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Agnieszka Pluciniska

AN APPLICATION OF QUASI-DIFFUSION PROCESSES
TO A CHARACTERIZATION OF GAUSSIAN PROCESSES

Let Xt where t ¢(0,T) be & stochastic process with va-

lues in R1, the ccvariance function kij = K(ti’tj) = E{X; X
i

and positive definite matrix [kij] ?j:‘l for t; # tj.
Let t1 <eoe <tn+1p tn»'—- (t."oco.tn), Atn =1 -t

n+1 'n?
X (x1’000’xn)€Rn' x = (Xt."...,xtn)'

n n

Up = bpltpXpg) = E(thlxn_1), ug = B(Xg) =0,

H

2 2 Y 2 _ 2
6n sn(tn’xnﬂ) = E[(th'Pn) IXn-1:l’ 61 - E(xt)’

(n) n {n)
K00 = det[ky;]5y.q, Kj3' - the cofactor of k.

It is well known that for gaussian processes we have

n-1
1 S \
(1) P, o= - T ) (n}
1 Kln-ﬂ A Kni xiv
i=1
(n)
2 _ K7

In thie paper we consider the following problem: Do (1),

{2} characterize gaussian processes? In other words what is
the class of processes for which it follows from (1), (2)
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2 A,Pluciriska

that Xt iy a goussian process, The main assumption in our
considerasion will be K €C2.

In the paper [1} t?e analopical problem of characteriza=-
tion in tne case K¢C' was ccnsidered.

The cese K eC1 ané =inultaneously ¥ ¢02 is not solved
yet. None of the proposed methods can be gpplied fo this case.

We shall use the {ollowing denotatiore for oprobabilities
and conditional probabilities

po) e ,x

L S AT PR TR
FiX €liyere, & eh /X ) tor n>0
tn+1 T ’ tn+k k™n
FLXg €hyreeerXky eAk) for n =20
n+1 n+k
ané the following derotations for integrails
i Sin) . _ .
z;t—)r f (x= x ) P (tn,xn’tn+1 ,dY.) = (‘ir‘(tn+1 ,Xn,A),
1 sln-1) . -
TZE—TE f P (tn-1’xn-1’tn'tn+1’dx’dy} B Qr(tn+1’xn-1’B)
n B

i=0,1,2; 0 =1,2.

We say that X, is a guasi-~diffusion process if for n >1

and 8ll1 €, tn’ x, we have

Vix }} =0

{3) lim € 1(tn+1,xn, e X,

ot -‘O

ard there exist limits

(4) 1im ¢

U, (x.)) = agq{t 4x. )y, 1 =1,2,
Atﬁ*o n i1 *n*"n

111X
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Quasi-diffusion processes 3

where

. . _ ol
betxn} ={jx: x-xn|<g} R Vﬁ(xn) =R 'Ue(xn)'

Hare zﬁtn——» 0 always denotes zstn-—» ot.

Introducing the gnasi-diffusion process we do not assume
that there exist conditional moments of the second order, we
operate only the truncated conditional moments. In the pre-
sent paper, for another reason, we assume the existence of the
covariance tunction, Thus consequently we assume that (4) is
satisfied also tor € = +co. We shall employ the following

conditions
' . *
(37) L Qult fyqoxpagaVe ) = 0,
n
where

Ve = {(x,y):1x-y1>¢€}

(5) 1lim f ¢, (t g1)p(n-1)

At _—~0 Ap ‘tn-1’xn-1;tn’dxn) =
n - (a,b)

n+1°%n?

1,5(n=-1) )
A%;TO Qir(tnﬂ'xn’H JP (tn-1’xn-1’tn'dxn)
n

la,b)
i,r = 1,2; (a,b; - an optional interval.
%e shall assume that there exists a density f(n) of the
P'®) for nso.
In [1] the following theorem has been proved
Theorem 1., Let (3"), (4), (5) be satisfied for
r = 1, Then the following equations hold

measure
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4 A,Pluciiska

() -é%_ f(n-1)(tn-1"‘n-1‘tn'xn) +

) (n=1)
+ ax, 1:311“11”‘n)f (tn-1'xn-1‘tn’xn)] =

P [321(tn'xn)f(n-1)(tn-1'xn-1‘tn’xn)}' n 21
Xn

ml—-

2
d
9x

under the assumptions that all the derivatives in (6) are con-
tinuous,
If (1), (2) hold the following limits exist:

1
Jm M [Rlty,t,,4) = K(t3,8.0] = ki, 1=1,000,n
n
(7)
A%;EO [K(tn+1’ ne1) = K(tn’tnm)J kn
and
(4 ) A%ifo Qpq(t g 9% Ve lxy)) = 06
We then have
im - R R '
(8] aqqtpoxy) = ml;mo At (Bppq=xn) = 32 Bnsl,
n+1=t
S (1)
1 T o Anel)
=T K(n) Zia Ki,n+1 X1
i=1
7 ! '
(9) a21(tn’*n) = Ailm At [kn+1,n+1 - 2kn,n+1+knnl= Kn~Knne
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Quasi-diffusion processes 5

where

(n) !
K, k
K’(n+1) = nn

k

nn?

1 ? b
knn = (kn1'o.o,knn), knn = (k1n’ool,knn)

and Ki§n+1) - denotes the cofactor of the corresponding ele-
ment,

In the paper [1] it was proved that, if there exists a
constant 6 >0 such that

(10) 859 >6>0

and some regularity conditions hold then the unique fundamen-
tal solution of (6) is a gaussian density.

In this paper we shall consider the case inverse to (10),
namely the case

(11} ayq (tyex,) = 0.

The case {11) is characterized by the following two proper-~
ties
Property 1. If KeC', then (2) implies (11).
Proof, If KeC' then the limits (7) exist and
k., =k, thus (11) holds. Q.E.D,
From Property 1 it follows that
Property 2. If Ke C1, Xy is a gaussian pro-
cess then (11) holds.
Let X, denote the mean-square derivative of X,.

t
Property 3. If there exists X% and
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6 A.Pluciriska

(5') 1n [y (ty, R 1RO Lax) -
Keg=0

L

1yp(0)
[ Jim o Qoq by g RPN ax,)
n n
R

then (11) holds for almost all X, (mod P(°)(xn,.)).
Proof. By assumption the following limit exists

 Um 1o [K(t+h,tk) - K(t,8+h) - Klt+k,t) + K(t,t)].
ke

Hence there exist 1limits

1 ! 2
lim — EX - X, )
h0 h° t+h t

and consequently we have

. 1 2
0 = lim -4 E(X -X, )¢ =
Atﬁ»o A‘tn tn+1 tn
_ . * 2 (0) -
= lim f Golt g g BREIPTIE ) 40dx ) o) =
At _—~0
n Rn-1

: 1 (O) y o
A%ITO f Qz(tn+1’xn'R JPUUI(E ox ) =
n’ pn

RYplole Lax ).

i
C—
r
[
8
~
N
-~
o
+
-
B
=]

Thus {(11) holds almost everywhere (mod P(D)(tn,.)).
We see that (11} holds in a largas class of processes., If
(11) holds, then [€) is a system of partial differential equa-
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Guasi-diffusion processes 7

tions of the first order. In general for a4 giveu vy (8)
the solution in ths class of density function is not unioue,
Thus we introduce additionally new conditions and new methods,
Namely we shall base our considerations on conditions (3')-(5])
not only for r =1 but also for r = 2 and the fact taat
K€C2. In the case KeC2 we introduce the following nota-
tion

2
" __a*_ ] _ u "
in = 3.2 ¥inetfe o=t 0 Kin = Ugpoeeesdygle <3<y
n+1
~u _ _g—- '
knn T at knn’
k' = lim - (k - 2k + k)
nn ~ Atn*o Atn n+1,n+1 n,n+t nn’1
(n—1)' " l
K k
Ku(n) - ' n=1,n L,
kn,n-1’

It Ke;cz, then from Taylor’s formula it follows that

k K + At K + 3 (m;n)2 kr"1 + olat )2,

n,n+1 = “nn n

Hence for i, ., and a,, given respectively by (1), (8) we
have '

-1

(12) A%120 YRy (Wpyq =X =0tpay g (tp,x ) =
n n
(n}) v |
1 IK ’ knn 32 1 M
= _.(n) ' = 2 Yn41 =72 ¥y
2K Xpy 0 | 29t Yhe1=tn
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8 ‘ A.Pluoidska

For un+1vyhoyg.6§+1 given respectively by (1), (8), (12},
(2) we denote

’
(") ret = FnPra1*One1 = Xnbueq tpyq)¥en (X gty
? 1l ¢ ] ' 1 .
(8') agqlt ox ) = u = X b+, = xnbn(tn)+cn(xn_1,tn)
(127) pﬁ = xnb; +¢p = xnbg(tn)+cz(xn_1,tn)
(13) a2 = 1m 1 62
BT At -0 (aty)2 MV

where evidently

b'———a—b b"-_'cl_z_b
n atn+1 n+1 tn+1=tn' n atﬁ+1 n+1 tn+1=tn

and analogically for ch,o;.

In our considerations we shall use the following property
proved in [1] and connected with the funotion defined by (1),
(z), (8).

Property 4. If (1), (2), (7), (11) hold then
Ne have

d 2 2 ! -~ - 3 _ [ '
(14) at 6p = 26n byw By =3¢ By = O tUpbye
We are going to continue the investigation of the problem
of characterization by considering the following cases and
differential equations joined with them
I. &,y >0, parzbolic equations (the case considered
in 01])
iI. a5y = o, 8y, = 0, a trivial cas?é)
differential eauations of the first order (6),

n,°)), partial
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Quasi-diffusion processes 9

IVe Byq = 0, 85y >0, 844 =0 (mod P(O)(tn.')), ordinary
differential equations of the first and of the second order,
which will be given,

Ad.II, The fact that this case is trivial is explained by
the following property:

Property 5. Let KecC?, and let (1), (2) hold.
If a,,(t ,x,) = 0, then the distribution of Y = (xn,x;n)

is improper (of the singular type).
Proof. Itis evident that k; = E(xtixfn),

AN _ J 2
ko, = E(xtn) and
K(n), k'
a,(t ,x ) - a2, (t ) = a2 = = i
22'tn*Xp 11 ' tpeXp? =4y = knl | An
'kin' knn

and that K(n)dﬁ is the covariance matrix of Yn' Thus
a,, = 0 implies d2 = 0, in other words the distribution
of Yn is improper., Q.E.D.

In the begining of the present paper it was assumed that
k{8) >0 1,6, the distribution of X 1s proper. Thus the di-
stribution of Yn could be improper only in the very trivial
cases.,

Ad.III. Now we are going to prove the following theorem,

Theorem 2. If (1), (2) hold, KeC?, aj, #0
mod P(O)(tn,')), then the unigue explicit solution f(n'1)
of (6) ie a gaussian density, and the family {f(n'1)}
satisfies the consistenoy conditions,

First we are going to prove three auxillary lemmas, Lem=-
ma 1 has the analogical character to Property 4. This lemma
expresses some relations between the parameters b;,c;,bg,c",
connected with the function f n). with the parameters Hn’gﬁ
of the frunction r‘n‘1’.

Lemma 1. If the assumptions of Theorem 2 are sa=-
tisfied, then we have

neN

2
9n
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10 A,.Plucidska

o Y " 2 _ 42
(15) (b, + (v,)° =B, ) 67 =df
: " Vo ~y 2 _ 2
(16) (e, - bpcy = Cp) 6, = dpi,
where

3 ' ~ 3 '
b =3— D0 C. =3¢ C_.
atn n? n atn n

Proof. From the properties of determinants and trom

the fact thet XKcC° it follows that

! 2 T (n) 2 -
(17) (b )24%7) (x'"))° =
(n-1) ' (n—‘l) "
X ! kn-1,n K ’ kn-1,n (n}
= ) + K ! +
} =~
‘n=-1,n? knn kn-1,n’ 0
(n=1) ' 2
K ' kn--1,n
kn-1.,n' knn
In virtue of (12), (12') we have
(n=1]) "
elm) [T et
(18) an = .
l!
kn--1,n’ knn
It is evicdent that
ln) kn
2[,(n)]2 T (n-1) g2
\9) a2[xnl]2 - X 62,
k, ’l;u
nn?® nn



Quasi-diffusion processes 1

Now let us denote

K(n), kl:ln
D = o
knn’ knn I

Taking into account the known relation for the symmetric
determinant

-D 30,

DDy 5,n41,n+1 i,n+1Dn+1,j - Dian+1,n+1

the formulas (17) - (19) and the fact that KecC® we get (15).
Analogically as (15) it can be shown that (16) holds.
Lemma 24 If the assumptions of Theorem 2 are sa-

tisfied, then for fixed n the general explicit solution of

(6) is

(20) f(”"’(tn_1,xn_1;tn,xn) = 1/6, oy <(xh-pn)/6n> ,

where ¢, 1is an optional function belonging to C'.

Proof. Iet us denote tn =%, X, =X

(21) f(n-1)(tn_1,xn_1;tn,xn) = gn(tn,xn) = gn(t,x).

Taking into account (8') we can write equation (6) in the
following form

[} 1 agn 1
3%+ (xbgrep) 53—+ bag, = 0,

Using the standard methods for partial differential equa-
tions of the first order we solve equations [2]

dgn
gnbn

[
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12 A.Plucifiska

In virtue of (14) the general solution of
b dt = - dgn/gn

can be written in the following form

1/¢, gn(t,x) = exp (-‘f bh dt) = 1/§n.

Analogically in virtue of (14) the general solution of

——gz—r-n'dt
"bn“’n_

can be written in the following form

X = l:.expf b;Idt:'x[fo;l °XP('fbndt)dt+Czl = (0, /6,+C5) 6n

The general solution of (6) is then 1p(c1,C2) = 0, whe=~
re Y is an optional function belonging to ct.
Finally the general explicit solution of (6) is given by

8,(tyx) = 176, ¢,(Cy) = 1/6, ¢, ({x=-p )/6 ),

where ¢ 1s an optional function belonging to C,.  Q.E.D.
Lemma 3. If the assumptions of Theorem 2 hold,
then 8, defined by (21) satisfies the following equation

2

g
2 n 2 _
(22) 6, . + 537 (x-y,lg, = O,

Proof . Taking into account formula (1’ ) and the
fact that -3 is the density function of & distribhution
with the mean value p .4 and the variance 6ﬁ+1 and substi-

tuting

1/ 6ppq (Xt ) = /6 q{xxybp qmepq) = 0

- 520 =



13

Quasi-diffusion processes
we have
' X=tn41
R R
N 1/bn+1
X=Un+1
(24) 1/6 41 f (x =x)op, 4 < 5 >dxn =
R1 n+1
1
=17 f [x(1 Pnatr! = Cpyq = u6n+1:| Opeqluldu =
n+1 1
R
1
TR [xbgyq=1) + 0ppq ]
n+
2 *= net
(25) /641 f (xp~x) q’n+1< 8 et ) dx, =
R1

1 2 2
= ;)—3—' [(X(bn+1-1, + cn+1) + 6n+1:|'
n+1
It follows from (1)}, (1'), (7), (8), (8') that for fixed
~19Xst,, € for every positive £1<e|b there exists

Xn _ ) n+1|
6 >0 such that for tpe1=th < 6

lX(bnﬂ'” * Cne1 |< £

and consequently for €, = lc:]b -61)1/5

n+1 ] n+1

{u:]x(bn+1-1) + Cpiq | >e|bn|}c{u:|u| > 62} .
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14 A.Pluoidiska

Therefore for such 82 we obtain

1 1 X=tn41
(26) Wm 7 [ER I <—5—> dxp <

At -0 (At,)%6p,,4 Ve (x) 41
< lim 1 f |x(b,,  =1)40, . +ub |tg, ., (1)dus=0
At ~0 (At )2b§ n+1 n+1 n+1 n+1
n n n+1]u|>€2

Now using the generalized Chapman-Kolmogorov equation, ex-
panding g into Taylor s formula and applying (23)-{26) we
get

(27)  gy(ty,qex) = f(n-1)(tn-1’xn-1‘tn+1’X) =

=f £y ko qatex 2B kst xlax =
1
R

f [gn(tn,xh(xn-x) ;——x gpltpex) +

U, (x)

1y )2 22 (t ,x) + of -"JZ} (t x)dx, +
7 \Xpx 3x2 En'inrX Olx,=%)" 18ns1'Pnetr n

+

+

-1’xn-1‘tn’xn)f(n)(tn'xn‘tn+1’X)dxn =
Ve (x)

1 1 2
e t - x(b, .=1)+c L g (¢t ,x) +
Drsd 8yl tysx) b§+1 [ n+1 n+1J ax &n''n’

u

2

1 2. .2 J 2

o~ I [(x(bn+1-1 J+o 1) +6n+1] ——-3x,2 gn(tn.xHo(Atn) .
n+1

+
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Quasi-diffusion processes 15

It follows from (6), (11) that
32

gn 3 ' ' ' agn
(28) 5e2 =35 “bpBy-ibxte ) 577 =
2
08, g
(b ) gn"bngn [Bb (b x+c )-xb" - ] ax + (b x+c ) xg'

Now expanding once more g into Taylor s formula writting
8, = 8,(t,yx) and taking into account (6), (11), we have

(29) g (t ) = g +At L 1 t))? G (At )2 =
29 Bp\PheqoX! = Ept a +2 3,‘2 + olat e =
n

og
' ) ' n 2 2
= 5n'Atn|:bn3n+(bnx+°n) Ix ] 5 (At) {(b ) gn-bngn

2

3 %8y ey 2
+ [3‘0 (b x+o )-xb ]ax + (b X+¢C n) 3x2}+ o(Atn) .

Taking into account (27)-(29), dividing by (At ) and pas-
sing to the 1limit when At, —-0, using (1), (8"), (12'),
(13) we get the following egusation

°g ]
2. °n 2.3 n9g _
dg » >+ [(b ) +b, b, ]ax (xgn)+[cnbn+can -0 _Iax =

This equation and formulas (15), (16) imply (22). Q.E.D.

Proof of Theorem 2, It follows from (15), (16),
(20) that the general solution of (22) is given by

(30) £t _qoXp_q¥tpeX,) = [exp(-uz):l [C1+szexp(u2)du],

where u = (xn-p.n)/ﬁﬁn.
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16 A,Plucidska

Taking into account formula [3] we obtain

X
j[exp(-bzxe)] {f exp(azxz):ldx = -j-ﬁ 1n %Eg- for b>a
0 0 )

and pessing to the limit when b — a we see that the function
(30) can be a density function iff C, = 0, C, = (V27 6,)"",

Finally the unique solution of (22) which is a density
function is given by

f(n'1)(tn_1,xn_1;tn,xn) = 1/6, exp-(xn-yn)2/26ﬁ].

It is evident that if u , 65 are expressed by the cova-
riance funoction K in the manner indicated by formulas (1),
(2) then these functions satisfy the oconsistency conditions.

Q.E.D.

Ad,IV, First let us protice that if for a fixed i, 840
exists, then a;, = 0 and since (3'), (5) are satisfied for
r = 2, henoce they also hold for r = 1,

Theorem 1., Iet (3'), (4), (5) ve satisfied for
r = 2, Then the following equations hold

(n-1)(tn-1’xn-1‘tn’xn)] =

(6,) axn 312(tn.xn, b il

='% gig [822(tn’xn,f(n-1)Ctn-1'xn-1’tn'xn)]’; n 21
under the assumption that all the derivatives in (6’ ) are
continuous,

Proof . First let us notice that since (3'), (4],
(5) ere satisfied for r = 2, hence they also hold for r = 1.
Next equation (6) and the fact a;4 =0 for i =1,2 imply

5%— f(n_1)(tn_1 9Xn_13tn’xn) =0

n
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Quasi-diffusion processes 17

1,00 glo=1) does not depend on t,. In such a situation
repeating the well-known reasoning used in the proof of pros=-
pective equations we get

[f(n-1 )‘tn 1'xn-1‘tn’xn) (p’(xn)Q.]z({n,H .x:n.Ua(xn) +
(a,b)

+ % ¢ (xp)Q05 (2 1 q 9o Us (X)) + O(Atn):ldxn = 0,

where (a,b) is an optional interval, ¢ - an optional func=
tion belonging to 02 and satisfying the well-~known assumptions,
We pess to the limit with At  —~O using relations (4), inte-
grate by parts and finally we take into account that ¢ is an
optional function. All this implies (6'). Q.E.D.

If aqq =0, then b =¢ =b =¢cp =0, 8, =12} =
= x, b" + oy« Equation (6') is then equivalent to equation
(22). We have already shown that in the olass of density func~
tions there is a unique solution of (22) and it is a gaussian
density, Thus we can formulate the following theorem,

Theorem 2', If (1), (2) hold, K€ C2, and
311(t »Xp ) = 0 (mod P( (t ')) then the unique explieit so-

lution f(n'1) of (6), (6 ) is a gaussian density, the family
'{f(n'1) ney oetisfles the consistency conditions.

Now we are going to give some examples.

Example 1, Let K(ty,t,) = exp(-(t2-t1)2) =

= oxp(=(4%,)%), Then ay, = 0, ayq(ty,x,) = 0,81 (ts,x5) =
= 2At1(exp(-2(At1)2) [x1-x2 exp(-(At1)2)], 322(t1,x1) = 2,
8y,(tye%,) = 2-2exp(-2(nt)2) - 4(At,)? exp(-2(nt4)2)

( xf
£ O)(t1,x1) =—1—exp<-2—1>o

Ver

2
(1) 1 (xp=t)
£ (t X ;t X ) =——exp<. —c & @
1 202 2
vax 62 262
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18 A.Pluciﬁska_

end so on, where W, = X, exp(-(At1)2), 63 =1 - exp(-2(At1)?a

Therefore we see that for some n a4(t ,x ) may be egual
to zero and for another n it may be different from zero,

Example 2, Let K(t1,t2) = cos(ta-t1). Then
K(3) = O The main assumption of the present paper is not sa-
tisfied, the distribution of X3 is improper. Only the cases
n = 1,2 non-degenerate, For these cases all the assumptions
are satisfied. The one and two-dimensional distributions are
proper gaussian distributions,
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