

M. B. Wanke-Jakubowska, M. E. Wanke-Jerie

ERRATUM TO THE PAPER:
ON ORDERS OF SKEW ELEMENTS IN FINITE n -GROUPS

We want to correct a few misprints in the quoted paper [1] (see also R \breve{Z} Mat. 80:2A176). The definition of n -group on page 247 is incorrect. It should be the following:

A non-empty set G with an n -ary operation f ($n > 2$) is said to be an n -group if the following conditions (i) and (ii) are satisfied:

(i) for all $a_1, \dots, a_{2n-1} \in G$ and for $1 \leq i \leq n-1$ we have

$$(1) \quad f(f(a_1, \dots, a_n), a_{n+1}, \dots, a_{2n-1}) = \\ = f(a_1, \dots, a_i, f(a_{i+1}, \dots, a_{i+n}), a_{i+n+1}, \dots, a_{2n-1}),$$

(ii) for all $b, a_1, \dots, a_{i-1}, a_{i+1}, \dots, a_n \in G$ and for every $1 \leq i \leq n$ (where a_{i-1} and a_{n+1} denote the empty symbols) there exists an element $a_i \in G$ such that

$$(2) \quad f(a_1, \dots, a_{i-1}, a_i, a_{i+1}, \dots, a_n) = b.$$

In the formula on p.248¹ parentheses are missing. It should be

$$\underbrace{f(f(\dots f(a_1^n), \dots), a_{(s-1)(n-1)+2}^{s(n-1)+1})}_{s \text{ times}} = f_{(s)}(a_1^{s(n-1)+1}).$$

Instead of the false computation on pages 248₁₋₃ and 249¹⁻⁴ we shall give a new proof of the following theorem.

Theorem 1. If $(G; f)$ is an finite n -group of order g and $(n-2, g) = 1$, then G satisfies the condition

$$(3) \quad (\forall a \in G)(r(a) = r(\bar{a})).$$

Proof. Let $a \in G$, $r(a) = k$ and $r(\bar{a}) = k'$. Then by Lagrange's theorem for n -groups we get $k'|k|g$ and $(k, n-2) = 1$. Taking into account $\bar{a}^{<k>} = \bar{a}$, $a^{<k-1>} = \bar{a}$ we obtain $a = a^{<k>} = f(a^{<n-1>}, a^{<k-1>}) = f(a^{<n-1>}, (a^{<k-1>})^{<k>}) = a^{<k+k'+k'(k-1)(n-1)>}$. Therefore $k|k+k'+k'(k-1)(n-1) = k(k'(n-1)+1) - k'(n-2)$, and so $k|k'$, which completes the proof of Theorem 1.

Observe that the same proof is valid for an arbitrary n -group if the element a is of order k with $(k, n-2) = 1$.

The correct form of (4) on p.250¹⁴ is

$$(4) \quad \bar{\bar{a}} = a$$

(if a is an element of a 3-group).

The index 2 on p.251₆ should be in parentheses. On p.251₃ instead of $\bar{b} = a$ it should be $\bar{b} = b$. On p.253² the equality " $a^5 = a$ " should take the form " $a^{<5>} = \bar{a}$ ".

Acknowledgement. The authors are indebted to Dr Kazimierz Głazek for suggesting this erratum to their paper.

REFERENCES

[1] M.B. Wanke - Jakubowska, M.E. Wanke - Jerie : On orders of skew elements in finite n -groups, Demonstratio Math., 12 (1979) 247-253.