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Introdaction 

In the present paper boundenesa, exponential oonvergenoe 

to zero , s t a b i l i t y and asymptotio s t a b i l i t y of so lu t ions of 
some systems of two p a r t i a l d i f f é r e n t i a l equat ions of the 
f i r s t - o r d e r with non- l inear boundary condi t ions are i n v e s t i -
gated. In the papers [2] -s- [6] are considered these p roper t i es 
(or only some of them) with l i n e a r and zero boundary condi-
t i o n s . Some r e s u l t s conoorning the stability of so lu t ions of 
such system were presented a l so in [5] In t ha t paper the 
author considered the equations of the t ransmiss ion l ine with 
constant c o e f f i c i e n t s and with speoia l type non- l inear bounda-
ry condi t ions . He proved the s t a b i l i t y of so lu t ions of t h i s 
system by the frequency method. 

The present paper continues these i nves t i ga t i ons and gene-
r a l i z e s r e s u l t s of papers [3] , [4] and par t ly of [5] » The 
proofs in t h i s paper make use of tbe second method of Liapunov 
ty pe. 

Let R = (-=», 00) t i - <0 , , X = <0,1 > and assume tha t 
we are given func t ions c , 1, i , u: X* I —*- R; g , r i XxIxRxR—• 
— R$ a : I —- R; h-j.hg: X — R; R — R. 

We consider the-fo l lowing system of equations 

f o ( x , t ) u + ( x , t J + g ( x , t , u ( x , t ) , i ( x , t ) ) u ( x , t ) + a ( t ) i ( x , t ) = 0 
C E ) J * x 

[ l ( x , t ) i t ( x , t ) + r ( x f t , u ( x t t ) , i ( x , t ) ) i ( x , t ; + a ( t ) u x ( x , t ) = 0 
x eX, t e l 
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2 J.Radzikowski, W.Sadkowski 

with the initial conditions 

(IC) u(x,0) » ^ ( x ) , i(x,0) = h2(x) for xeZ 

and one of the following three types of boundary conditions 

(BC1) 

or 

(BC2) 

or 

(BC3) 

i(0,t) - -f.,(u(Ott)) 
i(l,t) = f2(u(1,t)) 

u(0,t) - -f3(i(0,t)) 
u(1,t) « f4(id,t)) 

i(0,t) = -f^(a(0,t)) 
ud,t) = f4(i(l,tj) 

for t e I, 
We suppose that the following compatibility conditions 

are respectively satisfied! 

h2(0) = -f-jfh^O)) 
h2(1) » fgth^D), 

or 

or 

h^(0) = -f3(h2(0)) 
h.,0) = f4(h2(1))f 

h2(0) = -fjih^O)) 
f4(h2(1)). 

Physically we may interpret the function u as ourrent 
and the function v as voltage. Then the boundary conditions 
(BCn), n = 1,2,3 describe the interdependence of the initial 
voltages and the initial currents. This dependency is describ-
ed by the functions fn, n = 1,2,3« 
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Behaviour of solutions 3 

A pair of functions w = [ u , i ] ia said to be a olassioal 
solution of the problem (E), IC) , (BCn), n = 1,2,3 defined 
on In I , i f u , i eC 1 ( X x l ) and the funotions u,i and 
their partial derivatives u^, u^, i^ , i x satisfy the system 
of equations (E) , the in i t i a l conditions ( IC) , and the bounda-
ry conditions IBCn), n = 1,2,3. 

In the paper, i t is assumed that there exists at least 
one non-zero classical solution of the problem (E), ( IC ) , 
(BCn), n = 1,2,3 defined on X x l . The problem of existence 
for thiB type of systems has been investigated, among others, 
by V.Barbu and I.Vrobie [l] . 

In order to define boundedness, exponential convergence 
to zero stability and asymptotic stabil ity of solutions of 
the problem (E), ( lC), (BCn), n = 1,2,3 we introduce the spa-
oe V consisting of real functions v = v ( x , t ) , x eX , t e I , 
and Cartesian product W = Vx V. 

I f V = C°(Xx I ) then we define in space W two norms 

II w(. ,t )|L ((max |v.,(x,t)| )2 + (max |v9 (x ,t )| ) 2 V / 2 , 
1 V xeX 1 xeX 2 / 

and ^ 

l lw(. ,t )H2 [ v 2 ( x , t ) + v| ( x , t > ] dxy / 2 , 

where w = [v-pVg] an<i V1 » v 2 e ^ ' t is a parameter, and 
t e l . 

I f V = C 1 ( Xx I ) then we define in the space W the f o l -
lowing norm 

||w(.,t)H3 [ v 2 ( x , t ) + v| ( x , t ) + v 2 > t ( x , t ) + v 2 ( x , t ) ] dx^1/2. 

D e f i n i t i o n 1. A solution w = [ u , i ] of the 
problem (E), ( IC) , (BCn, n = 1,2,3) is said to be: 

a) bounded in the norm II . ( IMIg) i f there ex is ts a po-
s i t i v e constant M such that f o r every t e l we have 

II w (• 11) || i < M (llw(.,t)H2 < M){ 
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4 J.Radzikowski, W.Sadkowski 

b) exponentially oonvergent to zero in the norm 
11.11, (lUllg) for t —•<*> i f there exists positive con-

stants M, K such that for every t e l 

II » ( . » t i l l , <M exp(-Kt), (llw(.,t)ll2 <M exp(-Kt) J, 

D e f i n i t i o n 2. Tho zero solution wQ = [ o , o ] 
of the problem (E), (IC), (BCn, n = 1 , 2 , 3 ) i s said to bet 

a) stable in the norm II • llg (II» ll̂ ) i f for every e > 0 
there exists 6 > 0 quch that for every classioal solution 
w = [ U f i ] of the considered system (B) whioh sa t i s f ies bounda-
ry conditions the inequality II w( . ,0 ) l 2 < 6 (llw(.,0) I3 < S ) 
implies II w( . , t ) l l 2 < £ (IIw(. ,t)II3 <£) for t e 1% 

b) stable in the norm 11« II, with respeot to the norm 
11« 11̂ . i f for every £ > 0 there exists <5 > 0 such that for 
evçry classioal solution w = [ u , i ] of the considered sys-
tem (E), whioh sa t i s f ies boundary conditions the inequality 
H W ( . , 0 ) I 3 < 6 implies I I w(..>t J L L , < I for t e l » 

c) asymptotically stable in the norm II . II2 (II. 11̂ ) i f i t i s 
stable and in notations of the definition 2a) we have 

d) asymptotioally stable in the norm || <11, with respect 
to the norm ||. |U i f i t is stable and 

In the part 1 of this paper a quasi-linear system (E) 
(with functions g , r : X x I x R x R —» R and a: I — R) will 
be considered. In that part the above mentioned properties 
of solutions of the problem (E), (IC), (BCn, n = 1 , 2 , 3 ) will 
be investigated only in the norm II • ||g» 

Seoond part of this paper deals with a linear system (E), 
with g , r j Xx I — R and a = A = o o n s t X ) . In that part 
boundedness, exponential convergence to zdro will be consi-

lim II w ( . , t ) |U = 0 
t -oo * 

lim II w(. , t ) L = 0 
t 
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dered in the norm || . ||.j or || . ||2# The stability and asympto-
tic stability will be investigated in the norm || . |l2 or I! . 11̂  
and in the norm || . I11 with respect the norm ||. \y 

1. A quasi-linear system 
Consider the system of equations (E) with initial condi-

tions (IC) and boundary conditions (BCn, n = 1,2,3). Let the 
functions describing the problem (E), (IC), (BCn, n = 1,2,3) 
satisfy the following conditions: 

A1. There exist olaasical solutions w = [u,i] of the 
problem (E), (IC), (BCn, n = 1,2,3) defined on Xxl, 

A2. u,ieC1(Xxl)} aeC0(l); c,l e C0»1 (Xxl)» g,re 
e C°(XxIxRxR); h-, ,h2 ec1 (X); ty% fg, f y f4eC0(R). 

A3. There exists positive constants C^, L1 suoh that for 
every (x,t)eXxl the inequalities 

c(x,t) ̂  C.p l(xtt) 

are satisfied. 
A4. For every (x,t,y,z) eX x I x R x R we have 

2g(x,t,y,z) ̂  ct(x,t), 2r(x,t,y,z) J»lt(x,t). 

A5. For every t el the inequality 

a(t) >0 is satisfied* 

A6. For every veR and je {l,2,3»4} we have 

fjivJ.v > 0. 

A3. There exists positive oonstants C1, Cg, L^, Lg suoh 
that for every (x,t) ex xl we have 

C1 ^c(x,t) <C 2, L| ̂  l(x,t) <L 2. 

A4. There exist positive constants K^, K 2 such that for 
every (x,t,y,z)eX * Ix R x R we have 
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6 J.Radzikowski, W.Sadkowski 

2g (x ,t ,y ,z ) + c t ( x , t ) , 2r (x , t ,y ,z ) > K2 + l t ( x , t ) . 

R e m a r k 1. It is easy to check that the functions 
2p-+1 

f j ( v ) = v J p., eH satisfy the assumption A6. J J 
T h e o r e m 1.1. If the assumption A1-A6 are sat i s -

fied then every solution w = [ u , i ] of the problem (E), ( IC ) , 
(BCn, n = 1,2,3) is bounded in the norm ll.llg. 

P r o o f . Let w = [ u , i ] be an arbitrary solution of 
the system (E) with conditions (IC) and (BCn, n = 1,2,3) and 
let the funotion of Liapunov type for this solution be of the 
form 

1 
(1.1) fcjit) != | [ o ( x , t ) u 2 ( x , t ) + l ( x , t ) i 2 ( x , t ) ] d x for t e l . 

0 
In virtue of the assumptions A3 we have 

k1 ( t ) ^ 0 for t e I . 

Next, by the assumption A2 the integrals in (1.1) are of 
olass C1 with respeot to t and of class C° with respeot to 
x. Thus we may interchange integration and differentiation 
with respeot to t . After differentiation of k^ with res -
peot to t we obtain for t e l 

1 1 
k1 ( t ) = | (c tu2 + l t i 2 ) d x + 2 | (ouut + l i i t ) d x . 

Computing out and l i^ from the system (E) and introducing 
them into the previous formula we see that the last equality 
beoomes 

1 
(1.2) k ^ t ) = j [ ( c t - 2 g ) u 2 + ( l t - 2 r ) i 2 ] d x + 

0 

- 2 a ( t ) [ u ( l , t ) i ( l , t ) - u(0,t) i ( 0 , t ) ] . 
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Behaviour of s o l u t i o n s 7 

Taking i n t o account the boundary cond i t ions (BCn, n=1,2,3) 
we have 

(1 .3) u(1 f t ) i ( l , t ) - u ( 0 , t ) i ( 0 , t ) = 

f 2 ( u ( l , t ) ) u d , t ) + f . , ( u ( 0 , t ) ) u ( 0 , t ) f o r (BC1) 

f 4 ( i ( l , t ) ) 1 ( 1 , t ) + f 3 ( i ( 0 , t ) ) i ( 0 , t ) f o r (BC2) 

f 4 ( i ( l , t ) ) i ( l , t ) + f 1 ( u ( 0 , t ) ) u ( 0 , t ) ) f o r (BC3). 

By the formulae (1 .2) and (1 ,3) and the assumptions A5» 
A6 we ob ta in the fo l lowing i n e q u a l i t y 

1 

(1 .4) k ^ t x j [ ( c t - 2g)u2 + ( l t - 2 r ) i 2 ] d x f o r t e l . 
0 

In view of thp assumption A4 we have 

k , ( t K o f o r t e l . 

Thus 

(1 .5) ^ ( t X l t l O ) f o r t e I , 

where 
1 

(1 .6) k.,(0) = j [ c ( x , 0 ) h ^ ( x ) + l ( x , 0 ) h 2 ( x ) ] d x . 
0 

By the assumptions A3 and the d e f i n i t i o n (1 .1) we ge t 
f or t e I 

C 3 l lw( . , t ) l l | < k1 ( t ) , 

where 

(1 .7 ) C3 : = min (C1 , L 1 ) . 
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e J.Radzikowskl, W.Sadkowaki 

Prom the last inequality and the inequality (1.5) it fol-
lows that 

(1.8) l l w(.,t ) | l 2<M 1 for t e l , 

where 

(1.9) 

This completes the proofs of Theorem 1.1. 
T h e o r e m 1.2. If the assumptions A1t A2, A3, A4, 

A5, A6 hold, then every solution w = [u,i] of the problem 
(E), (IC), (BCn), n = 1,2,3 is bounded and exponentially con-
vergent to zero in the norm ¡I . Iln for t — o o , 

P r o o f . The boundedness of w = [u,i] in the norm 
II. ||2 follows from Theorem 1.1, as all its assertions are sa-
tisfied. 

Now we prove the exponential convergence to zero in the 
norm II . |l2 of any solution of the problem (E), (IC), (BCn), 
n = 1,2,3. 

Taking the Liapunov type function k1 in the form of 
(1.1) and making analogical transformations as in the proof 
of Theorem 1.1 we obtain the inequality (1.4). By the assump-
tions A3, A4 and the formula (1.1) (1.4) we obtain tho inequa-
lity 

(1.10) -k., (t) > K3 k1 (t) for tel. 

where 

K3 , - l m l n (K^^J.min ( ^ . ¿ J . 

Prom the last inequality we obtain 

k1(t)<k1(0) exp (-2K,t) for tel. 
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In virtue of the assumption A3 and the formula (1.1) we 
get following estimation 

(1.11) llw(.,t)H2 exp (-K3t) for te I, 

where the oonstant M^ is defined by the (1.9). 
The inequality (1.11) implies exponential convergence to 

zero in the norm II • ll2 of the solution w= [u,i] for t —• oo , 
This ends the proof of Theorem 1.2. 

T h e o r e m 1.3. If the assumptions A1, A2, A3, A4, 
A5, A6 holds then the zero solution WQ = [o,o] of the prob-
lem (E), (BCn), n = 1,2,3, (ICS h1 S h2 = 0) is stable and 
asymptotically stable in the norm ||«|l2. 

P r o o f . Consider any solution w = [u,i] of the 
problem (E), (IC), (BCn), n = 1,2,3, such that 

(1.12) ||w(.,0)||2< 5 . 

Using the assumption A3 from the identity (1.6) and the 
inequality (1.12) we have 

(1.13) I C ^ O X C ^ 2 , 

where 

C^ ;= max (C2,L2). 

Prom the inequality (1.11 ), (1.13) and the formula (1.9) 
we get 

fc7 
llw(.,t)||9< -ycj fi exp (-K3t) for tel, 

where the constant K^ is defined by formula (1.10). 
£ /CT 

Putting o = nVr we obtain the estimation 
^ V 4 

(1.14) II w(.,t)||2 ^ t exp (-K3t) for t e l . 
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10 J.Radzikowski. W.Sadkowski 

Prom the inequality (1.14) it follows that the zero solu-
tion of the problem (E), (IC), (BCn), n = 1,2,3 is stable 
and asymptotioally stable in the sense of definitions 2a and 
2c, respectively. 

2. A linear system 
In this part we shall oonsider the system of equations 

Jc(x,t)ut(x,t) + g(x,t)u(x,t) + Aix(x,t) = 0 
[l(x,t)it(x,t) + r(x,t)i(x,t) + Aux(x,t) = 0, 

(with functions c,l,g,r: X x l — • R and A = const>0) with 
initial conditions (IC) and boundary conditions (BCn), 
n = 1,2,3. 

We assume that: 
A1 ' . There exist classical solutions w = [u,i] of the 

problem (E'), (IC), (BCn), n = 1.2,3 defined on Xxl. 
A2'. u,ieC2(XxI); c,le C°''(Xx I), g,reC°»2(Xx I); 

h1,h2eC2(X); f1ff2,f3,f4£ C1(R). 
A3 . For every (x,t)eXxI the inequalities 

2g(x,t ) > |ct(x,t)| , 2r ( x, t ) Ht(x,t)| 

are satisfied. 
A4' . There exist positive constants G1,R1 such that for 

every (x,t)eXxl we have 

0<g(x,t)<G1, 0<r(x,t)<R v 

A5'. For every (x,t)eXxI the inequalities 

gt(x,t)>0, gtt(x,t)<0; rt(x,t)>0, rtt(x,t)<0 

are satisfied. 
A6'. 7or every veR and je {l,2,3,4} we have 

f'Av)> 0. 
J 
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A3' • There exist positive constants such that for 
(x,t)e X x I we have 

2g(x,t)>K4 + |ot(x,t)|, 2r(x,t}>K5 + |lt(x,t)|. 

A5'. There exist pqsitive constants G 2,R 2 such that for 
(x,t) s X x I we have 

gtt(x,t) + G 2 g t ( x , t K O , rtt(x,t) + R2rt(x,t) <0. 

We also assume that the assumptions A3 and A6 from § 1 
hold. 

T h e o r e m 2.1. If the assumptions A1' * A6'and A3, 
A6 are satisfied, then every solution w = [u,i] of the prob-
lem (E' ), (IC), (BCn, n = 1,2,3) and its derivatives are bound-
ed in the norm II . Il2. The solution w = [u,i] is bounded 
in the norm || . , too. 

P r o o f » The boundednese of a solution of the prob-
lem (E' ), (IC), (BCn), n = 1,2,3 in the norm || . |l2 follows 
from Theorem 1.1, as all its assertions are satisfied. The 
estimation (1.B) is true, too. In order to prove second part 
of this Theorem we introduoe for an arbitrary solution w = [u,i] 
of the problem (E'), (IC), (BCn), n = 1,2,3 the function of 
Liapunov type: 

In view of the assumption A?.' the function k 2 belongs to 
C ^ I ) and 

1 
(2.1 ) 

In virtue of the assumptions A3, A5' we have 

k9(t) > 0 for t e l . 
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12 J.Radzikowski, W.Sadkowski 

k2(t) = J [otu2 + lt±\ + 2(cututt + lititt + 
0 

1 
+ gtuut + rtiit)]dx + | (gttu2 + rtti2)dx. 

0 
After differentiating the system (E') with respect to t 

v/e obtain 

cutt = -(ctat + gut + gtu + Aixt) 

n t t = "(ltit + rit + rt* + Auxt}-
Thus 

Clitutt + 11titt = " [(ct + e,ut + (lt + r , it] + 

- ( £ t u u t + W • A K V x * 

Taking into account the above identity for tel we have 
1 

(2.2) k2(t) = J [(2g + c t)4 + (2r + lt)if]dx + 
0 

1 

+ j (gttu2 + rtti2)dx - ÎA[ut(l,t)it(l,t) 4 

- ut(0,t)it(0,t)j. 

Taking into consideration the boundary conditions (BCn), 
n = 1,2,3 we get 

(2.3) ut(1,t)itd,t) - ut(0,t)it(0,t) = 
f2(u(1,t))u2(1,t) + f!,(u(0,t))u^(0,t) for (BC1) 
f^(i(l,t))i^(l,t) + f!j(i(0,t) )i2(0,t) for (BC2) 
f^(i(lft))i|(1ft) + f^(u(0,t))u|(0,t) for (BC3). 
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In v i r t u e of t he i d e n t i t i e s (2,2), ( 2 . 3 ; and the assump-
t i o n Ab' vie have 

1 
( 2 . 4 ) ¿ 2 ( t ) < - J [ (2g + c t ) u | + (2 r + l t ) i | ] d x + 

0 

1 

+ J (ett"2 + rtti2^dx f o r t e I « 
0 

By the a s sumpt ions A3 and A5' we g e t t h e i n e q u a l i t y 

¿ 2 ( t K 0 f o r t e l . 

Thus 

( 2 . 5 ) k 2 ( t K k 2 ( 0 ) f o r t e l , 

where 

1 

( 2 . 6 ) k 2 ( 0 ) = j [ c ( x , 0 ) u | ( x , 0 ) + l ( x , 0 ) i ^ ( x , 0 ) + 
0 

+ g t ( x , 0 ) h | ( x ) + r t ( x , O j h | ( x ) ] d x . 

I n view of t h e a s sumpt ions A3, A5' and the d e f i n i t i o n 
( 2 . 1 i i t f o l l o w s t h a t 

( 2 . 7 ) J [ u ^ ( x , t ) + i ^ ( x , t i ] d x < f o r t e l , 

0 3 

where t he c o n s t a n t C^ i s d e f i n e d by the f o r m u l a ( 1 . 7 J . 
Prom the i n e q u a l i t i e s ( 2 . 7 ) and ( 2 . 5 ) we g e t t h e f o l l o w i n g 

e s t i m a t i o n : 

( 2 . 8 ) II w t ( . t t ) | l < M 2 , 
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14 J.Radzikowski, W.Sadkowski 

where 

_ /k„(0) ' 
(2.9) M. 2 

2 c 3 • 

Computing u x ( x , t ) and i ( x , t ) from the system ( b ' ) we 
obtain 

1 1 
1 
A 

j u 2 ( x , t ) d x = f [ l ( * , t ) i t ( x , t ) + r ( x , t ) i ( x , t ) ] 2 dx< 
A 0 

1 

j [ l 2 ( x , t ) i 2 ( x , t ) + r 2 ( x , t ) i 2 ( x , t ) ] d x 
A 0 

and 

1 
( i 2 ( x , t ) d x = ^ | [ c l x , t i u t ( x , t ) + g ( x , t Ju (x , t } ] 2 dx < 
0 A 0 

1 
J [ c 2 ( x , t ) u 2 ( x , t j + g 2 ( x , t ) u 2 ( x , t ) ] d x . 

A 0 
In v i r t u e of the above, the es t imat ions ( 1 . 8 ) , (2.8) and the 
assumptions A3, A4* we have 

(2.10) l lw x ( . , t ) | | < M3, 

where 

( 2 . 1 1 J M 3 : 
"^2 [(Gif + R2 )M2 + (C2 + Li 2 w,2l 

2' 

Now we prove the boundedness of so lu t ions of the problem 
(E' ) , (IC), (BCn), n = 1 ,2 ,3 i n the norm II .II.,. From the 
mean value theorem we have 

i 
| u (x , t )dx = u ( ^ , t j , where ÇeX. 
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Behaviour of solutions 

Making use of Schwarz s inequality we obtain 
1 

(2.12) u 2 ( £ , t ) < j" u 2 (x , t )dx for t £ 1. 
0 

The l a s t inequality and the estimation (1.8) imply 

| u ( ^ f t ) | < M 1 for t e I , 

where the constant M̂  i s defined by the formula I1 .y ) . On 
the other hand, making use of the formula 

x 

5 
and Schwartz's inequality we in fer that 

V 

u^(x,t jdx for t e l , x , £ e X. 
0 

iTom the above and the inequality (2.10) we have 

| u ( x , t ) - u ( £ , t ) | < M3 for t e l , x , £ e X 

Thus 

| u ( x , t ) U M , + M, for ( x , t ) e X x I . 

Similarly we can obtain the estimation 

| i ( x , t ) 11. + I«!, for ( x , t ) e X x ! 

Therefore 

(2.14) || w ( . f t J | l 1 < S I 4 for t e l 
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16 J.Radzikowski, W.Sadkowski . 

where 
M4 := (M1 + M3) V?, 

whioh proves the s ta ted r e s u l t s . 
T h e o r e m 2 .2 . If the assumptions A1 , A2 , A3 , A4, 

A5', A6 and A3, A6 are s a t i s f i e d then any so lu t ion w = [ u , i j 
of the problem ( E ' ) , (IC), (BCn), n = 1 ,2 ,3 and i t s de r i va -
t i v e s are exponential ly convergent to zero in the norm || , |l2 

f o r t —"oo and any so lu t ion w = [ u , i ] i s convergent to 
zero in the norm || . f o r t — oo . 

P r o o f . The f i r s t part of t h i s theorem fol lows from 
Theorem 1 .2 , as a l l i t s a s se r t i ons are s a t i s f i e d and the e s t i -
mation (1.11) i s t r u e , too . Second part of the proof i s s imi-
l a r to the proof of Theorem 1 .2 . Taking the Liapunov type f u n -
c t ion in the form of (2.1 ) and making ana log ica l t ransforma-
t i ons we obtain the es t imat ion (2 .4 ) . By the assumptions A3 
and A6' we have from (2.4) 

1 1 

-k 2 ( t ) i> J (K4u| + K 5 i | ) dx + J (G2g tu2 + R 2 r t i 2 ) d x f o r t e l , 
0 0 

thus 

1 1 
- k 2 ( t ) > j (K4u| + K 5 i | ) dx + Kg J (g t u 2 + r t i 2 ) d x , 

0 0 

where 

Kg := min (G2 ,R2) . 

Using the assumption A3 we obtain 

1 1 
- k 2 ( t ) > K 7 | (cu2 + l i 2 ) d x + Kg | (g t u 2 + r t i 2 ) d x f o r t e l , 

0 0 
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where 

Kj := min (K^,K^).min , 

From the above est imat ion i t fol lows tha t 

(2.15) ¿ 2 ( t ) < -2Kg fc2(t) f o r t e l , 

where 

Kg i - J min (K6 ,K ?) . 

Thus 

(2.16) k 2 ( t ) < k 2 (0) exp (-2K3 t) f o r t e l . 

Applying the i n e q u a l i t i e s (2 .7 ) , (2.16) and the formula 
(2.9) we have 

(2.17) II w t ( . , t ) H 2 < M 2 exp (-K 8 t ) f o r t e l . 

Fur ther the proof i s s imi l a r to the one in Theorem 2 .1 . 
By the assumptions A4' , A3 and the es t imat ions (1 .11) , (2.17) 
we have 

1 
( u ^ ( x , t ) d x < ^ 2 [a?"? exp (-2K^t) + l | m | exp (-2Kgt)] , 
0 A 

1 
j i £ ( x , t ) d x < - ^ G ^ exp (-2K3 t) + c|m| exp ( -2Kgt)] . 
0 A 

The above i n e q u a l i t i e s and formula (2.11) imply 

(2.18) II w x ( . , t ) | | 2 < M 3 exp (-Kgt) f o r t e l , 
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where 

(2.19) Kg s= min (K3,Kg). 

In virtue of the inequalities (2.12), (2.13) and the esti-
mations (1.11), (2.18) we also get 

|u(x,t)l<M1 exp (-K^t) + M3 exp (-Kgt) 

Ii(x,t)-|4M exp (-K^t) + M^ exp (-Kgt) for (x,t)eXxI. 

Denoting K := min (K^.Kg), M^ := max (MLj.M̂ ) and using 
the formula (2.14) we have 

(2.20) lw(.,t)|l1<M4 exp {-KtJ. 

The inequalities (2.17), (2.18), (2.20) imply exponential 
convergence to zero in the norm II . Il̂  for t — o f solu-
tion w = [u,i] of the problem (E'), (IC), (BCn), n = 1,2,3 
and its derivatives in the norm II . Ilg. This ends the proof 
of Theorem 2.2. 

T h e o r e m 2.3. If the assumptions A1' , A2' , A3' , 
A4', A5', A6' and A3, A6 hold, then every solution w = [u,i] 
of the problem (E'), (IC), (BCn), n = 1,2,3 is stable and 
asymptotically stable in the norms II . Ilg, II . Il̂  and in the 
norm II . ¡̂  with respect the norm II . IÎ. 

P r o o f . As the system of the equations (E ) is li-
near, it is sufficient to prove the stability and asymptotio 
stability of zero solution of the problem (E'), (IC), (BCn), 
n = 1,2,3. 

The stability and the asymptotic stability of zero solu-
tion our problem in the norm II .Ilg follows from Theorem 1.3, 
as all its assertions are satisfied. 

Now we prove this properties in the norm II . IÎ. 
In virtue of the assumptions A2' we infer that there 

exist positive constants G^.R^ such that for every xe X we 
have 
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(2.21) |gt(x,0)|<G3, lrt(x,0)l < R y 

Consider any solution w = [u,i] of the problem (B'), 
(IC), (BCn), n » 1,2,3 such that 

(2.22) l w ( . , 0 ) l 3 < f „ 

By the assumption A3, the formula (2.6) and the inequali-
ties (2.21), (2.22) we get 

(2.23) k2(0)<C562, 

where C^ max (Cg,^»^»^). 
Henoe (2.22) implies 0w(.0)H2 < $ • I n view of the last 

inequality, the assumption A3 and the formula (1.6) we obtain 

(2.24) k1(0)<C562. 

The estimations (1.11), (2.17) and the formula (2.19) 
imply 

(2.25) 1 w{.,t)J3<yM2 + M2 exp (-Kgt) for tel. 

Using the formulae (1.9), (2.9) and the inequalities (2.23), 
(2.24) and (2.25) we obtain 

II w(.,t)|l3<<5-^fexp (-Kgt) for tel. 

Putting 6 = f^ig^ W Q have 

(2.26) || w(.,t)S3 < £ exp (-Kgt) for tel. 

The inequality (2.26) implies the stability and the asymp-
totic stability the zero solution WQ = [0,0] of the conside-
red problem in tho norm || . ||3. 
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The s tab i l i ty and the asymptotic s tab i l i ty of the zero so -
lution Wq = [0 ,0 ] of the problem ( E ' ) , ( IC ) , (BCn), n=1,2,3 
in the norm || . with respect the norm || . fol lows from 
the inequality 

(2.27) II w ( . ,-t) ||n < £exp ( -Kt ) f o r t e l 

( i f ||w(.,t) ||3<6 J. 
We w i l l show this inequality. Using the formulae ( 1 .9 ) , 

( 2 .9 ) , (2 .11) , (2.14) and the inequalit ies (2.23) , (2.24) 
we obtain 

(2.28) M 4 < d C , 

where 

In view of (2.20) and (2.28) we have 

|| wi . j tJI^ <C & exp ( -Kt ) f o r t e l . 

F inal ly , putting 6= we get the intequality (2.27) and 
the desired properties. The proof is complete. 
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