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STRUCTURAL NUMBERS AND GRAPHS 

0. I n t r o d u c t i o n 
The no t ion of s t r u c t u r a l number, r e s u l t i n g from the ideas 

of K.T.Wang (Wang [19] ) , was formal ly in t roduced by S . B e l l e r t 
i n 1962 ( B e l l e r t [1]) who appl ied the s t r u c t u r a l numbers to 
the a n a l y s i s and syn thes i s of l i n e a r networks. This method, 
ca l l ed the metiiod of s t r u c t u r a l numbers, has l a t e r been deve-
loped by B e l l e r t [ 2 ] - [ 4 ] , B e l l e r t and Wozniacki [5 ] , Psa r sk i 
[15] and Wozniacki [20] , [21] . The p r i n c i p a l f e a t u r e s of the 

s t r u c t u r a l numbers method of network a n a l y s i s ares simple and 
compact d e s c r i p t i o n of l a rge network s t r u c t u r e s , a l geb ra i c 
computation of d i f f e r e n t s t r u c t u r e t r a n s f o r m s , computation of 
the express ions f o r the d i f f e r e n t parameters of a network 
without using the matr ix and determinant t echn iques , easy im-
plementat ion on computers. The present pap9r g ives the mathe-
ma t i ca l founda t ions of the s t r u c t u r a l numbers method. The 
broad and prec ise d e f i n i t i o n of the s t r u c t u r a l number and an 
a b s t r a c t c h a r a c t e r i s a t i o n of the r i n g of s t r u c t u r a l numbers 
( b r i e f l y : RSN) were given by Burakowski and Traczyk in 1972 
([?]f [s] I n a p p l i c a t i o n s , the g r e a t importance have RSNs 
b u i l t on the family of a l l subse t s of a f i n i t e s e t . Some s t r u c -
t u r a l numbers of such a RSN have a s t rong connexion with f i n i -
te nondirected connected graphs . More p rec i s e ly (compare [5] , 
[10] J, the product of one - l i ne s t r u c t u r a l numbers r ep resen t ing 

elements of the bas i s of the c u t s e t ( c i r c u i t ) space of a con-
nected graph i s the family of a l l t r e e s ( co t r ee s ) of t h i s 

- 483 -



2 J.Rajkow-Krzywioki 

graph. Then we say, that the graph is a geometric image (co-
image) of the resulting structural number. Thus for- a given 
graph it is easy to calculate the structural number for which 
the graph is a geometric image. However, there has not been 
known any efficient condition for existence of a geometric 
image for a given structural number. The present paper gives 
a solution of this problem. It must be pointed out, that the 
number of trees of a graph (network) is a non-polynomial func-
tion of the basic parameters of the graph which substantially 
restricts the direct application of the method of structural 
numbers. But the methods of decomposition of a network struc-
ture discovered in 1976 make the method entirely efficient. 

In this paper the following problem of graph theory is 
considered; for the families of trees and cotrees of a finite 
connected graph find the families of circuits and cutsets of 
this graph. The solution of this problem is given in Theo-
rems 2.5, 2.9 and 2.11 characterizing circuits and cutsets 
by the families of cotrees and trees of a graph. Then, basing 
on the above theorems, the neoesBary condition (Theorem 3.3) 
and the necessary and sufficient condition (Theorem 3.4) for 
the existence of a geometric image of a homogeneous structural 
number is speoified. Prom these conclusions and the results 
of Burakowski [9] immediately arise a new characterization 
of planar graphs (Corollary 3.8) and the characterization 
of (0,1)-matrices having a 9-realization (Corollary 3.9) which, 
as author feels, is in itself an interesting result in graph 
theory (compare [11,12]). Prom these considerations an algo-
rithm verifying existence of a geometric image of a homogeneous 
structural number is derived (Algorithm 4.2). 

The paper oontains a part of the results of the author's 
doctoral dissertation submitted in 1977 to the .Institute of 
Mathematics, Technical University of Warsaw (the research su-
pervised by Prof. Tadeusz Traczyk). Some of these results we-
re presented in a preliminary version in [13J • [16]. 

Throughout the text the standard mathematical notation is 
used. In particular |xl denotes the cardinality of a set X, 
£?(X) is powerset of X, V and 3 are universal and the 

- 484 -



S t r u c t u r a l numbers and g r a p h s 3 

e x i s t e n t i a l q u a n t i f i e r , r e s p e c t i v e l y . The symbol 3T d e n o t e s 
t h e p roduc t i n RSN. The end of a proof or the f a o t t h a t t he 
proof i s omi t ted i s denoted by • . 

1 . Rings of s t r u c t u r a l numbers 
Let (B, ) be a p a r t i a l l y o rdered s e t and l e t a , b e B. 

For b r e v i t y we i n t r o d u c e t he n o t a t i o n s : a A b f o r the g r e a t e s t 
lower bound of and a v b f o r t he l e a s t upper bound 
of { a , b } , whenever they e x i s t i n (B, < ) . The f o l l o w i n g 
theorem due t o Burakowski and Traczyk [ 7 ] , [8] g i v e s an a b -
s t r a c t c h a r a c t e r i z a t i o n of s t r u c t u r a l numbers . Tie s h a l l use 
i t a s a d e f i n i t i o n of a s t r u c t u r a l number. 

T h e o r e m 1 . 1 . A oommutative r i n g ( A ; + , * , 0 , 1 ) i s 
s a i d t o be a r i n g of s t r u c t u r a l numbers i f f t h e f o l l o w i n g po-
s t u l a t e s a r e s a t i s f i e d , 
I . a + a = 0 f o r every a e A . 
I I . There i s p a r t i a l l y o rdered b a s i s ( B , < ) , BQA, such t h a t : 

( i ) 1 e B 
( i i ) f o r every a e A , a ^ 0 , t h e r e e x i s t s a unique r e p r e -

s e n t a t i o n a = a^ + . . . + a n , where a ^ , . . . , a n a r e d i s t i n c t 
e l e m e n t s of B ( a ^ , . . . , a n w i l l be c a l l e d componenta of a ) 

( i i i ) f o r every a , b i n B, i f a A b e x i s t s and i s 
e q u a l t o 1 t h e n a v b e x i s t s and i s e q u a l t o a»b . I n o t h e r 
c a s e s a*b = 0 f o r a , b e B . D 

The nex t theorem, t aken f rom [ 9 ] , g i v e s a r e p r e s e n t a t i o n 
of a RSN. 

T h e o r e m 1 . 2 . Let (B, < ) be a pose t w i t h t h e 
l e a s t e l emen t A and w i t h t h e f o l l o w i n g p r o p e r t i e s . 

( i ) There e x i s t s a v b f o r every a , b e B f o r which a A b 
e x i s t s and i s e q u a l t o A . 

( i i ) For every a ^ a g t a ^ i n B, i f a^ a a 2 = a^ a a^ = 
= a^ a a^ = A t h e n a^ A ( a 2 v a ^ ) = A i f f ( a ^ a ^ A a ^ = A . 

Let P - . (B) be a f a m i l y of a l l f o r m a l sums ZZ a^» 
l i n j e J 3 

where a.. e B and J i s a f i n i t e or empty s e t . We d e f i n e t h e 
f o l l o w i n g o p e r a t i o n s on (B) . 
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( + ) XI + 5Z a-i = X I a-i where A denotes the 
je j 3 jeK •> jeJAK «> 

symmetric difference of sets, 

{ • ) a. • a. = XL a.a. where a.a. = a. v a. 
j e j J keK K j e j keK 3 K 3 * J K 

i f a^ A a^ = A , and a j a i c - ® I-N other cases. 
Then the system (P f i n (B ) } + , • ) is a RSN. • 
D e f i n i t i o n 1.3. 
a. A structural number is m-line (homogenous) i f each 

component of its unique representation by the elemenents of 
the basis B is the least upper bound of m (the same number 
of) distinct minimal and different from A elements of" B. 

b. Algebraio derivative 3 and coderivative <5 . Let (B,<) 
a RSN and let a ,beB. Then 

b for b<a (a rs complement of b) 

in other cases 

if a Ab = A 

in other cases. 

a. , a. e B for j e J and let c e B. Then 
j € j 3 D 

3 a _ \ ^ 3a. , n 
Sc ~ for a ^ 0 and -f^ = 0 

j d 80 3 0 

the basis of 

8a 
3b = ' .0 

6a I i » 
lb = • lo 

Let a = E 

jeJ 

In the sequel we assume the following model of a HSU. 
B = ? (X ) , where X is a f i n i t e set , and < is the inclu-
sion re lat ion. Kotice, that then each family 7ti £ £P(X) i s an 
element of this USE and vice versa. The complement of the 
structural number ( f am i l y )W £ £P(X) is the number ( family) 

{Ms Um\Me W } 
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Struotural numbers and graphs 5 

E x a m p l e 1 . 4 . Let X = { l , 2 , 3 , 4 , 5 , 6 , 7 , 8 } , B= JP(X). 
We shall use -the same notation of structural numbers as was 
used in [5] , for example in the present oase [ i ] denotes the 
family { { i } } . 

1 8 4 5 1 5 
2 3 5 2 "8" 6 

+ [5] 5 1 S 5 + _3_ + 4 + [5] 
7 6 

-
7 _1 . 

1 4 3~ 
3 1 7 a homogenous number 
6 5 8 

1 4 8 7 ] an one -line number 

2 3 4~ 1 
2 2 4~ 3 4 2 4 

3 4 5 
T 

_ 3 6_ _4 5 6_ 

~2 3" 
2 3 2 4 2 7" 1 4 
1 4 3_ • 2_ 

s 

4 7 • 

2 

Let s = 

Then 

1 1 1 1 1 2 2 3 
3 2 2 3 3 3 3 5 
5 4 5 4 4 4 5 7 
7 6 6 5 6 6 6 8 

and le t d = 

I s 
3d 

1 3 2 3 4 2 2 1 1 1 
S3 
6 d = 

3 
5 

5 
7 s = 4 

6 
5 
7 

4 
7 

6 
7 

5 
7 

5 
7 

4 
7 

2 
4 

7 8 8 8 8 8 8 8 8 6 

2. Struotural numbers and nondirected graphs 
At the beginning we recall definitions of some graph-theo-

retical notions. A graph G is an ordered triple consisting 
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of t h e s e t of v e r t i c e s V(G) , t h e s e t of edges E(G) and 
t h e f u n o t i o n P(G) f rom E(G) i n t h e f a m i l y of two-e lement 
s u b s e t s of t h e s e t V(G) (V(G)nE(G) = 0 ) . I n t h i s pape r only 
f i n i t e g r a p h s a r e c o n s i d e r e d . A subg raph of a g raph G i s a 
g r aph G1 such t h a t V i G ^ C V f G ) and P f G ^ c P l f l ) ( i f f 
i s a f u n c t i o n d e f i n e d on X w i t h v a l u e s i n Y t h e n we oan 
o o n s i d e r f a s t h e s e t { ( x , f ( x ) ) i x e x } c X * Y ) , A subgraph 
w i t h o u t i s o l a t e d v e r t i c e s of a g raph G ( b r i e f l y : WIV-sub-
g r a p h ) i s a g r aph G1 such t h a t P f G - j J c p f G ) and f o r each v e r -
t e x x of Ĝ  t h e r e e x i s t s an edge of G1 which i s i n c i d e n t 
a t x . A component of a g r a p h i s a connec ted subgraph c o n -
t a i n i n g t h e maximal number of e d g e s . An i s o l a t e d v e r t e x i s a 
component . The r a n k and t h e n u l l i t y of a g r a p h G w i t h c compo-
n e n t s a r e d e f i n e d a s t h e numbers r ( G ) = |V(G)|-o and X (G) = 
= | E ( G ) | - | V ( G ) | + o , r e s p e c t i v e l y . A t r e e i s a connec ted 
g r a p h G such t h a t 1 (G) = 0 . A c i r c u i t i s a connec ted g raph G 
such t h a t X (G) = 1 and i f G1 i s a subgraph jf G and 
E(G^}$E(G) t h e n 1 (G1) = 0 . For a g raph G, a c u t s e t of G 
i s a subg raph c o n s i s t i n g of a minimal c o l l e c t i o n of edges who-
se removal r e d u c e s t h e r a n k of G by one, an i n c i d e n c e c u t of G 
i s t he subgraph formed by t h e edges i n c i d e n t a t a v e r t e x of G 
(an i n c i d e n c e c u t which i s a l s o a c u t s e t i s termed an i n c i d e n -
ce c u t s e t ) t a t r e e of G i s a subgraph t of G which i s a 
t r e e and V ( t ) = V(G), and a c i r c u i t of G i s a subgraph of G 
which i s a c i r c u i t . The complement of a t r e e of a g r a p h G i s 
c a l l e d a c o t r e e ( i . e . i f t i s t h e c o t r e e of a t r e e t , t h e n 
E ( t ) = E(G) \ E ( t ) ) . An edge i n a c o t r e e i s c a l l e d a c h o r d . 

For a g iven g raph G t h e symbols B(G), 1 (G) , S (G) , T(G) , 
C(G), T(G) deno te t h s c l a s s of c u t s e t s , t h e c l a s s of i n c i d e n -
ce c u t s , t h e c l a s s of i n c i d e n c e c u t s e t s , t he c l a s s of t r e e s , 
t h e c l a s s of c i r c u i t s and t h e c l a s s of c o t r e e s of the g raph G, 
r e s p e c t i v e l y . 

The f u n d a m e n t a l c i r c u i t s of a connec ted g raph G w i t h r e s -
pec t t o a t r e e t e T ( G ) , deno ted C t ( G ) , a r e the X(G) c i r -
c u i t s , each b e i n g forrnad by a chord and the unique t r e e pa th 
c o n n e c t i n g the two e n d p o i n i s of t he chord i n t* The f u n d a -
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Structural numbers and graphs 7 

mental outsets of a connected graph G with respect to a tree 
te T(G), denoted B^(G)f are the r(G) outsets, eaoh con-
taining exactly one edge of t. For a graph G, the vector 
space over the two-element field Zg generated by the class 
B^fG) in which addition is the symmetric difference is called 
the vector space of outs of G and is denoted L(G)• 

For the sake of simplicity, the symbols denoting subgraphs 
will be also denoting the families of edges of these subgraphs, 
for example t may denote a tree or the set of edges of the 
tree t. Consequently T(G), C(G), eto. will be also de-
noting the families of sets of edges of suitable subgraphs 
of G, in other words a structural numbers of the ring 
(Pfin(iP(E(G))J;+,.). 

For other graph-theoretioal notions the reader is referred 
to [10] , [22] . 

From the definition of a graph immediately results 
L e m m a 2.0. If G^ is a subgraph of a graph G, 

G2 is a WIV-subgraph of G and E(G2}ÇE(G1), then G 2 is 
a subgraph of the graph G^.D 

We shall use this lemma in the proof of the following im-
portant propositions. 

L e m m a 2.1. If G' is such a subgraph of a graph G 
that E(G') =E(G)\{e} and V(G') =V(G), then 

(i) T(G 

and 

(ii) T(G') = 9 T ( G ) 

P r o o f . (i). If t£T(G) and e4 t then t is 
a WIV-subgraph of G and tCE(G'). Since G' is a subgraph 
of G then in virtue of Lemma 2.0 and in the presence of the 
obvious identities V(t) = V(G) = V(G') we have teT(G'). 
On the other hand, if teT(G') then e^teT(G). Thus 
teT(G') iff teT(G) and e*t, i.e. T(G') = 6?j?.-l . 0 1 
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( i i ) . Let t be such a cotree of G tha t e e t and l e t 
8 = t \ { e } . Since E(G' } \ s = E(G) \ t , then E ( G ' ) \ s e T ( G ) 
and e i E(G ' ) \ a . In v i r t u e of proposi t ion ( i ) , E(G' ) \ s eT(G' ), 
hence s e T ( G ' ) . Let now 8 be any element of T(G') . Then 
e ^ s and E(G) \ {{e} u s) e T(G ' ) . In the presence of propo-
s i t i o n ( i ) we have E(G) \ ( { e } u s ) e T(G) hence { e } u s e T ( G ) . 
So we obtain tha t i f s e T ( G ' ) then there e x i s t s t e T ( G ) 
suoh tha t s = t \ { e } and e e t . This completes the proof 
of the proposi t ion ( i i ) . • 

T h e o r e m 2 ,2 . (Berge [6] ) . Let G be a graph 
and l e t Ĝ  be a graph obtained by add i t ion a new edge be -
tween v e r t i o e s x ,yeV(G) , I f the v e r t i c e s x and y are 
in the same component of the graph G, then 

r ( G 1 ) = r ( G ) and I (G 1 ) = I(G) + 1, 

otherwise 

r ( G 1 ) = r ( G ) + 1 and 1 ( 0 ^ = Î.(G). • 

L e m m a 2 .3 . I f G i s a connected graph then 
U C ( G ) - U T ( G ) . 

P r o o f . Prom the d e f i n i t i o n of fundamental c i r c u i t s 
with respec t to a t r e e t i t fo l lows immediately tha t i f 
t E T(G) and e e t , then there e x i s t s a c i r c u i t of G con-
t a in ing the edge e . On the other hand, in v i r t u e of the 
connectedness of G and Theorem 2 . 2 , i f a o i r o u i t c of the 
graph G contains an edge e , then there e x i s t s a subgraph 
G1 of the graph G such t h a t E(G^ ) = E(G) \ {e} and 1 ( 0 ^ ^ 0 . 
Therefore the r e s u l t of Lemma 2 . 1 ( i ) i s the existenoe of a 
t r e e t e T ( G ) such tha t e ^ t , in other words there e x i s t s 
a cotree t eT(G) suoh tha t e e t . This completes the 
proof . • 

From Lemmas 2.0 and 2.1 in a s imi l a r way we obta in 
L e m m a 2.4 (Rajkow-Krzywicki [17, Lemma 1 . 4 ] ) . 

I f e e t e T ( G ) , t = E ( G ) \ t and G' i s such a subgraph of G 
tha t B(G' ) \ {e} , then C t(G' ) = {o: ceC { (G) 8 e e o}. • 
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The above lemmas permit one to prove the following theorem 
characterizing the fundamental c i r c u i t s of a graph by the f a -
mily of cotrees of the graph. 

T h e o r e m 2 .5 . If 1(G) >1, t e T ( G ) , t e T ( G ) 

and t = E ( G ) \ t , then C t (G) = , e c t l 
3 (t \ { e } ) 

P r o o f . Let PL fG) = k and l e t t = |e.j , e 2 , . . . ,ekj. 
For every e ^ e t , let G^ be a subgraph of G such that 
E(G^) = t u j e ^ } . I f ic = 1 then Ĝ  = G, otherwise G^ can 
be obtained by conseoutive delet ion of edges e . p . . . f e ^ 

» • • • f r o m G, Thus = 1 and { U t ^ J } = 
= C^(Gj^) by Lemmas 2.4 and 2.3« Prom Lemma 2.1 and Def ini-
tion 1.3(b) we obtain that fo r every e., e t e^ e U e a f t x i e j ) 
ec^(G) which, since It I = £ ( G ) r implies the thes is of the 

theorem. • 
The following lemmas imply the next important theorem 

characterizing the fundamentel cutsets of a graph by the fami-
ly of trees of the graph. 

L e m m a 2 .6 . I f t , t 1 e T(G), e e t , e^ e ^ , 
t \ { e } = t . j \ {e-j} and e ^ e^, then there e x i s t s a c i r cu i t 
o eC^lG) such that e ,e 1 e o. • 

L e m m a 2 .7 . I f t e T ( G ) , c e C t ( G ) , e ,e 1 e c , e s t 
and e 1 t t , then there e x i s t s a tree t^eT(O) such that 
t 1 = (t \ { e } ) u { e ^ } . • 

L e m m a 2 .8 . Let e be any edge of a tree t of 
a graph G. Then the fundamental cutset containing e con-
s i s t s of these and only these chords which belong to fundamen-
t a l c i r c u i t s containing e . • 

T h e o r e m 2 .9 . I f t e T ( G i and r ( G ) > 1 , then 

= { u a i t ^ y r ' e e t } -
P r o o f . Since I t I = r(G) > 1 , then having in mind 

the Lemma 2.8 i t i s s u f f i c i e n t to show that for every e e t 

{ * ) | as ( 3 c eC^(G) ) [a , ee c & a i t J e e t ] or a = e } = 

- u 31(G) 
6 ( t \ { e } ) • 
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Indeed, fo r every e e t , a e (^J ) i f f there 
e x i s t s a tree t 1 e T (G) such that t \ { e } c t 1 and 
a et-jX ( t \ { e } ) . But l t l = l t . , l , therefore i f a e ^ \ ( t \ { e } ) 
then t \ { e } = t . , \ { a } and a e t^ . Hence, in virtue of Lem-
ma 2 .6 , i f a e U"3(t^\ {e j ) * then either there e x i s t s a c i r -
cuit ceC^(G) such that e , a e c , e e t , a ^ t or e = a . 
On the other hand, for every e e t , i f t^ gT(G) i s such 
that t 1 = ( t \ { e } ) u { a } , then a e ^ \ ( t \ { e } ) and 
t \ { e } £ t^ , so in virtue of Lemma 2 .7 , i f e i ther a e c e C^fG) 
and a f i t , e e c , e e t or e = a , then there e x i s t s a tree 
t 1 e T(GJ such that a e t ^ ( t \ { e } ) and t \ { e } e t r Thus 
( * ) i s val id fo r every e e t and thi s completes the proof, • 

L e m m a 2.10» For every cutset b e B(G) there e x i s t s 
a tree t e T ( G ) such that b e B t ( G ) , 

P r o o f . Let b e B(G) and e e b. Then e e U T(G) 
and, by Lemma 2 .1 , e e U ¿ ( b \ ^ e ) ) * H e r i C 0 * Def ini-
tion 1 .3 (b ) , there e x i s t s a tree t e T ( G ) such that b o t = { e } 
and th i s ends the proof. • 

From Lemma 2.10 and Theorem 2.9 immediately r e s u l t s 
T h e o r e m 2.11. 

B ( G ) = [ U a ( t T x ( { l } ) « t e T ( G ) § a e t j . • 

3. Geometrio images of homogenous s t ructura l numbers 
Let X be a f i n i t e set and l e t W be a homogenous s t ruc-

tura l number of the ring ( P f i n ( 9 ( X ) ) ) . Til i s said to have 
a geometric image i f there e x i s t s a connected graph G such 
that T(G) =7Jt. The problem of the existence of geometric 
image of a homogenous s t ructura l number i s of e s s e n t i a l im-
portance in the analys i s and synthesis of e l e o t r i c a l networks. 
The r e s u l t s obtained in Section 2 l e t us to solve th i s problem. 
At the beginning the following two theorems are needed. 

T h e o r e m 3.1 . I f G i s a connected graph then 
there e x i s t s a family K of l inear ly independent cutset s of G 
such that KCS(G) and |K | = r (G) . 
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P r o o f . Since B(G)£L(G) and the dimension of 
L(G) i s r ( G ) , f o r every fami ly K of l i n e a r l y independent 
elements from L(G) anc such t h a t K£S(G) we have inequa-
l i t y I K l < r ( G ) . Let now K be such a maximal family of l i -
nea r ly independent e lements from L(G) t h a t K£S(G) . Every 
c u t s e t belongi.-jji to S(G) i s then a l i n e a r combination of 
the elements of K. Since every element of 1(G) i e a l i n e a r 
combination of elements of the family S(G), then every e l e -
ment of 1(G) i s a l i n e a r combination of the elements of the 
family K. Thus 1(G) i s contained i n the subspace of the 
space L(G), generated by K. Since in 1(G) t he re e x i s t 
r (G) l i n e a r l y independent e l ements , we have | K l > r ( G ) . This 
completes the p roo f . • 

In the seque l we w i l l denote by H(A) the family of s i n g l e 
element s u b s e t s of a s e t A, f o r example H ( { l , 2 , 3 } ) = 
= {i1tr .{2}.{3}}. 

T h e o r e m 3 . 2 . (Chen [lo] ) . Let CI be the s e t of 
1(G) l i n e a r l y independent c i r c u i t s or l i n e a r combinat ions of 
e d g e - d i s j o i n t c i r c u i t s and l e t CU be the s e t of r (G) l i n e a r l y 
independent c u t s e t s or l i n e a r combinations of e d g e - d i s j o i n t 
c u t s e t s . Then 

T(G) = J - ] H(o) and TIG) = f f i (b ) . • 
ceCI beCU 

The fo l l owing two theorems g ive necessary as we l l as n e -
cessa ry and s u f f i c i e n t c o n d i t i o n s f o r the e x i s t e n c e of a geo -
metr ic image f o r a homogenous s t r u c t u r a l number. 

T h e o r e m 3 . 3 . I f f o r a given s t r u c t u r a l number 
t h e r e e x i s t s a oonnected graph G such t h a t T(G) = 7il, then 

( i ) f o r every AeW, 

( i i ) f o r every AeWt, 

FT 9 TO _ 
xeA 
n a u M x } ) 
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12 J.Rajfcow-Krzywioki 

P r o o f . The theorem r e s u l t s immediately from Theo-
rems 2 . 5 , 2 . 9 and 3 . 2 . • 

T h e o r e m 3 . 4 . For a given s t ructura l number 71ft 
there e x i s t s a oonnected graph G such that T(G) = Wt' i f f the-
re i s a family K f u l f i l l i n g the conditions: 

( i ) K£ u 3 ( a \ M ) s a e 7 n * z e a } 

( i i ) elements of the family K are l inear ly independent 

d i i ) n h<p) = m 
peK 

( iv ) every element of LJTit belongs to at most two sets of 
the family K. 

P r o o f . Let G be such a oonnected graph that 
T(uj =W. Then, basing on Theorems 2 .11 , 3.1 and 3 . 2 , there 
e x i s t s a family K f u l f i l l i n g conditions ( i ) , ( i i ) , ( i i i ) . 
The condition ( iv) r e s u l t s from the f a c t s that each element 
of E(G) appears in exactly two elements of 1(G) and that 
each element of 1(G) i s e i ther a outset or a l inear combi-
nation of edge-dis joint c u t s e t s . 

Let now assume that for a given s tructural number ffl the-
re e x i s t s a family K f u l f i l l i n g conditions ( i ) - ( i v ) . Let 

be any one-to-one sequence of a l l elements of the 
set U m = T. Let $ »cP (Y) — { o , l } N be such that 

^ r I 1 i f Xj e p 
(VpeS>(Y)J [$(p) = Cu., tuj> fc u, = \ 1 J . 

1 N 1 l o i f x ^ p 

F i n a l l y , l e t W be a matrix, rows of which are veotors $ ( p ) , 
pe K. From the conditions ( i ) , ( i i ) and ( iv ) we conclude that 
the matrix obtained by joining to W the new row, elements 
of which are equal the sums (mod 2) of the elements of r e s -
pective columns of W, i s the incidenoe matrix of some connected 
graph G and therefore the elements of the family K are e l e -
ments of the family 1(G). From above statements, from ( i i i ) 
and from Theorem 3.2 we have W = T(G).. • 
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Structural numbers and graphs 13 

We quote now three results from [9] , which will allow us 
to derive two important corollaries from Theorem 3.4. 

P r o p o s i t i o n 3.5 (Burakowski [9] ). If two 
sets of structural numbers | a . j » a ^ j , Eire ba-
sis of the same vector space over the field Z»« then 
D P 
n a, = FT 0,. • 
3=1 0 3=1 0 

P r o p o s i t i o n 3.6 (Burakowski [9] ). If a struc-
p 

tural number s ^ 0 has a factoring s = rr a.,, where each 0=1 » 

a^ is an one-line structural number, then every nonreversible 
one-line divisor of s belongs to the vector space over Zgt 
generated by { a1,...»a }. • 

P r o p o s i t i o n 3.7 (Burakowski [9]). If a ho-
mogenous structural number & has a factoring on one-line 
factors, then the complement s has such a factoring too. • 

Prom Whitney's characterization of planar graphs and by 
Proposition 3i«7 we have 

C o r o l l a r y 3.8. A conneoted graph G is planar 
iff the conditions (i), (ii) and (iv) of Theorem 3.4 are ful-
filled for the structural number T(G}.0 

Prom this Corollary one can derive MacLane's characteri-
zation of planar graphs. 

At this moment we need some additional definitions. 
A (0,1)-matrix is a matrix [a^] such that a ^ e {0,1} 

for all i,j. If »* * *'^r(G)} a o f 8Pao® 
L(Gj, then a cut-matrix of G is a (0,1)-matrix R = [â -j] 
having r(G) rows and |E(G)| columns and such that 

1 if edge e^ belongs to cutset b^ 
aii = 

J I.0 otherwise. 

A connected graph G is a 9-realization of a (0,1)-matrix A, 
if there exists a one-to-one correspondence between the edges 
of G and the columns of A such that A becomes a cut-ma-
trix of G; we then say that matrix A has a 9-realization. 
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14 J.Rajkow-Krzywioki 

Let A be a (0,1)-matrix with oolumne indexed by a set T. 
For every row w of A we define q(w) = -[xeT: the element 
in column x and in row w of A is equal to one}. 
Let Q(A) = (q(w): w is a row of A}» At last we are ready 
to state 

C o r o l l a r y 3.9. A (0,1)-matrix A has 9-realiza-
tion iff the conditions (i), (ii) and (iv) of Theorem 3.4 are 
fulfilled for the structural number W = n H(u). 

ueQ(A) 
P r o o f . Necessity: Let G be a 9-realization of 

a given matrix A. Then 7ft = T(G) by Theorem 3.2, so the con-
ditions (i), (ii) and (iv) of Theorem 3.4 are fulfilled forlM. 

Sufficiency: If the conditions (i), (ii) and (iv) of Theo-
rem 3.4 are fulfilled for the number 7ft then, by Proposi-
tions 3.5 and 3.6, Vt fulfills condition (iii) of Theorem 3.4. 
Hence there exists a connected graph G such thatW = T(G) 
and A is a out-matrix of G (see the "if part" in the proof 
of Theorem 3.4 and Proposition 3.6). • 

4. Algorithms 
A l g o r i t h m 4.1. Basing on Theorem 2.9, the al-

gorithm finds fundamental cutsets with respect to an arbitra-
ry tree of a connected graph G using only the family T(G). 
This problem is of frequent occurence in the analysis and 
synthesis of electrical networks. 

Let G be a connected graph, r = r(G), T(G) = {t1,...,tmj. 
1. Let t. = { e^,...,eI>} be any (arbitrarily chosen) ele-

ment of T(G). 
2. B. (G) := 0 . 
3. i := 1. 
4. bj := 0 (bj will be denoting the 3-th fundamental 

cutset). 
5. Find the set d^ = t^ \ • 
6. k := 1. 
7. If dj £tk then go to step 9. 
8. b. V ( t k x d 3 ) . 

- 4 9 6 -



St ruc tu ra l numbers and graphs 15 

9. k := k+1. I f k<m then go to atep 7. 
10. B t (G) := B t (G) u-fb^}. 

11. j := j+1. I f j < r then go to s tep 4. 
12. Stop. 
In a s imi la r way, rep lac ing T(G) by T(GJ and t^ by 

t ^ , we obtain the fundamental c i r c u i t s with respec t to a 
t r ee t ^ . I t should be emphasized tha t there are more e f f i -
c ien t algori thms f ind ing fundamental c u t s e t s ( c i r o u i t s ) d i -
r e c t l y from the s t ruc tu re of a graph (see e . g . [14, 18] ) . 

A l g o r i t h m 4 .2 . Basing on Theorem 3 .4 , the a lgo-
r i thm t r i e s whether a given homogenous s t r u c t u r a l number has 
a geometrical image. If the answer i s p o s i t i v e , the algori thm 
gives the appropr ia te graph. Steps 1 - 3 may be used as a se -
parate algori thm ve r i fy ing a cannonical f a c t o r i n g of a homo-
genous s t r u c t u r a l number. 

Let Ttl = [M1 . . . . . M p } be an m-line s t r u c t u r a l number and 
l e t X « I M . 

1. i 1. 
2. Find the family ^ = • (M 9 \{a}) : a e M i j i n a a i m i -

l a r way as in Algorithm 4.1 the family B+ (G). The elements r i • 
of the family R^ are l i n e a r l y independent in v i r tue of the 
cons t ruc t ion . I f i >1 then go to s tep 4. 

3. Verify i f FT H(p) =IK. If not , then go to s t ep 9 
peR1 

(the number Til has no cannonical f a c to r i ng and then W has 
no geometr ical image, see theorem 3 . 3 ) . Otherwise W has a 
cannonical f a c t o r i n g and, in v i r t u e of Proposi t ions 3 .5 , 3 .6 , 
the above i d e n t i t y w i l l be val id f o r a l l R^, i = 2 , 3 , . . . , r ; 
the problem of exis tence of a geometrical image i s s t i l l open, 

4. Verify i f every element of X belongs to at most two 
s e t s of the family R^. I f so, then go to s t ep 7. 

5. i := i+1. If i < r then go to s tep 2. 
r 

6. Find the family F = M R. and v e r i f y whether there 
i=1 1 

i s a family PCF such tha t P ^ R i (1 = 1 , . . . , r ) and the 
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elements of P are linearly independent and every element 
of X belongs to at most two sets of P, If not, then go 
to step 8, 

7. Let us denote by Q the obtained family (R^ or PJ and 
let U = Qu { aQ}, where AQ denotes the symmetric, difference 
of the sets of Q. Let <x1,...,xjf> be a one-to-one sequence 
of all elements of X and let $ :£P(XJ —- { o f l } k (see the 
proof of Theorem 3.4). A matrix which rows are vectors $ (u), 
ueU, is then the incidence matrix of a connected grap G such 
that T(G) =7Jt. Therefore G is a geometrical image of the 
number W . Go to step 9. 

8. The number W has no geometrical image. 
9. Stop. 
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Added in the proof 
Recently, an e f f i c i en t algorithm fo r deciding whether 

a (0,1 )-matri:c has a 9-real izat ion has been proposed by Satoru 
Fujishige, see: S.Pujishige, An e f f i c i en t PQ-graph algorithm 
for solving the graph-realization problem, Journal of Computer 
and System Sciences 21(1930) 6 3 - 8 6 . 
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