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AN APPLICATION OF QUASI-DIFFUSION PROCESSES 
TO A CHARACTERIZATION OF GAUSSIAN PROCESSES 

Let X. where t e ( 0 , T ) be a s t o c h a s t i c p r o c e s s w i t h va 
l u e s i n R , t h e c c v a r i a n c e f u n c t i o n k ^ = K f t ^ t ^ ) = E(X t X t 

and p o s i t i v e d e f i n i t e m a t r i x [ k ^ ] ^ , . ) f o r t ^ ^ t ^ . 
Let ^ . . . c t ^ , t n = l t 1 i n ) , A t n = t n + 1 - t n , 

Xn = f • • • e X ̂  = (X t > • • • , X t ) , 
1 n 

Hn ^ „ ( t ^ X ^ ) = B U t j X ^ ) , U, - * U t ) = 0 , 

6 n - « 5 < t n ' X n - 1 » " 61 ' E(XV> 

= d e t , kM?* - t h e c o f a c t o r of k ^ . 

I t i s w e l l known t h a t f o r g a u s s i a n p r o c e s s e s we have 

n-1 

' v, nTTT T v a K ^ n i x i ' 

( 2 ) 6 2 

i = 1 

• In) 
n " K l n - 1 ) * 

In t h i s paper we c o n s i d e r t h e f o l l o w i n g p rob lem: Do ( 1 J , 
[2 i c h a r a c t e r i z e g a u s s i a n p r o c e s s e s ? I n o t h e r words what i s 
t h e c l a s s of p r o c e s s e s f o r which i t f o l l o w s f r o m ( 1 ) , (2) 
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2 A.Pluciriska 

that Xt iy a gaussian process. Tiie main assumption in our 
2 

consideration v i l l be K e C . 
In the paper [l] the analogical problem of characteriza-

tion in tne case K£C' v.-as considered. 
1 2 The cese KeC anc simultaneously Y> 4 C i s not solved 

ye t . None of the proposed methods can be applied to th i s case, 
'He sha l l use the following denotations for probabi l i t ies 

and conditional probabi l i t i e s 

' ( t , X n ; t n + 1 , . . . , tnj_v,A n+k * 1 ' V -

e , . , . , X + eAJX_J for n >0 
S + l 1 ln+k K n 

PlX t eA1 e A^) 
n+1 n+k 

'or n = 0 

and the following denotations for integral;;. 

l A V A 

/ p U " 1 , ( t n - 1 ' x n - l i t n ' t n + 1 ' d x ' ^ ) = V * n + 1 »xn-1 ' B ) 

B 
i = 0 , 1 , 2 ; r = 1 ,2 . 

7/e say that X^ i s a quasi-d i f fusion process i f for n > 1 
and a l l £ , t n , x n we have 

(3) A i i m n Q 0 1 ( t n + 1 ' x n > W ; 

n 
= 0 

and there ex i s t l imits 

(4) 
A V ° 

i1v n* n 
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Quasi-diffusion processes 3 

where 

U £ ( V ={ x :l x" xnl< £} • V x n } = R l- Ue ( xn )-

Iiere At — - 0 always denotes At — • 0+. n n 
Introducing the quasi-diffusion process we do not assume 

that there exist conditional moments of the second order, we 
operate only the truncated conditional moments. In the pre-
sent paper, for another reason, we assume the existenoe of the 
covariance function. Thus consequently we assume that (4) is 
satisfied also for t = +co. We shall employ the following 
conditions 

( 3 < ) «>n +1'"n-1' v
e
i -M n 

where 

v£ = {(x,y}:|x-y|> e] 

' A t
l i m

n / Cir ( tn +1^n. R l ) p ( n" 1 , l tn-1' xn-V tn» d xn ) = 
n (a,b) 

= / A t ^ o Qir ( tn +V*n. H l ) p ( n' 1 ,(t n. 1.x n. 1;t n fdx n) 
ia,b; n 

i,r = 1,2; (a,b; - an optional interval. 
',','e shall assume that there exists a densi ty f ( n ) of the 

measure T x n > for n>0. 
In [l] the following theorem has been proved 
T h e o r e m 1. Let (3'), (4), (5) be satisfied for 

r = 1. Then the following equations hold 
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A . P l u c i i S s k a 

( 6 ) f ^ U ^ . x ^ W + 

+ [ a 1 1 ( t n » * n ) f ' [ n ' 1 J { t n - 1 ' * n - 1 > W ] 

2 

3 * n 

u n d e r t h e a s s u m p t i o n s t h a t a l l t h e d e r i v a t i v e s i n ( 6 ) a r e c o n -

t i n u o u s * 

I f ( 1 ) , ( 2 ) h o l d t h e f o l l o w i n g l i m i t s e x i s t : 

( 7 ) 

a n d 

A t ; [ > { t l ' W - K ( t i ' t n ) ] = k i n , » n 

n 

l i m g } - [ K ( t n + 1 , t n + 1 ) - K ( t n > t n + 1 ) ] = k ; 
A t n - 0 n 

n 

We t h e n h a v e 

( B ) i t n , * n ) = A l i m o J - ( , n + 1 - x n ) . 1 

n 

n 
1 — V k ' x 

^TnT z L K i , n + 1 x i 
i=1 

( 9 ) a 2 l ( t n , y n ) = A l i m o ^ | > n + 1 f n + 1 " 2 k n , n + 1 + k n n i = k n " k n n > 
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Quasi-diffusion processes 

where 

£'(n+1) = 
K » nn 

^nn' 1 

knn = • " * knn = (k1n knnJ 

and K i ^ ~ denotes the cofactor of the corresponding e l e -
ment. 

In the paper [1] i t was proved that, i f there ex ists a 
constant 6 > 0 such that 

(10) a 2 l >6 > 0 

and some regular i ty conditions hold then the unique fundamen-
ta l solution of (6) is a gaussian density. 

In this paper we shal l consider the case inverse to (10) , 
namely the case 

(11 ) a 2 l ( l n » x n ) = 0 > 

The case (11) i s characterized by the fol lowing two proper-
t i e s 

P r o p e r t y 1. I f KeC 1 , then (2) implies (11) . 
P r d o f . I f KeC1 then the l imits (7) exist and 

k' = k' thus (11) holds. Q.E.D. nn n' 
From Property 1 i t fo l lows that 
P r o p e r t y 2. I f KeC 1 , Xt i s a gaussian pro-

cess then (11) holds. 
Let X.j. denote the mean-square der ivat ive of X t . 
P r o p e r t y 3. I f there exists Xi and 
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6 A.Pluciriska 

{5'> J i a
n S V l < W V R l > p ( 0 , ( l - n ' d x n ) -

n Rn 

" / At% Q2l ( tn +V Xn' R l , p ( 0 , { tn' d Xn ) 

Rn n 

then (11) holds for almost all x R (mod P^(x n,.)). 
P r o o f . By assumption the following limit exists 

lio [K(t+h,t+k) - K(t,t+h) - K(t+k,t) + K(t,t)] 
h,k-0 n K 

Hence there exist limits 

lim E(X+ h -
h-0 h t + h 

and consequently we have 

0 = lim 4 - E(X+ - X+ r = 
Atn-0 n n+1 xn 

n Rn-1 

= A +
l i mn/ C 2 ( t n + 1 ' V R l , p ( ° , ( t n ^ n ' = 
n
 Rn 

H n 

(o) 
Thus (11) holds almost everywhere (mod (tn,.)). 

We see that (11) holds in a larga class of processes. If 
(11) holds, then (6) is a system of partial differential equa-
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Quaei-diffusion processes 7 

tions of the first order. In general for a ^ giveu uj (3) 
the solution in ths class of density function is not unique. 
Thus we introduce additionally new conditions and new methods. 
Namely we shall base our considerations on conditions (3')-(5) 
not only for r = 1 but also for r = 2 and the fact that 

2 2 
Ke C . In the case K e C we introduce the following nota-
tion 

k in 3t2 , n+1 
ki,nvi|tn+1=tn' kin = ( k1n"-" kin )' 

k = lim 
at -n 

(n) 

- _SL_ If nn " 31 nn' n 

0 Atn
 (kn+1,n+1 " 2kn,,n+1 + ^n'» 

(n-1 )' 

k 1 n,n-1' ' 

If K e C , then from Taylor's formula it follows that 

kn,n+1 " knn + A tn knn + i < n + ° < A V 2 -

Hence for |J-n+i a^d a ^ given respectively by (1), (8) we 
have 

( 1 2> l i m — — ? , 1 - x - A t a 1 1 (t f x ) 
At -0 (At r n + 1 n n 11 a n 

2K W) 

R { n ), k nn 

V 0 2 at 2 ^n+1 
n+1 t .=t n+1 n 

1 " 
2 ^n 
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8 A.PluoiiSska 

P o r ^n+1*^n»yn»en+1 g i v e n respectively by (1) , (8) , (12), 
(2) we denote 

( 1 ' ] n̂+1 - Vn+1+0n+1 " Vn+1 (tn+1 ,+cn+1 (*n-1 »^+11 

( 8 ' ) a 1 1 ( t n , x n ) - ^ - xnbn+o; ^ ( t n ) « D ( * n . 1 t t B ) 

( 1 2 ' ) Tl n n + c n - xnb"(tn)+c''(x_ 1 , t n ) n n n n n - r n 

(13) = lim , 1 
n At - 0 (At ) 11+1 

n n 

where evidently 

yl 9 V, I V." 8 y. I 
n ~ 3t 4 n+1 t „=t » n = ^ 2 n+1 t „=t n+1 I n+1 n "tn+'i + 

and analogical ly for cntOn* 
In our considerations we sha l l use the following property 

proved in [ i j and connected with the funotion defined by (1) , 
(2), (8 ; ) . 

P r o p e r t y 4. If (1) , (2) , (7) , (11) hold then 
ne have 

(14) - J - ¿ I - 26^ b' Un = -A- \in = c' + u b'n' 3t_ n n n* r n dt„ ~n n n n n 

We are going to continue the investigation of the problem 
of characterization by conBidering the following cases and 
d i f f e ren t i a l equations joined with them 

I . a,,.) >0, parabolic equations (the case considered 
in [1]) 

I I . a 2 l = 0, a 2 2 = 0, a t r i v i a l case, 
I II . a 2 1 = 0, a 2 2 >0, t 0 (mod P ( 0 ' ( t n , • ) ) , par t i a l 

d i f f e r en t i a l eauations of the f i r s t order (6), 
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Quasi-diffuaion processes 9 

IV. ag 1 = 0, a 2 2 >0, a ^ = 0 (mod P^° ' ( t n , * ) ) , ordinary 
d i f ferent ia l equations of the f i r s t and of the second order, 
whioh w i l l be given. 

Ad.II. The fact that this case i s t r i v i a l i s explained by 
the following property: 

P r o p e r t y 5. Let KeC2, and let (1), (2) hold. 
If a 2 2 ( t ,xn) = 0, then the distribution of YQ = (Xn,Xt ) 

n 
i s improper (of the singular type). 

P r o o f . It i s evident that = E(Xt X̂  ), 
a „ , o i - n 
knn " E ( X t > m d 

2 2 1 a 2 2 ( t n , x n ) - a 1 1 ( t n , x n ) = dn = 

v-(n) 
K » in 

i>1 v" in ' nn 

and that K^n*d2 i s the covarianoe matrix of Y„. Thus n j, n 
a22 = 0 i m P l i e s % = other words the distribution 
of Yq i s improper. Q.E.D. 

In the begining of the present paper i t was assumed that 
K(n) >0 t h e distribution of Xn i s proper. Thus the di -
stribution of Yq could be improper only in the very t r i v i a l 
cases. 

Ad.III. Now we are going to prove the following theorem. 
T h e o r e m 2. If (1), (2) hold, KeC2, a ^ / 0 

mod P ( 0 , ( t n , * ) ) , then the unique expl ic i t solution 
of (6) i s a gaussian density, and the family { f J ne j j 
s a t i s f i e s the consistency conditions. 

First we are going to prove three auxil iary lemmas, Lem-
ma 1 has the analogical character to Property This lemma 
expresses some relations between the parameters k^>cn»bn»cn»dii 
connected with the function ' with the paratoeters ^ n t ^ 
of the function 

L e m m a 1. If the assumptions of Theorem 2 are sa-
t i s f i ed , then we have 
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10 A . P l u c i 6 s k a 

115) <K + " O 6l - dn n n n n n 

( 1 6 ) 

w h e r e 

( c " - b ' c - c " ) 6 2 = d 2 u , 
1 n n n n ' n n ^ n ' 

v" 9 3 • 
n = 3 t n ' n 3 t ~ c n * 

n n 

P r o o f . P r o m t h e p r o p e r t i e s o f d e t e r m i n a n t s a n d f r o m 

t h e f a c t t h a t K e C 2 i t f o l l o w s t h a t 

»17) ( ( b ' ) 2 + b ' ' ) ( K ( n ) ) 2 = 
n n 

\ 

K i n- 1 ), k 
n - 1 , n 

n - i , n ' n n 

t r l n - 1 ) 
* • n - 1 , n 

k n - 1 , n » 0 

K ( n ) + 

w - ( n - 1 ) u> 
* » n - 1 , n 

k n - 1 , n » k n n 

I n v i r t u e o f ( 1 2 ) , ( 1 2 ' ) w e h a v e 

(18) b > ( n ) 
n 

y (n-1 ) u H 
A » n - 1 , n 

k V" 
n - 1 , n * n n 

I t i s e v i d e n t t h a t 

•,9> <[K ( n )] 2 -

'In) 
K ' " ' , k ' 

» n n 

k ' k " 
n n ' n n 

K ( n - 1 ) 6J. 
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Quaai-diffusion processes 11 

Now let us denote 

An) 
» 

Knn» 

nn 

nn 

Taking into account the known re lat ion for the symmetric 
determinant 

DDij,n+1,n+1 " Di,n+1Dn+1,j " DijDn+1,n+1 = 

the formulas (17) - (19) and the faot that K eC2 we get (15). 
Analogically as (15) i t can be shown that (16) holds* 
L e m m a 2. If the assumptions of Theorem 2 are sa-

t i s f i e d , then for fixed n the general expl ic i t solution of 
(6) i s 

(20) f U ~ 1 , ( t n - 1 » x n - 1 » W " " " ^ n V ^ n ) • 

where <fn i s an optional function belonging to C . 

( 2 1 ) 

P r o o f . Let us denote t f i = t , xfl = 

>(n-1) 
f " ( t n - 1 » x n - 1 * W " 8n ( tn» xn ) = 6 n ( t ' x ) ' 

Taking into account (8' ) we oan write equation (6) in the 
following form 

3 £ ~ + { x bn+ ck ) bn*n = 31 

Using the standard methods for part ia l d i f fe rent i a l equa-
tions of the f i r s t order we solve equations [2] 

dx 
xb' + c' n n 

= dt = -
dg n 
g b 6n n 
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12 A. Pluc iiSska 

En virtue of (14) the general solution of 

b' dt = - dg /a n 6n/6n 

can be written in the following form 

1/C, g a ( t , x ) = exp J bn d t ) - 1/6n. 

Analogically in virtue of (14) the general solution of 

dz 
xb n n 

dt 

can be written in the following form 

x = exp j b ^ d t j x j j o ; exp(-Jbndt)dt+C2 - ( ¿ W C 2 } 6 

The general solution of (6) is then ip(C1fC2) = 0, whe-
re Tj) is an optional function belonging to C^. 

Finally the general explicit solution of (6) is given by 

g a ( t , x ) . - i/encpn (c2 ) = i/6n<pn((x-yn)/6n), 

where cpn i s an optional function belonging to C^. Q.E.D. 
L e m m a 3. I f the assumptions of Theorem 2 hold, 

then gn defined by (21) sat isf ies the following equation 

(22) « n ~ f + = 
a X 

P r o o f . Taking into account formula ( l ' ) and the 
fact that gn+1 is the density function of a distribution 
with the mean value and the variance a«d substi-
tuting 

1/6n+1U-Hn+ l ) = 1/6n+1 ̂ x"xnbn+l"°n-1 ' = u 
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Qaasi-diffusion prooesses 13 

we have 

<»> 1 / 6n+1 / ^n+1 ( n i ^ 1 ) d*n " 1'bn+1 / <Pn+1(li,d» 3 

R1 R1 

- 1 /bn+1 

<2*> 1'«n+1 / ( V X ) V 1 ( ^ f ) d*n " 
R1 

- / [ x ( 1 - b n+1 i " °n+1 - u(?n+l] W u , d t t B 

n + 1 R1 

= . 1 [x(bn+1-1J + o n + 1 ] , 
n+1 

1 /6 n + 1 / U n - X ) 2 <fn+1 dxn -
R1 

= d r - [ < * ( W 1 ' + c n + i ) 2 + 6 L I > 
n+1 

It follows from (1), (1 ') , (7), (8), (B') that for fixed 
x n - 1 ' x , t n ' £ f o r e v e r y P ° s i t i v e £ i < £ | b

n + l l t h e r e exists 
6 >0 such that for t n + 1 —tn < 6 

lx<bn+1- 1 ' + c n + l l < £ 1 

and conaequently for £ 2
 = l £ I bn+11 

(u:|x(bn + 1 -1) + c n + 1 | > £ | b n | } c { u : | u | > £ 2 } . 
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14 A.Pluoitiska 

Therefore for such e 2 we obtain 

( 2 6 ) a^O ¡ i r k " f ( A V 6n+1 V £ (x ) V n + 1 ' 

Si^n (At M I lxlVl-1,+0n+1
+uVllilfn+1

(,l,du-0 n 0 ( A V V l 1 u | > e 2 

How using the generalized Chapman-Kolmogorov equation, ex-
panding g into Taylor's formula and applying (23)-i(26) we 
get 

• / f ( n " 1 , ( t „ - v X n . l J t n , x n ) f ( n , ( t n , X n i t n + 1 , x ) d x n = 

R1 

/ [ g n ( t n , x ) + ( x n - x ) ^ g a ( t a , x ) + 
U £ (x ) 

+ \ ( x n " x , 2 ^ 2 en ( t n» x J + o ( x n - x j 2 ] s n + 1 ( tn+1 » x , d x n + 

V£ (x) 

1 g n ( t n , x j [ x ( b n + 1 - 1 j + c n + 1 ] ^ g n ( t n , x ) + 
n+1 b n + 1 

+ ^ J - [ ( x ( b n + 1 - 1 ) + 0 n + l i 2 + 6 n + l ] A e n ( t f i , x i + o ( A t n ) 
n+1 o x 
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Quast-diffusion processes 15 

It follows from (6), (11) that 

[ 2 8 ) "bn6n- t bnx+cn' ^ T ' 

= (b'n)2gn-b'ngn+ [3bn(bnx+cn;-xb"n-c; 
3gn , , 32g 

Now expanding once more g into Taylor's formula writting 
gn = taking into account (6), (11 ) t we have 

(29) g n ( t n + 1 , x ) - gn+Atn ^ + 1 ( A t J 2 ^ + o(Atn)2 -

" Sn-Atn[bn*n+(bnx+cn ) H®] + \ ^ n , 2 { ( b n ) 2 A + 

+ ^ ( V - n i - ^ n l l T 1 - <bnx+0n> + o(Atft)2. 

p 
Taking into acoount (27)-(29), dividing by (Atn) and pas-

sing to the limit when —-0, using (1* ), (8' ) t (12',), 
(13) we get the following equation 

[ { b n , V b n - b n l & [ 'n*n* 'n*n] I f = 

This equation and formulas (15), (16) imply (22). Q.E.D. 
P r o o f of Theorem 2. It follows from (15)» (16), 

(20) that the general solution of (22) i s given by 

(30) f i t n - i . X n - ^ t n . ^ ) = [exp(-u2)] [c1+c2 j exp(u2)du], 

where u = (xn-nn)/V26n. 
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16 A. Plue insita 

Taking into account formula [3] we obtain 

/

r x 

[exp(-b2x2)] j exp(a x ) ** - h fel for b > a 

and passing to the limit when b —« 
(30J can be a density function iff 

a we see that the function 
»-1 C5 = 0, C = (V2? 6n)' 

Finally the unique solution of (22) whioh is a density 
function is given by 

p 
It is evident that if 6* are expressed by the cova-

rianoe function K in the manner indicated by formulas (1), 
(2) then these functions satisfy the consistency conditions. 

Q.E.D. 
Ad.IV. First let ub notice that if for a fixed 1 , a i 2 

exists, then ai1 = 0 and since (3)» (5) are satisfied for 
r = 2, hence they also hold for r = 1. 

T h e o r e m 1 . let (3' ), (4), (5) be satisfied for 
r = 2. Then the following equations hold 

n 

under the assumption that all the derivatives in (6' ) are 
continuous. 

P r o o f . First let us notice that since (3' )* (4), 
(5) are satisfied for r e 2, hence they also hold for r = 1. 
Next equation (6) and the fact a ^ = 0 for i = 1,2 imply 

g ^ * ( n ~ 1 , ( t n - 1 . * n - v W " 0 
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Quasi-diffusion prooessea 17 

i . e . f ( n - 1 ) does not depend on t . In such a s i t u a t i o n 
repeating the well-known reasoning used in the proof of pros-
pective equations we get 

( a , b ) 

+ I c p ' U n ) Q 2 2 ( t n + 1 , X n , U f c ( x n ) ) + 0 ( A t n ) ] d x n = 0 , 

where ( a , b ) i s an optional i n t e r v a l , cp - an optional func-o 
t ion belonging to C and s a t i s f y i n g the well-known assumptions* 
We pass to the l imit with A t n — 0 using r e l a t i o n s ( 4 ) , i n t e -
grate b; parts and f i n a l l y we take into account that cp i s an 
optional function. All t h i s implies ( 6 ' ) . Q.G.D. 

I f a^ 1 = 0 , then ^ - - ^ - o^ - 0 , a 1 2 = 1 / 2 ji"n = 
= + Equation (6*) i s then equivalent to equation 
( 2 2 ) . We have already shown that in the olass of density func-
t ions there i s a unique solution of (22) and i t i s a gaussian 
density . Thus we can formulate the following theorem. 

T h e o r e m 2 ' . I f (1 ) , (2) hold, Ke C 2 , and 
a ^ ( t n , x n ) = 0 (mod P ^ ' ( t n , * ) ) then the unique e x p l i c i t bo-
lution f ^ of ( 6 ) , (6* ) i s a gaussian density , the family 

s a t i s f i e s the oonsistenoy conditions. 
Now we are going to give some examples. 
E x a m p l e 1 . Let K { t 1 , t 2 ) = e x p ( - ( t 2 - t 1 ) 2 ) « 

A 
= eXpM/l t . , ) ) . Then a 1 2 «= 0 , a ^ t t ^ x ^ = 0 , a 2 1 ( t 2 , x 2 ) » 

= 2 4 t 1 ( e x p ( - 2 ( A t 1 ) 2 ) [ x 1 - x 2 e x p ( - ( A t 1 ) 2 ) ] , a ^ f t ^ x . , ) = 2 , 

a 2 2 ( t 2 , x 2 ) = 2 - 2 e x p ( - 2 ( A t 1 ) 2 ) - 4(At1 ) 2 exp(-2(At., ) 2 ) 
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18 A.Pluciriska 
O p n 

and so on, where = xi exp(-(At^) ), 6 2 = 1 - exp(-2(At1 . 
Therefore we see that for some n ai^ n,X n) may be equal 

to zero and for another n it may be different from zero. 
E x a m p l e 2. Let K(t.,,t2) = cosUg-t.,). Then 

K ^ ' = 0 . The main assumption of the present paper i3 not sa-
tisfied, the distribution of X^ is improper. Only the cases 
n = 1,2 non-degenerate. For these cases all the assumptions 
are satisfied. The one and two-dimensional distributions are 
proper gaussian distributions. 
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