + (wead), t ee(m,p.a}, d € D}=.

{slas (veatr) + 6 , Tee(m,p,al, J‘e-D}.

Now we want to prove some lemmas on sl(m). We need
three known leagmas'{‘j.] and the following conditions.
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10 R.Schaper

m
(15) um 2=,
D-~es n

There is an Mg such that far all n,u with n2u20

m
-1
(16) = < ue:
Am
(17) 1im —8=1 . 4,
nees By

There is an M7 such that for all n,p with n> Fao
(18) | |<ll

Lemma A, Let rel. Then lim Zn = R(1) if and
only if (15) and (16) hold. o

Lemma B, If (15) hold and p>0 then there exists
an IIB such that for all n, u

lL::l‘-|< M (1 + Q)F.

Lemma C. let rel with R(1) # 0, Then of(m) =
= o({msr) 4if and only if (15) and (16) hold,

Lemma 1. The set s,(m) where A>1 is a complex
vector spacs,

The proof follows by iinkowski’s inequality.

Lemma 2, If rel with R(1) # 0 and (15)-(18)
hold, then for A >0 s;(n) = s*(m-r)

Remar k. By an easy consideration we get sl'(m} x
= sl(i!') if m =8 for n2 N, . Therefore it is no loss
6T generality to assume m, # 0, mer, # 0, Am # O, Azer 4 0
for all n.

Proof of Lemmg 2: If xes(m), then

IAm]ojA: = |Azer|. IEA__I lAmrl

- 558 -



Strong Korlund summability fields 11

Since 1iméi-'%£ n=~R(1) 0 by Lemma A and o(m) = o(mst)
by Lemma C we got. x € Ba(l;il‘). There other direotion is si-
milar. Q.BE.D. .

Lemma 3. Iet A>1 and lim |my| =e . If (16)
and (18) hold, then

BA(")D {x|x = ber, b ¢ 8,(m), rel} .

Proof. Lot be s,(m anddefineo:--ﬁ%,

y :s%"—‘ , then yeAm = rw(oceAm). Thus using H3lder s ine-

guality and (18) we obtain

ly.An!A s (|r| »
s(|r| »jam])¥ (| x| » |o*eln|) <

o-AnIJa' <

)e

SzTTx":T (= 20 'e(]z] » |c*-tm
A

r|» lAnl o|e IL). Hence

This means IA!

n n v
Z IA“’vl'I’It < '10'2 z: Irv_F-AmFl-lc I:" <

V=0 V=0 U=o0
n
SN SATN) BTSN A T 8
p-o V=0
Denoting ¢ := lAml.ll:II *1l we get e eo(l) by b e 8,(m) and

n n
3 ()1} S i 0 [l ]ty
TlJn:] rd v v 10"'5:" ‘g n-» vl*Cy

The right side tends to gzero if the limitation method defi-
ned by
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r m
I n-y v, ver,
n
n
ny*~
0 R V>,

transforms sequences of o(l) into sequences of o(l). By
Toeplitz® theorem this holds if and only if Imn[ —— oo 2and
ir] * |m! € O(m). The last condition follows from r € £
and (16). Hence bsr ¢ s,(m). Q.E.D.

Lemma 4, If (15) and (17) holds, then for A >1

sl(m);){xlxn = anﬂ)hv’ be sx(m), g(h) > 1}.

Proof. let b e sl(m) and define ¢ :=A—:1-,
X, ot Abn+v b 7 :=%% . Hence we have yn-Amn =
ZhvcnﬂAmm_v If p>0 such that (1 +p) <g(h) and

using Hélder s inequality and Lemma B we get

lyn’Amnlk = (Zlhvcnw n+v| )l}\

=( Zlhvﬂmn-wl )k_1'(Z|huA'n+v' * |°n+v|x) <
< IAmnlh-“'MB'(Zlhvl '(1*7)A)A—1'(Zlthnn+vl' lcn-rv'l)‘

Hence ol |33 5M11Z|thmn+v| leneyl ™
Denoting
€y ¢ Z |b,am,, o] e n+v|
and
2[1 o= 33 CIH-D for n >0

we have e eo(l) and ¢ e o(l) since b e s,(m). Also we
get
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Z lAmpl'b'l Moy Z Ihvl Z ,Amp+v| f‘“’l

n+y

<My, Z |, Z(): ’A“‘FI'I“I: =
F,:

< iy, Z lhv,'lAmn+v|"n+v =

by Lemma B. Hence x e a{m). Q.E.D.
Lemma 5. If (15) and (17) hold, then for A >0

8, (o) ;{ ox) 2 }

Proof. If xeax(m), then

|an|*=1. Jax|? < IAmllq-lel"- 1 ¢ o(m) < O(m).

Hence
M m
12' I
|AI|A < W $= Coe
n-1

By ¢15) and (17) 1lim =1, hence g¢l(c) = 1 and

e(ax) 21, olx) 21. Q E.D.

Now the proofs of the Theorems are direct consequences of
the Theorems A - F and our Lemmas, Theorem 1 follows from
Theorem A, Lemma 5 gives some information on sl(m)c{xlq(x)m}.
The proof of Theorem 2 follows from Theorem B and Lemmas 2
and 3. The moofs of the Theorems 3 - 6 follow from the cor-
responding Theorems C - F and Lemmas 1 - 5.

- 561 -



14

R.Schaper

(4]
(2]
[5]

[4]
(5]
[6)

RSFEREBCES

G. Das: On some method of summability, Quart. J.
Math, Oxford (2), 17 (1966) 94-111.

A, Kumar: Generalized strong Norlund summability.
Demonstratio Math. 9 (1976) 451-468.

B. Kuttner, B, Thorpe: Onstrong Nor-
lund summability fields, Canad. J. Math. 24 (1972)
390-399,

A. Peyerimhott: Lectures on summability,
Berlin 1969.

R, Schaper: frber Konvergenzfelder von verallge~
meinarten Norlundverfahren., Diesertation, Kassel 1973,

R. Sinhaz: Onstrong (N,p,) summability of infi-
nite series. I1II. Mat., Vesnik, (N.S.), 10, (25) (1973)
313-318.

FACHBEREICH 17 MATHEMATIK, GESAMTHOCHSCHULE KASSEL,
HEINRICH-PLETT~-STR. 40, D 3500 KASSEL, W.-GERMANY
Received May 12, 1979.

- 562 -



