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Introduction

In the present paper boundeness, exponential oconvergence
to zero, stability and asymptotic stability of solutions of
some systems of two partial differential equations of the
firgt-order with non-linear boundary conditions are investi-
gated. In the papers [2]+({6] are considered these properties
{or only some of them) with linear and zero boundary condi=-
tions. Some resulis conoerning the stability of solutions of
such system were presented also in [5] + In that paper ths
author considered the equations of the transmission line with
constant coeffiocients and with spedial type non-linear bounda-
ry conditions. He proved the stability of solutions of this
system by the frequenoy method,

The present paper continues these investigations and gene-
ralizes results of papers (3], [4] and partly of [5]. The
proofs in this paper make use of the second method of Liapunov
type.

Let R = (me0,o00), I =<0,°°), X =<0,1> and assume that
we are given functions ¢, 1, i, u: XxI — R} g,rs XxIxRxR—
— Ry a: I — Rj h1 ,h2: X — Ry £y ’f2’f3’f4: R — R,

Ve consider the following system of equations

{o(x,t)ut(x,t)+g(x,t,u(x,t),i(x,t))u(x,t)+a(t)ix(x,t)= 0
E

l(x,t)it(x,t}+r(x,t,u(x,t),i(x,t))i(x,t}+a(t)ux(x,t)=O
xeX, tel
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2 J.Radzikowski, W,Sadkowski

with the initial conditions
(1c) u(x,0) = hy(x), 1(x,0) = hy(x) for xeX

and one of the following three types of boundary conditions

{ 1(0,¢) = £, (ul0,t))
(BC1)
1(1,t) = £,(ul1,%))
or
0,t) = -£,(1(0,t

(502) { u(0,t) 3(‘( ))

ul1,t) = £,(1(1,%))
or

1(0,t) = -£,(ul0,t))
(BC3)
for feIo

We suppose that the following compatibility conditions
are respeotively satisfied:

hy(1) = £,(h (1)),

or

hy(0) = -£5(h,(0))
or

h,(0) = ~£4(h,(0))

L hy(1) = £,(hy(1])s
Physically we may interpret the function u as ourrent

and the function v as voltage. Then ths boundary conditions
(BCn), n = 1,2,3 describe the interdependence of the initial
voltages and the initlal currents. This dependence is describ-

ed by the functions f n=1,2,3.
~ 438 -
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Behaviour of solutlons 3

A pair of functions w = [u,i] 1s said to be a olassical
solution of the problem (E), IC), (BCn), n = 1,2,3 defined
on XxI, if u,i.ec1 (XxI}) and the functions u,1 and
their partial derivatives ug, ug, it’ i, satisfy the system
of equations (E), the initial conditions (IC), and the bounda-
ry conditions (BCn), n = 1,2,3,

In the paper, it is assumed that there exists at least
one non~zero classical solution of the probleam (E), (IC),
(BCn), n = 1,2,3 defined on Xx I. The problem of existence
for this type of systems has been investigated, among others,
by V.Barbu and I.Vrobie h].

In order to define boundedness, exponential convergence
to zero stability and asymptotic stability of solutions of
the problem (E), (IC),(BCn), n = 1,2,3 we introduce the spa-
ce V consisting of real functions v = v(x,t), xeX, telI,
and Cartesian product W =VxV,

If V = C%XxI) then we define in space W two norms

I W(o,t)".l t= <(max |V1_(x,t)| )2 + (max Iv2(x,t)l )2>1/2’

xeX x;X
and 1 |
Tw(e,ell, 2= <I Lv?(x,t) + vg(x,t)]dx>1/2,
0

where w = [v1,v2] and v1,v2e;V, t is a parameter, and
tel,

If V= C{XxI) then we defins in the space W the fol-
lowing norm

1
Hw(.,t)HB = <I [v?(x,t)+v§(x,t)+v$’t(x,t)+vg(x,t)] d¥>1/2_
0

Definition 1, A solution w=[u,i] of the
problen {E), (IC), (BCn, n = 1,2,3) is said to be:

a) bounded in the norm fl.l; (llell;) if there exists a po-
sitive constant M such that for every t€I1I we have

hwle )y <8 (lwle,t)ll, <M
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4 J.Radzikowski, W,Sadkowski

b) exponentially convergent to zero in the norm
Nelly (I Ile) for t —= o0 if there exists positive con~
stants M, K such that for every tel

Fwle )l <M exp(-Kt), (Ilw(-,t)112<M exp(-Kt)),

Definition 2, The zero solution wy = [0,0]
of the problem (E), (IC), (BCn, n = 1,2,3) is said to be:

a) stable in the norm I|-H2 ("°"3) if for every £>0
there exists § >0 aguch that for every classical solution
w = [u,i] of the considered system (E) which satisfies bounda-
ry conditions the inequality | w(~,0)|12< § (Ilw(o,O)ll3 <é)
implies lwle,t)l, <& (iw(e,t)l3<e) for tel;

. b) stable in the norm |+l with respect to the norm
e l|3.‘ if for every £ >0 there exists &> 0 such that for
every classioal solution w = [u,i] of the considered sys~
tem (E), whioh satisfies boundary conditions the inequality
llw(.,0)||3 <4 implies Hwla,t)l <& for tely

c) asymptotically stable in the norml.l, (I.ly) if it 1s
stable and in notations of the definition 2a) we have

1im Tw(s,t)l, = 0 ( n fwls,b)ly = 0);
t ~o0 Pt t —~oo U003 ’

d) asymptotiocally stable in the norm | «lq with respect
to the norm |. ||3 if it is stable and

lim Hw(.,t)0l, = 0.
t —~oo
In the part 1 of this paper a quasi-linear sysiem (E)
(with functions g,r : X xIxRxR —R and a: I — R) will
be considered. In that part the above mentioned properties
of solutions of the problem {E), (IC), (BCn, n = 1,2,3) will
be investigated only in the norm | .l
Second part of this paper deals with a linear systemx (E),
with g,r ¢ XxI—R and a = A = const>0. In that part
boundedness, exponentlal convergence to zéro will be consi-
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Behaviour of solutions , 5

dered in the norm |. Iy or o Il2. The stability and asympto-

tic stability will be investigated in the norm |, n2 or i, Il3
and in the norm | .l4 with respect the norm . ﬂ3.

1« A quasi-linear system

Consider the system of equations (E) with initial condi~
tions (IC) and boundary conditions (BCn, n = 1,2,3). Let the
functions desoribing the problem (E), (IC), (BCn, r = 1,2,3)
satisfy the following conditions:

A1, There exist classical solutions w = [u,1] of the
problem (E), (IC), (BCn, n = 1,2,3) defined on Xx1I,

A2, u,i ec1(XxI); aecO(1); c,leco’j(XXI); gyT€
e CO(XxIxRxR)3 h, ,h2€c1 (X)3 24, £, 5, f4ec°(n).

A3, There exists positive constants Cq» L1 such that for
every (x,t)eXxI the inequalities

cel(x,t)>Cqy 1(x,t) >1,

are satisfied,
A4, For every (x,t,y,2)€XxIxRxR we have

2g(x,t,3,2) 2c¢(x,t), 2r(x,t,3,2) 31.(x,t).
A5, For every t ¢l the inequality
a(t) >0 1is satisfied,

A6, For every veR and 36{1,2,3,4} we have

fd(v)vv 2 0,

A3, There exists positive constants C,, 02, Ly, L, suoch
that for every (x,t)eXxI we have

A4, There exlist positive constants Ky K2 suoh that for
every (x,t,y,z2)c¢XxIxRxR we have
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6 J.Radzikowski, W.Sadkowski

28(x,t,5,2) > Ky + cylx,t), 2r(x,t,y,z)>K2 + 1.(x,%).

Remna r1k 1. It is easy to check that the functions
2ps+
fj(v) =v 9 P eN satisfy the assumption A6.

Theorem 1.1, If the assumption A1-A6 are satis-
fied then every solution w = [u,i]| of the problem {E), (IC),
(BCn, n = 1,2,3) is bounded in the norm |, i,.

Proof, Let w= [u,i] be an arbitrary solution of
the system (E) with conditions (IC) and (BCn, n = 1,2,3) and
let the funotion:of Liapunov type for this solution be of the
form

1
(1e1) k(%) 2= j Lo(x,t1u?(x,t) + 1(x,t)1%(x,t)]dx for teI.
0

In virtue of the assumptions A3 we have

k,(t)>0 for telI,

Next, by the assumption A2 the integrals in (1.1) are of
class C1 with respect to t and of class C0 with respect to
xo Thus we may interchange integration and differentiation
with respeof to t. After differentiation of k1 with res=-
pect to t we obtain for tel

1 1
i1(t) = g (°t“2 + ltiz)dx + 2 £ (cuut + 111, )dx.

Computing ou; and 11t from the system (E) and introducing
them into the previous formula we see that the last equality
beoomes

1
(1.2) i1(t) = § [(ot-2g)u2 + (14 -2r)12]dx +
0

- 2a(t)[ul1,8) 1(1,t) - u(0,t) i(0,t)].
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Behaviour of solutions 7

Taking into account the boundary conditions {BCn, n=1,2,3)
we have

(1.3) ul1,¢) i(1,t) - ul(0,t) i(0,t) =

f2(u(1,t))u(1,t) + £,(ul0,t))ul0,t) for (BC1)
=4 £,0i01,8)0101,8) + £4(1(0,t))i(0,¢) for (BC2)
£,(1(1,8))i(1,%) + £,(ul0,%))ul0,t]) for (BC3).
By the formulae (1.2) and (1,3) and the assumptions AS,
A6 we obtain the following inegquality

1
(1.4) k1(t)<‘f [(ct - 2glu® + (1, - 2r)12]dx for tel.
0

In view of thep assumption A4 we have

k1u)<o for tel,

Thus
(1.5) k. (t)<k(0) for teI,
where
1
(1.6) kg (0) = | [olx,0003(x) + 1(x,0n3(x)]ax.

0
By the assumptions A3 and the definition (1.,1) we get
for tel

Cyllwla,s 8115 < kq(t),

where

(1.7) Cy := min (Cqy Ly,
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8 J.Radzikowski, W.Sadkowski

From the last inequality and the inequality (1.5) it fol-
lows that

(1.8) Twlept)i, <M, for telI,
where
‘ 1
k, (0)\2
(109) M1 = <—1’c';‘> -

This completes the proofs of Theorem 1,1,

Theorem 1.2, If the assumptions A1, A2, A3, A4,
A5, A6 hold, then every solution w = [u,i] of the problem
(), (1€), (BCn), n = 1,2,3 1is buunded and exponentially ocon-
vergent to zero in the norm {.l, for t-—woo.

Proof. The boundedness of w = [u,i] in the norm
fell, follows from Theorem 1.1, as all its assertions are sa-
tisfied,

Now we prove the exponential convergence to zero in the
norm |l.l, of any solution of the problem (E), (IC), (BCn),
n=1,2,3,

Taking the Lliapunov type funotion k1 in the form of
(11) and making analogloal transformations as in the proof
of Theorem 1.1 we obtain the inequality (1.4). By the assump~
tions A3, A4 and the formula (1.1) (1.4) we obtain tho inequa-
lity

(1.10) -k (8) 2Ky ky(t) for tel,

E)
’L2

where

K3 :=-% amin (K1,K2)-min <%—

e

From tane last inequalify we obtain

ki (4) <k (0) exp (-2K;t) for tel.
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Behaviour of solutions

In virtue of the assumption A3 and tae formula (1.1} we
get following estimation

(1.11) lwle,t)l, <My exp (-K3t) for te I,

where the constant M, is defined by the (1.9).

The inequality (1.11) implies exponential convergence to
zero in the norm |l .|, of the solution w= [u,i] for t —oo ,
This ends the proof of Theorem 1,2,

Theorem 1,3, If the assumptions A1, A2, 53, KZ,
A5, A6 holds then the zero solution w, = [0,0] of the prob-
lem (E), (BCn), n =1,2,3, (IC: hy= h,= 0) is stable and
asymptoticelly stable in the rorm ll.Hz.

Proof . Consider any solution w = [u,i] of the
problem (E), (IC), (BCn), n = 1,2,3, such that

(1.12) Iwley0)ly<§ o

Using the assumption A3 from the identity (1.6) and the
inequality (1.12) we have

2
{1.13) k1(0)<C4<5 .
where

C,4 := max (CQ'Lz)’

From the inequality (1.11), (1.13) and the formula (1,9)
we get

fC
||w(.,t)||2<\lé—4-5 exp (-K3t) for tel,
3
where the constant K3 is defired by forrula (1.10).

we obtain the estimation

=5

Putting § = &

(1.14) Twle,t)ll, < €exp (<Kyt) for te L.
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10 J.Radzikowski, We.3adkowski

From the inequality (1.14) it follows that the zero solu-
tion of the problem (E), (IC), (BCn), n = 1,2,3 is stable
and asymptotically stable in the sense of definitions 2a and
2¢, respectively.

2. A linear system
In this part we shall consider the system of equations

0]

1]

(&) {c(x,t)ut(x,t) + glx,t)ulx,t) + Aix(x,t)

1{x,t)i (x,t) + rlx,t)i(x,t) + Au (x,%) = O,

(with functions c¢,l,g,rt XxI — R and A = const>0) with
initial conditions (IC) and boundary ccnditions (BCn),
n=1,2,3.

We assume that:

A1, There exist classical solutions w = [u,i] of the
probler. (E'), (IC), (BCn), n = 1,2,3 defined on Xx1I,

A2', u,ieC?(Xx1I)j c,lc Co’{(Xx 1), g,re c®?(xx I);
Byshy € C2(X)5 £9,8,,85,8,¢ c(r).

A3 ., For every (x,t)e€XxI the inequalities

2g(x,t) > leg(x, )1, 2r(x,t) > 11, (x,t)]

are satisfied.
A4' , There exist positive constants G1,R1 such that for

every ({x,t)eXxI we have
0<gix,t)<Cy, O0<rix,t)<Ry.

A5', For every (x,t)eXxI the inequalities

ge(x,t) 20, go4(x,8)<0; 2(x,8)20, rielx,t)<0

are satisfied.
A6', Tor every VveER and je {1,2,3,4} we have

/
. 2 0,
fJ(VJ 0
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" Behaviour of solutions 11

A3' . There exist positive constants K4,K5 such that for
(x,t)e Xx I we have

28(x,t)>x4 + lot(x,t)lg 2r(x,t)>K5 + llt(xpt”o

A5', There exist positive constants G,,R, such that for
(x,t)s XxI we have

Bey(Xet) + Goge(x,t) <O, riy(x,t) + Ry (x,t) <O,

We also assume that the assumptions A3 and A6 from § 1
hold. '

. Theorem 2.1. If the assumptions A1 + A6 and A3,
A6 are satisfied, then every solution w = [u,1] of the prob-
lem (E'), (Ic), (BCn, n = 1,2,3) and its derivatives are bound-
ed in the norm H.Hg. The solution w = [u,i] is bounded
in the norm |l .|, too.

Proof. The boundedness of a solution of the prob-
lem (E'), (IC), (BCn), n = 1,2,3 4in the nornm Ilel, follows
from Theorem 1,1, as all its assertions are satisfied. The
estimation (1.8) is trus, too. In order to prove second part
of this Theorem we introduce for an arbitrary solution w= [u,ﬂ
of the problem (E'), (IC), (BCn), n = 1,2,3 the function of
Liapunov type:

4
(2.1) ky(t) 3= j &(x,t)ug(x,t) + l(x,t)i%(x,t) +
0

+ gylx,thu?(x,t) + rt(x,t)iz(x,ti]dx for teI.

In virtue of the assumptions A3, AS' we have

k,(t) >0 for tel.

In view of the assumption A2 the function k2 belongs to
¢'(1) and
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12 J.Radzikowski, W.Sadkowski

1
~ _ 2 2 .
k2(t) = j [ctut + 1,45 + 2(°ututt + i+
0
1

+ gguuy + rtiiti]dx + I (gttuz + rttiz)dx.
0

After differentiating the system (E') with respect to %
we obtain

Cuyy = —(ctut + guy + geu + Aixt)

]

11, '(ltit + i, + Teio+ Auxt).

Thus

+

g)u% + (1, +'r)i%] +

- [ley

- (gguuy + reily)

Clgley + lititt

Alugdy)y.

Taking into eccount the above identity for te€ I we have

]
(2,2) ﬁz(t) = [ [(Zg + ct)u% + (2r + 1t)i§]dx +
0

]
+ j (Bygh? + Tyyif)ax = 28[ug(1,8)1,(1,8) 4
0

- ut(o,t)it(o,t)].

Teking into consideration the boundary conditions {(BCn),
ne=1,2,3 we get
(2.3) u (1,8)1(1,t) = u (0,8)i.(0,8) =
£,(u(1,8))u2(1,5) + £ (ulo,t))uil0,t) for (BC1)
=42, (101,8))12(1,¢) + £5(1(0,4))35(0,8) for (BC2)
£,(101,€))32(1,¢) + £;(ul0,£))u5(0,8) for (BC3).
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Behaviour of solutions 13

In virtue of the identities (2,2), (2.2} and the assump-
tion A6’ we have

(2.4)  k,(t) < - [(E‘g +oghuf + (20 + 1t’iﬂd" *

O Comerey, 3

;
+f (gttu2 + rttiz)dx for tel,
0

By the assumptions A3’ and A5  we get the inequality

1':2(t)< 0 for tel.

Thus
(2.5) ky(t)<k,(0) for teI,
where
1
(2.6) k,(0) = j [c(x,o)ui(x,o) + 1(x,o)1§(x,o) +

0
2 i 1 2
+ gt(x,O)h1(x, + rt(x,O)h2(x)}dx.

In view of the assumptions A3, A5’ and the definition
(2,1) it follows that

s ) k, (t)
(2.7) j [ut(x,t) + it(x,ti]dx < 2C3
0

for telI,

where the constant C, 1s defined by the formule (1.7).
From the inequalities (2.7) and (2.5) we get the following
estimation:

(2.8) Twe(opt) <M,
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14 Jl.Radzikowski, W.Sadkowski

where

k,(0)
(2.9) M2 t= G .
3
Computing u (x,t) and 1,(x,t) from the system (B') we
obtain

a

5 | [1(x,8)4,(x,8) + vlx,tiiix,)]? ax<

.
g u2(x,t)dx =
0

=g

n
ﬁQPJ

[12(x,t)i§(x,t) + r2(x,t)12(x,t)]dx

QO Sy A Oy s

and

'l:c\x,tlut(x,t) + g(x,‘tlu(x,’c)]2 dx <

= |

Qe b Oy 3

]
5 12(x,t)dx
0

< [oz(x,t)ug(x,t} + gg(x,t)uz(x,t{]dx.

:RJAJ

In virtue of the above, the estimations (1.,8), (2.8) and the
essumptions A3, A4 we have '

(2.10) Ilwx(.,t)ll<MB,

where

2 2 yppl 2 2\l
.- V2 EG1 + Ry M7 + (02 + L2)M2]

30— A L]

(2.11) M

Now we prove the boundedness of solutions of the problem
('), (IC), (BCn), n = 1,2,3 in the norm I.l;. From the
mean value theorem we have

1
j u{x,t)dx = ulf,t), where Ee€X.
0
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15

Making use of Schwarz s inequality we obtain
1

(2.12) wl(E,t) < f w2 (x,t)dx for tel.
0

The last inequality and the estimation (1.8) imply

[u(E,t)] <My for tel,

where the constant M; is defined by the fcrmula {1.9). On
the other hand, making use of the formula

x
ulx,t) - uff,t) = f u (x,t)dx

and Schwartz ‘s inequality we infer that

X
{2.13) [u(x,t) - u(g,t{]z <Ix - gl'f ui(x,t)dx <
1 g
<2
< uglx,t)dx  for tel, x, E€ X,
0

¥rom the above and the inequality (2.70) we have

|ulx,t) -u(§,t)|<M3 for tel, x,EeX.
Thus
lulx, )| < 1, + Uy tor (x,tleXxT.
Similarly we can obtain the estimation

li(x,'c)lsm1 + iy for (x,t)e Xx I,

Therefore

(2.14) Twlo,t)lly<t, tor tel,
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16 J.Radzikowski, W.Sadkowski

where
My := (My + Uj) V2,

which proves the stated results,

Theorem 2.2, If the assumptions A1 , A2', A3', A4,
KB’, A6 and ﬁi, A6 are satisfied then any solution w = [u,i]
of the problem (E'), (IC), (BCn), n = 1,2,3 and its deriva-
tives are exponentially oconvergent to zero in the norm H.H2
for t —oco and any solution w = [u,i] is convergent to
zero in the norm [l.ll; for t-—=oca .

Proof . The first part of this theorem follows from
Theorem 1.2, as all its assertions are satisfied and the esti-
mation (1.11) is true, too. Second part of the proof is simi-
lar to the proof of Theorem .2, Taking the Liapunov type fun-
ction in the form of (2.,1) and making analogical transforma-
tions we obtain the estimation (2.4). By the assumptions A3
and A6' we have from (2.4)

1 1
3 2 2 2 2 :
-kz(t)>l[ (K4ut + Ksit)dx + f (ngtu + Ryr i®)dx for telI,
0
thus
1 1
: 2 2 2 2
-kz(t)é'j (K4ut + Ksit)dx + K¢ j (ggu® + r i<)ax,
0 0
where
Kg = min '(62,122)_.

Using the assumption A3 we obtain

1 - 1
~ky(t) > Ky j (cud + 112)ax + K¢ [ (g4u® + rg1®)ax for teI,
0 0
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Behaviour of solutions 17

where
| K, := min (K,,K.)emin L
7" 4275 C2 ’L2 ¢

From the above estimation it follows that

(2.15) kg(t)< -2Kg k,(t) for tel,
where
1
Ky := 5 min (K6,K7).
Thus
(2.16) k2(t)<k2(0) exp (-gxst) for tel,

Applying the inequalities (2.7), (2.16) and the formula
(2.9) we have

(2.17) Twylo,t)l, <M, exp (-Kgt) for tel.

Further the proof is similar to the one in Theorem 2,1.
By the assumptions A4', A3 and the estimations (1.11), (2.17)
we have

1 v
s uf[(x,t)dmi—z [R’fmf oxp (-2K;t) + 1242 exp (-2K8t)],
)
b 2

2 2 (a2 2.2
j ix(x,t)dXQIQ [G1M1 exp (-2K3t) + COM5 exp (-2K8t)].
0

The above inequalities and formula (2,11) imply

(2.18) Ilwx(.,'c)nzgm3 exp (-Kgt) for tel,
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18 J.Radzikowski, W.Sadkowski

where

(2.19, K9 = min (KB'KB).

In virtue of the inequalities (2.12), (2.13) and the esti-
mations (1.,11), (2.18) we also get

lulx,t)| <M, exp (-K3t) + My exp (-th)

fi(x,t) <M, exp (-K3t) + My exp (-th) for (x,t)eXxI.

Denoting K := min (K3,K9), M, := max (M1,M3) and using
the formula (2.14) we have

The inequalities (2.17), (2.18), (2.20) imply exponential
convergence to zero in the norm ||.|I1 for t —-c of solu-
tion w = [u,i] of the problea (E'), (IC), (BCn), n = 1,2,3
and its derivatives in the norm ||.H2. This ends the proof
of Theorem 2.,2.

Theorem 2.3, If the assumptions A1, A2', A3,
A4' , A5’ , A6’ and A3, A6 hold, then every solution w = [u,1i]
of the problea ('), (IC), (BCn), n = 1,2,3 is stable and
asymptotically stable in the norms H.H2, l.01, and in the
norm .1, with respect the norm ||."3.

Proof. As the system of the equations (E') is 1i-
near, it is sufficient to prove the stability and asymptotioe
stability of zero solution of the problem (E'), (IC), (BCn),
n=1,2,3,

The stability and the asymptotic stability of zero solu-
tion our problem in the norm l|."2 follows from Theorem 1.3,
as all its assertions are satisfied,

Now we prove this properties in the norm |{.H3.

In virtue of the assumptions A2' we infer that there
exist positive constants GB’RB such that for every xe X we

have
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(2.21) lag(x,011< 65, Iry(x,0) <R,

Consider any solution w = [u,i] of the problem (E'),
(xc), (BCn), n = 1,2,3 such that

By the assumption A3, the formula (2.6) and the inequali-
ties (2.21), (2.22) we get

2
(2.23) k,(0) < €565,

where C. := max (C 1Ly GqsRa)e
5 2 373
Henoe (2.22) implies lw(.,0)l,<8. 1In view of the last
inequality, the assumption A3 and the formula (1.6) we obtain

2
(2.24) k1(o)<c.56 .

The estimations (1.11), (2.17) and the formula (2.13)
imply

(2.25) i w(..t)l3<\/M$ + Mg exp (-th) for tel,

Using the formulae (1.9), (2.9) and the inequalities (2,23),
(2.24) and (2.25) we obtain

C
i W(..t)||3€5\’6§ exp (-th) for teI.

c
Putting §=£ =3 we .have
2 05

(2.26) ﬂw(.,t)ﬂ3<CGXp (-th) for tel.

The inequality (2,26) implies thae stubility and the asymp-
totic stability the zero solution W = [0,0] of the conside-
red problem in tho norm | . Il3.
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The stability end the asymptotic stability of the zero so-
lution wy = [0,0] of the problem (E'), (IC), (BCn), n=1,2,3
in the norm |I.||1 with respect the norm I!.II3 follows from
the inequality

(2.27) Iwle,t)lly <Eexp (-Kt) for tel
(if Ilw(.,t)|l3<6).

We will show this inequality. Using the foraulae (1.9),
(2.9), (2.11), (2.14) and the inequalities (2,23), (2.24)

we obtain

(2.28) M, <dc,

2C C L,
,_]/ 5 . 2./°5 (a2 2 2 2
C := CB+A 03 (G1+R1+02+L2).

In view of (2.20) and (2,28) we have

where

Iw(eyt);<C & exp (-Kt) for teIl.
Finally, putting § = é%- we get the intequality (2.27) and
the desired properties. The proof is complete.
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