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STRUCTURAL NUMBERS AND GRAPHS

0. Introduction

The notion of struotural number, resulfting from the ideas
of K.T.Wang (Wang D9]), was formally introduced by S,Bellart
in 1962 (Bellert [1]) who applied the structural numbers to
the analysis and synthesis of linear networks. This method,
called the metiod of structural numbers, has later been deve-
loped by Bellert [2]-[4], Bellert and WoZniacki [5], Psarski
[15] and Wozniacki [20], [21] . The principal features of the
structural numbers method of network analysis are: simple and
compact description of large network structures, algebraic
computation of different structure transforms, computation of
the expressions for the different parameters of a network
without using the matrix and determinant techniques, casy im-
plementation on computers. The present papsr gives the matha-
matical foundations of the structural numbers method. The
broad and precise definition of the structural number and an
abstract characterisation of the ring of structural numbers
(briefly: RSN) were given by Burakowski and Traczyk in 1972
((7], [8]). In applications, the great importance have RSNs
built on the family of all subsets of a finite set, Some struc-
tural numbers of such a RSN have a strong connexion wita fini~
te nondirected conneoted graphs. lMore precisely (compare [5],
DO]), the product of one-line structural numbers representing
elements of the basis of the cutset (circuit) space of a con-
nected graph is the family of all trees (cotrees) of this
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2 J.Rajkow~-Kraywicki

graph., Then we say, that the graph is a geometric image (co-
image) of the resulting structural number, Thus for a given
graph it is easy to calculate the structural number for which
the graph is a geometric image. However, there has not been
known any efficient condition for existence of a geometrie
image for a given structural number, The present paper gives
a solution of this problem, It must be pointed out, that the
number of trees of a graph (network) is a non-polynomial func-
tion of the basic parameters of the graph which substantially
restricts the direct application of the method of structural
numbers. But the methods of decomposition of a network struc-
ture discovered in 1976 make the metaod entirely efficient,

In this paper the fdllowing problem of graph theory is
considered: for the families of trees and cotrees of a finite
connected graph find the families of circuits and cutsets of
this graph. The solution of this problem is given in Theo-
rems 2.5, 2,9 and 2,11 characterizing oircuits and cutsets
by the families of cotrees and trees of a graph., Then, basing
on the above theorems, the necessary condition (Theorem 3.3)
and the necessary and sufficient condition {Theorem 3,4) for
the exlistence of a geometric image of a homogeneous struotural
number is specified. From these conclusions and the results
of Burakowskil [9] irmediately arise a new characterizatlon
of planar graphs (Corollary 3.8) and the characterization
of (0,1)-matrices having a ¢ ~realization (Corollary 3.9) which,
as author'feels, is in itself an interesting result in graph
theory (compare [11,12]). From these considerations an algo-
rithm verifying existence of a geometric image of a homogeneous
structural number is derived (Algorithm 4,2).

The paper contains a part of the results of the author’s
doctoral dissertation submitted in 1977 to the Institute of
Mathematics, Technical University of Warsaw (the research su-
pervised by Prof., Tadeusz Traczyk). Some of these results we-
re presented in e preliminary version in BB], ﬁG].

Throughout the text the standard mathematical notation is
used. In particular |X| denotes the cardinality of a set X,
P(x) is powerset of X, ¥V and I are universal and the
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Structural numbers and graphs 3

existential guantifier, respeotively. The symbol I denotes
the product in RSN, The end of a proof or the faot that the
proof is omitted is denoted by [J .

1. Rings of structural numbers

Iet (B, ~ ) be a partially ordered set and let a,b€B,
For brevity we introduce the notations: aAb for the greatest
lower bound of {a,b} and avb for the least upper bound
of {a,b}, whenever they exist in (B, <). The following
theorem due to Burakowski and Traczyk [7], [8] gives an ab~-
stract characterization of structural numbers. We shall use
it as a definition of a structural number,

Theorem 1,1. A commutative ring (Aj3+,,0,1) is
said to be a ring of structural numbers iff tne following po=~-
stulates are satisfied,

I. a+a =0 for every acl,
II. There is partially ordered basis (B, <), BCA, such that:

(i) 1e€B

(i1) for every acA, a # 0, there exists a unique repre-
sentation a = a3 + ees + 8, where 8qseeeya, are distinct

n
elements of B (aq,...,8, will be called components of a)

(iii) for every a,b in B, if aAb exists and is
equal to 1 then avb exists and is equal to aeb. In other
cages aeb = 0 for a,beB.D

The next theorem, taken from [9], gives a representation
of a RSN,

Theorem 1.2. ILet (B,<) be a poset with the
least element /\ and with the following properties.

(i) There exists avb for every a,beB for which aAb
exists and is egual fto A,

(ii) For every 8118785 in B, if aqnra, = 8, nay =
= azna; = /\ then a, /\(8.2V33) = /\ iff (a1va2)/\a3 =/\.

Let (B) be a family of all formal sums

Pfin eJ aj !
where a;€¢B and J is a finite or empty set. We define the
following operations on Pfin(B).
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4 J.Rajkow_Krzywioki

(+) > ay + ST a.= Y. a
jeJ jek 9 jesak 9
symmetric difference of sets,

() % ay ¢ 1%{ 8y = % 1%{ ajay Where aja, = ajva,
if a8y /8y =/\, and a:a, = 0 in other cases,

Then the system (Pfin(B);+,-) is a RSKN.O

Definition 1.3.

a. A structural number is m-line {(homogenous) if each
component of its unique representation by the elemenents of
the basis B 1is the least upper bound of m (the same number
of ) distinot minimal and different from /\ elements of B.

b, Algebraic derivative 9 and coderivative 6 . Let (B,<)
be the basis of a RSN and let a,beB, Then

where A denotes the

Qi
o'|

{a\b for b<a (a's complement of b)

0 in other cases

§a a if aaAb=A
B_t.)=

0 1in other cases,

let a=Zaj, a.€B for jed and let ceB. Then

Jje€d J

da da.

3c ° WJ for a #£ 0 and %%—:0
jed

éa_‘ Eiif-n £ 0 and .QQ_O

W'Zac toxr & nd g = Y
jed

In the seq¢uel we assume the following model of a RSK,
B = P(X), where X is a finite set, and < 1is the inclu-
sion relation. liotice, that then each family ?H ¢ P(X) is an
element of this LSK and vice versa. The complement of the
structural number (family) %< P(X) is the number (family)
M= {u: UT e T}
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Structural numbers and graphs 5

Example 1.4, Let X ={1,2,3,4,5,6,7,8}, B= P(X),
We shall use the same notation of structural numbers as was
used in [5], for example in the present case [}] denotes the
family {{i}}.

—

18 45 1 5

2 35 2| |8 6

5 1 ‘5*[3]*4“[5]
7 6 7 1

1 4 3

317 a homogenous number

(6 5 8

[1 4 8 7] an one=-line number

(2 3 4] r224:!‘3424]

+ =
(3 4 5] | 3 6] (45 6
) (2 3
2 3 2 r427:|=14
1 4 3]° L 2 4 7|°
L 24
325335333 2
_ 23 -
Let 5_54544457andlet d-{{l.
76656668
Then
2 ss |3 2 22432112
3s _ 88 _ =
sa=L1 3] s3=|5 7| 8=|¢ 7 777 717 1|
7 8 8 8 8 8 8 8 8 6

2. Structural numbers and nondirected graphs
At the beginning we recall definitions of some graph-theo-
retical notions., A graph G is an ordered triple consisting
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6 J.Rajkow-Krzywicki

of the set of vertices V(G), the set of edges E(G) and

the funotion P(G) from E(G) in the family of two-~element
subsets of the set VI(G) (V(G)nE(G) =¢ ). In this paper only
finite graphs are considered. A subgraph of a graph G is a
graph G, such that V(G,)cV(G) and P(Gy)cP(G) (1f ¢
is a function defined on X with values in Y +then we ocan
consider f as the set _{(x,f(x)): xe:x}Q XxY)., A subgraph
without isolated vertices of a graph G (briefly: WIV-sub~-
graph) is a graph G, such that P{(G;)CP(G) and for each ver-
tex x of G4 there exists an edge of G1 which is incident

at x. A component of a graph is a connected subgraph con-
taining the maximal number of edges. An isolated vertex is a
component, The rank and the -nnllity of a graph G with ¢ compo-
nents are defined as the numbers r(G) = | V(G)~c and 2 (G) =

= [E(G)| - |V(G)| + o, respectively. A tree is a connected
graph G such that A (G) = 0. A circuit is a connscted graph G
such that 2 (G) =1 and if G, is a subgraph :f G and
E(c1);E(G) then 2(G,) = 0, For a graph G, a cutset of G

is a subgraph consisting of a minimal collection of edges who~-
se removal reduces the rank of G by one, an incidence cut of G
is the subgraph formed by the edges incident at a vertex of G
(an incidence cut which is also a cutset is termed an inciden~
ce cutset), a tree of G is a subgraph t of G which is a
tree and V{(t) = V(G), and a circuit of G is a subgraph of G
which is a oircuit. The complement of a tree of a graph G is
called a cotree {i.e. if t is the cotree of a tree %, then
E(t) = B{G) \E(t)). An edge in a cotree is ocalled a chord.

For a given graph G tae symbols B{(G), I(6¢), s(G), T(G),
c(G), T(G) denote ths class of cutsets, the class of inciden-
ce cuts, the class of incidence cutsets, the class of trees,
the class of circults and the class of cotrees of the graph G,
respectively.,

The fundamental circuits of a connected graph G with res-
pect to a tree te T(G), denoted C.(G), are the A(G) cir-
cuits, each being formzd by a chord and the unique tree path
connecting tae two endpoinis of the chord in +. The funda-
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Structural numbers and graphs 7

mental cutsets of a connected graph G with respect to a tree
teT(G), denoted B((G), are the r(G) outsets, each con-
taining exactly one edge of t. For a graph G, the vector
space over the two-element field 22 generated by the class
Bt(G) in which addition is the symmetric difference is called
the vector space of cuts of G and is denoted L(G).

For the sake of simplicity, the symbols denoting subgraphs
will be also denoting the families of edges of these subgraphs,
for example t may denote a tree or the set of edges of the
tree t. Consequently T(G), C(G), etc. will be also de=-
noting the families of sets of edges of suitable subgraphs
of G, 4in other words a struoctural numbers of the ring
(Pfin(Q(E(G)));+,').

For other graph~theoretical notions the reader is referred
to [10], [22].

From the definition of a graph immediately results

Lemma 2.0, If G1 is a subgraph of a graph G,

G, is a WIV-subgraph of G and E(G2)§ E(Gy), then G, 1is
a subgraph of the graph G1.C

We shall use this lemma in the proof of the following im-
portant propositions,

Lemma 2,1. If G 43 such a subgraph of a graph G
that E(G’) = E(G)\{e} and V(6’) = V(G), then

(1) 7(¢’) =5TT%
and
(11) T(c') =%§} .

Proof. (i). If teT(G) and e¢t then t is
a WIV-subgraph of G and tCE(G')., Since &' is a subgraph
of G then in virtue of Lemma 2.0 and in the presence of the
obvious identities V(t) = V(G) = V(G’) we have teT(G’).
On the other hand, if teT(G') then e¢ te T{G). Thus

teT(G') iff teT(G) and ed¢t, 4i.e. T(G’):‘Sg(g} .
L
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8 J.Rajkow-Krzywicki

(i1)e Let t be such a cotree of G that ect and let
s = t~{e}. Since E{G’')})\s = E(G)\%, then E(G')\secT(G)
and e ¢E(G')\a., In virtue of proposition (i), E(G')\scT(c’),
hence seT(G’), Let now s be any element of T(G'). Then
e¢s and E(G)\({elus)eT(6¢’ ), In the presence of propo=-
sition (1) we have E(G)\({efus)eT(G) hence {e}uscT(a).
So we obtain that if seT(G') then there exists t¢T(G)
such that s = t\{e} and eect. This completes the proof
of the proposition (ii). 0O

Theorem 2,2. (Berge [6])s Let G be a graph
and let G1 be a graph obtained by addition a new edge be-
tween vertices x,yeV(G), If the vertices x and y are
in the same component of the graph G, +then

r(Gy) = r(G) and 2(Gq) =2(G) +1,

otherwise
r{G,) = r(G) + 1 and a(6y) = 2(c). O

Lemma 2,3, If G 1is a connected graph then
Uefe) =UT(e).

Proof . From the definition of fundamental cirocuits
with respect to a tree 1 1i follows immediately that if
teT(G) and eec?, then there exists a circuit of G oon-
taining the edge e. On the other hand, in virtue of fthe
connectedness of G and Theorem 242, if a oircuit ¢ of the
graph G contains an edge e, then there existis a éubgraph
G, of the graph G such that E(Gy) = E(G) \{e} and T(G,)#9.
Therefore the result of Lemma 2,1(1) is the existence of a
tree teT(G). such that e¢t, in other words there exists
a cotree teT(G) such that e et, This completes the
proof, [

From lemmas 2,0 and 2,1 in a similar way we obtaln

Lemma 2.4 (Rajkow-Krzywicki [17, Lemma 1.4]).

If ecteT(G), t =E(G)\t and G is such a subgraph of G
that E(G')\ {e}, then Ct(G’) = {c: ceC,(G) & ec o}e O
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Structural numbers and graphs 9

The above lemmas permit one to prove the following theorem
characterizing the fundamental circuite of a graph by the fa-
mily of cotrees of the graph.

Theorem 2,5 If A(G)>1, teT(G), teT(G)

- i - 3T(c)
and t = E(G)N%t, then C,(G) {U FE~fo]]

Proof. Iet A(G) =X and let %t ={e1,e2,...,ek}.
For every eiet let Gi be a subgraph of G such that
E(Gi) tu{ei « Ir k=1 then G, =G, otherwise G, can
be obtained by consecutive deletion of edges €13v0098; 49
84,9r0228 from G, Thus |C.(G,)| =1 and {UT(Gi)}
= Ct(Gi) by Lemmas 2,4 and 2.3. From Lemma 2,1 and Defini-

: I T(G)
tion 1.3(b) we obtain that for every e; €t eje U
A \{ey)) 1})

€Cy{G) which, since |¥1 = 2(G), implies the thesis of the
theorem, [

The following lemmas imply the next important theorem
characterizing the fundamentel cutsets of a graph by the fami-
1y of trees of the graph.

Lemma 2.6, If t,t3¢T(G}, ect, e4ct,,

t\{e} = t;\ {e.l} and e # e,, then there exists a circuit
0eC.(G) such that e,eqco0.D

Lemma 2.7 If teT(G), ceC,(G), e,eqec, ect
and ey ¢ t, then there exists a tree t;¢ T(G) such that

= (¢ {e}lu{e}. O

Lemma 2.8, Let o be any edge of a tree t of
a graph G, Then the fundamental cutset containing e con=-
slets of these and only these chords which belong to fundamern-
tal oircuits conteining e, U

Theorem 2.9, If teT(G}) and r{(G)>1, then

B, (G) -{U a(t\{e : ect}

Proof. Since |t! =r(G)>1, then having in mind
the Lemma 2.8 it is sufficient to show that for every ec t

(#) {a: (deecylc)i[a,ecc G agt &ect] or a=e}=

tectr.

- Uiy
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10 JeRaJkow-Krzywicki

Indeed, for every ect, ac Ua(atT\ Ge iff there

exists a tree t;€T(G) such that t\{e}ct, and
act N (t\{e}). But Itl = lt4l, therefore if a ety (t\{e}
then t\{e} = t,\{a} and act,. Hence, in virtue of Lem-

ma 2.6, if ae Uﬁ%ﬂ‘) , then either there exists a cir-
cuit ceCt(G) such that e,acec, ect, a¢t or e = a,
On the other hand, for every ect, if ¢,¢T(G) is such
that t, = (t~{e})u{a}, then act,>(t\{e}) and
t\{e}Sty, 80 in virtue of Lemma 2.7, if either acceCy(G)
and a¢t, ecc, ect or e = a, then there exists a tree
t,€ T(G) such that act,™(t\{e}) and t\{e}<t,. Thus
(#) is valid for every ect and this completes the proof, [J

Lemma 2,10, For every cutset be B(G) there exists
a tree te T(G) such that be Bt(G),

Proof. Let beB(G) and ecb., Then e el T(G)

and, by Lemma 2,1, ec U5 ‘Z\ o7y + Hence, by Defini-
tion 1,3(b), there exists a tree’ te T(G) such that bnt ={e}
and this ends the proof, O
From Lemma 2.10 and Theorem 2,9 immediately results
Theorem 2,11,

B(G) ={Uaat—“’\‘%;}—y: te(6) & aet}.D

3. Geometrig images of homogenous structural numbers

Let X be a finite set and let 77 be a homogenous struc-
tural number of the ring (Ppy (P(X))j+,¢). T is said to have
a geometric image if there exists a oconnected graph G such
that T(G) =7. The problem of the existence of geometric
image of a homogenous structural number is of essential im-
portance in the analysis and synthesis of eleoctrical networks,
The results obtained in Section 2 lst us to solve this problem,
At the beginning the following two theorems are needed.

Theorem 3.1, If G 1is a connected graph then
there exists a family K of linearly independent ocutsets of G
such that KcS(G) and |K]| = r(G).
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Ctructural numbers and graphs 11

Proof. Since B(G)SL(G) and the dimension of
1{e) is r(G), for every family X of linearly inderencent
elements from L{(G) and such that X CSS{(G)} we have inscua-
1ity 1 KI<r(G)s Tet now K Dbe such a maximal family of li-
nearly independent elements from L(G) that KCS(G). Every
cutset belongins to S(G) is then & linear combination of
the elementas of K. Since every element of I(G) is a linear
combination of elements of the family ¢S(G), then évery ele=-
ment of I(G) is a linear combination of the elemenis of the
family ¥. Thus I(G) is contained in the subspace of the
space L{G}, generated by K., Since in I(G) there exist
r(G) 1linearly independent elements, we have |K!2>r(G). This
completes the proof. [

In the sequel we will denote by H(A)} the family of single
element subsets of a set A, for example H{{1,2,3}) =
= {{/“‘o {2} 9{3}} ¢

Theorem 3.2, (Chen [10]1. Let CI be the set of
A(G) linearly independent circuits or linear combinations of
edge~disjoint circuits and let CU be the set of =r(G) 1linearly
independent cutsets or linear combinations of edge=-disjoint
cutsets., Then

T(6) = T Hle) anda 1T(G) = [T H(b). O
ceCI beCU

The following two theorems give necessery as well as ne-
cessary and sufficient conditions for the existence of a geo~
metrioc image for a homogenous structural number,

Theorem 3.3. If for a given structural number 3t
there exists a connected graph G such that T(G) =7, then

(1) for every Aemt, | | 57%2%%;77 = 7

Xeh
= AT =
i1) for every AeW [ | % =7
( ) (o) e » xeA a(A\{X})

- 493 -



12 J+Rajkow-EKrzywiocki

Proof. The theorem results immediately from Theo=-
rems 2,5, 2.9 and 3.2, [

Theorem 3.4, For a given structural number 72
there exists a connected graph G such that T(G) = Y iff the-
re 1 a family K fulfilling the conditions:

(1) KQ{L}gé%%;ﬁ taeM &zea}
(11) elements of the family K are linearly independent

(141) [T H(p) = Wt
peK

(iv) every element of (7t belongs to at most two sets of
the family K.

Proof, Iet G be such a connected graph that
T(G¢) =M, Then, basing on Theorems 2,11, 3.1 and 3.2, there
exists a family K fulfilling conditions (i), (ii), (1ii),

The condition (iv) results from the facts that each element
of E(G) appears in exactly two elements of I(G) and that
each element of I(G) is either a cutset or a linear combi-
nation of edge-disjoint cutsets,

Let now assume that for a given structural number 9% the-
re exists a family K fulfilling conditions (i) - (iv). Let
<x1,...,xN> be ahy one~to-one sequence of all elements of the
set UM = Y, Iet ¢ 1+ P(Y)— {0,1}¥ bve such that
{1 if x4e p

(Woe 1)) [0(p) = <uyyeeesuy> &ouy =4 )
xi P

Finally, lat W be a matrix, rows of which are veotors ¢(p),
peK, From the conditions (1), (ii) and (iv) we conclude that
the matrix obtained by Joining to W +the new row, elements

of which are equal the sums (mod 2) of the elements of res=-
pective columns of W, is 'the incidence matrix of some connected
graph G and therefore the elements of the family K are ele-
ments of the family I(G). From above ctatements, from (iii)
and from Theorem 3.2 we have M= T(G). O
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Structural numbers and graphs 13

We quote now three results from [9], which will allow us
to derive two important corollaries from Theorem 3.4.

Proposition 3.5 (Burakowski [9])., If two
gsets of structural numbers {a1,...,ap}, {01,....cp} are ba-

sis of the same vector space over the field 22' then
2 P
T—T aj = T—T c-gD
J=1 ¥
Proposition 3.6 (Burakowski [9]). If a struc-
tural number s # 0 has a factoring & = ] a;, Wwhere each

=1 73
a is an one-line structural number, then every nonreversible
one-line divisor of s belongs to the vector space over Z2,
generated by {61,...,3p}.[]

Proposition 3,7 (Burakowski [9]). If a ho-
mogenous structural number & has a factoring on one-line
factcors, then the complement & has such a factoring too. O

From Whitney'’s characterization of planar graphs and by
Proposition 3.7 we have

Corollary 3.8, A connected graph G is planar
iff the conditions (i), (ii) and (iv) of Theorem 3.4 are ful-
filled for the structural number T(G).O

From this Corollary one can derive Maclane'’s characteri-
zation of planar graphs.

At thls moment we need some additional definitions.

A (0,1)-matrix is a matrix [aij] such that a,je {o,1}
for 811 1i,Jj. If {b1""’br(G)} is a basis of the space
L(G), then a cut-matrix of G is a (0,1)-matrix R = [aij]
having r(G) rows and |E(G)| columns and such that

1 1if edge ej belongs to cutset bi

a =
i O otherwise,

A connected graph G is a ¢-realization of a (0,1)-matrix 4,

if there exists a one-~to-one correspondence between the edges

of G and the columns of A such that A becomes a cnt-ma-
trix of G; we then say that matrix A has a p~realization.
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Iet A be a (0,1)=-matrix with columns indexed by a set T,
For every row w of 4 we define gq(w) ={xeT: the element
in ¢column x ard inrow w of A 18 equal to one}.
Let Q(A) = {q(w): w 1is a row of A}. At last we ars ready
to state \

Corollary 3.9. A (0,1)-matrix A has ¢ -realiza-
tion iff the conditions (i), (ii) amd (iv) of Theorem 3.4 are

fulfilled for the structural number W = T~? ) H(u).
ucQ (A
Proof . QNecessity: Let G be a¢=-realization of

a given matrix A. Then M = T(G) by Theorem 3.2, so the conw-

ditions (i), (ii) and (iv) of Theorem 3,4 are fulfilled for %1,
Sufficiency: If the conditions (i), (ii) and (iv) of Theo=-

rem 3.4 are fulfilled for the number ¥ tnen, by Proposi-

tions 3.5 and 3.6, W fulfills condition (iii) of Theorem 3.4.

Hence there exists a connected graph G such that M = T(G)

and A is a out~matrix of G (see the "if part" in the proof

of Theorem 3.4 and Proposition 3.5)., O

4, Algorithms
Algoritam 4,1, Basling on Theorem 2,9, the al-

gorithm finds fundamental cutsets with respeat to an arbitra-
ry tree of a connected graph G using only the family T(G).
This problem ies of frequent occurence in the analysis and
synthesis of electrical networks, :
' Let G be a connected graph, T = r(G), T(6) = {t,,ece,t ]}
1. Let ¢, = {91,...,er} be any (arbitrarily chosen) ele-
ment of T(G). '
2. Bti(G) =0,

30 j t= 1,

4. by 1= (bj will be denoting the j-th fundamental
cutset),

2. zind :he get dj = ti\\{éj}.

Te If dj ¢tk then go to step 9.

8. hj = bju(tk\dj)t
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Structural numbers and graphs 15

9 k := k+1, If k<m then go to step 7.
10. Bti(G) t= Bti(G) u{bj}.

11, j := 3+1. If J<r then go to step 4.

12. Stop.

In & similar way, replacing T(G) by T(G) and ¥, by
ti, we obtain the fundamental circuits with respect to a
tree ti' It should be emphasized that there are more effi-
clent algorithms finding fundamental cutsets (cirouits) di=-
rectly from the structure of a graph (ses e.g. [14, 18]).

Algorithnm 4.2, Basing on Theorem 3.4, the algo-
rithm tries whether a given homogenous structural number has
a geometrical image., If the answer is positive, the algorithm
gives the appropriate graph. Steps 1 - 3 may be used as a se-
parate algorithm verifying a cannonical factoring of a homo-
genocus structural number,

Let T = {M1,...,Mr} be an m=line structural number and
let X =Um,

1. 1 2= 1,

2. Find the family Ri ={Uama\7na j ¢ aeMi} in a simi~
1
lar way ag in Algomithm 4.1 the family Bt (G}s The elements
i -

of the family Ri are linearly independent in virtue of the
construction, If 41 >1 then go to step 4.

3. Verify if 1 H(p) =7, . If not, then go to step 9
peR.‘

(the number 71 has no cannonical factoring and then I has
no geometrical image, see Theorem 3.3}, Otherwise " has a
cannonical factoring and, in virtue of Propositions 3.5, 3.6,
the above identity will be valid for all Ri’ 1=2,3,000,7%
the problem of existence of a geometrical image is still open.
4, Verify if every element of X belongs to at most two
sets of the family Ri‘ If so, thern go to step 7.
5. 1 := i+1, If 1 <r then go to step 2.

r
6. Find the family F = \ R; and verify whether there
. i=1
is a family PCF such that P # Rj (1 = 1,00eyr) and the
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elements of P are linearly independent and every element
of X belongs to at most two sets of P, If not, then go
to step 8.

7. Let us denote by Q¢ the obtained family (Ri or P) and
let U = Qu{AQ}, where AQ denotes the symmetric difference
of the sets of Q. Let <X4,e.4,X,> be a one-to-one sequence
of all elements of X and let ¢ : P (X) — {0,1}k (see the
prcof of Theorem 3.4), A matrix whick rows are vectors ¢ (u),
ueU, 1is then the incidence maftrix of a connected grap G such
that T(G) =M. Therefore G is a geometrical image of the
number M, Go to step 9.

8., The number 7 has no geometrical image,

9. Stop.
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