

V. C. Gupta, Renu Dubey

ALMOST r-CONTACT STRUCTURE IN A PRODUCT MANIFOLD

An almost contact structure in a complex manifold and in a product manifold has been studied by Mishra [3], Upadhyay and Dube [4] respectively, by making use of index free notations. Dube and Niwas [1] defined and studied the almost r-contact structure in a product manifold. The purpose of the present paper is to study some properties of an almost r-contact structure in a product manifold.

1. Preliminaries

Let M^{n+r} be an $(n+r)$ -dimensional differentiable manifold of class C^∞ . Let there exist in M^{n+r} a $(1,1)$ tensor field F of class C^∞ , r -contravariant linearly independent vector fields T^1, T^2, \dots, T^r of class C^∞ and r 1-forms A_1, A_2, \dots, A_r of class C^∞ satisfying [1] the following condition

$$(1.1) \quad \bar{\bar{X}} = X + \sum_{p=1}^r A_p(X)T^p,$$

for an arbitrary vector field X on M^{n+r} , where

$$(1.2) \quad \bar{X} \stackrel{\text{def}}{=} F(X)$$

and

$$(1.3) \quad \bar{T}^p = 0, \quad 1 \leq p \leq r;$$

and

$$(1.4) \quad A_p(\bar{X}) = 0,$$

for an arbitrary vector field X and $1 \leq p \leq r$; then

$$(1.5) \quad A_p(T^q) + \delta_p^q = 0,$$

where $1 \leq p, q \leq r$ and δ denotes the Kronecker delta.

Thus M^{n+r} satisfying the conditions (1.1), (1.2), (1.3), (1.4) and (1.5) is said to possess an almost r -contact structure in a product manifold [1].

In the above and in what follows, the equations containing X, Y, Z hold for arbitrary vector fields X, Y, Z .

Theorem 1.1. Let M^{n+r} be an almost r -contact product manifold; then there are r -eigenvalues zero corresponding to eigenvectors T^p ($1 \leq p \leq r$) and if k values correspond to 1, then $(n-k)$ eigenvalues correspond to -1.

Proof. Let λ be an eigenvalue of F and L be the corresponding eigenvector. Then

$$(1.6) \quad \bar{L} = \lambda L.$$

Barring (1.6) and making use of (1.1) and (1.6), we get

$$(1.7) \quad (\lambda^2 - 1)L = \sum_{p=1}^r A_p(L)T^p.$$

Case 1. Let $L = T^p$, then from (1.5) and (1.7) we get $\lambda = 0$. This gives the eigenvalue corresponding to the eigenvector T^p .

Case 2. If L and T^1, \dots, T^r are linearly independent, then from (1.7) we have

$$A_p(L) = 0 \text{ and } \lambda = \pm 1.$$

If k values correspond to the eigenvalue 1, then $n-k$ values will correspond to the eigenvalue -1.

2. The metric tensor

Let the almost r-contact product manifold be endowed with a non-singular metric tensor g . From (1.1) and (1.4) we have

$$(2.1) \quad \bar{\bar{X}} = \bar{X}.$$

Let us restrict g such that

$$(2.2) \quad g(\bar{X}, \bar{Y}) = g(\bar{\bar{X}}, \bar{\bar{Y}})$$

and

$$(2.3) \quad g(T^p, X) = A_p(X).$$

Equation (2.2) in view of (1.1), (1.4), (2.1) and (2.3) yields

$$(2.4) \quad g(X, \bar{Y}) = g(\bar{X}, Y).$$

Thus we have

$$(2.5) \quad g(\bar{X}, \bar{Y}) = g(\bar{\bar{X}}, Y) = g(X, \bar{\bar{Y}}).$$

In consequence of (1.1) and (2.3), the equation (2.5) is equivalent to

$$(2.6) \quad g(\bar{X}, \bar{Y}) = g(X, Y) + \sum_{p=1}^r A_p(X) A_p(Y).$$

We call an almost r-contact product manifold M^{n+r} endowed with non-singular metric tensor g satisfying (2.6) as "an almost r-contact product metric manifold".

Let us define a tensor $'F$ by

$$(2.7) \quad 'F(X, Y) \stackrel{\text{def}}{=} g(\bar{X}, Y).$$

From (2.5) and (2.7) we have

$$(2.8) \quad 'F(X, \bar{Y}) = g(\bar{X}, \bar{Y}) = g(\bar{\bar{X}}, Y) = 'F(\bar{X}, Y).$$

Putting $X = T^p$ in (2.7) and making use of (1.3), we get

$$(2.9) \quad 'F(T^p, Y) = 0.$$

Theorem 2.1. The tensor $'F$ defined by (2.7) is hybrid in both the slots and is also symmetric.

3. Almost r-contact product manifold with specified affine connexion

Let us take the affine connexion D in M^{n+r} such that it satisfies the following conditions

$$(3.1) \quad D_X T^p = \bar{X},$$

$$(3.2) \quad D_X \bar{Y} = D_Y \bar{X} + \overline{[X, Y]} + A_p(Y)X,$$

$$(3.3) \quad (D_X A_p)(Y) + (D_Y A_p)(X) = 0; \quad 1 \leq p \leq r.$$

Let S be the torsion tensor of D , K the curvature tensor with respect to D and Ric be the corresponding Ricci tensor. Then

$$(3.4) \quad S(X, Y) \stackrel{\text{def}}{=} D_X Y - D_Y X - [X, Y];$$

$$(3.5) \quad K(X, Y, Z) \stackrel{\text{def}}{=} D_X D_Y Z - D_Y D_X Z - D_{[X, Y]} Z;$$

$$(3.6) \quad Ric(Y, Z) \stackrel{\text{def}}{=} (C_1^1 K)(Y, Z),$$

where $C_1^1 K$ denotes the contraction of K .

Now we shall prove the following theorems.

Theorem 3.1. Let $1 \leq p \leq r$, then we have

$$(3.7) \quad S(\bar{X}, T^p) = \overline{[X, T^p]} - \overline{[\bar{X}, T^p]},$$

$$(3.8) \quad \overline{D_{T^p} \bar{X}} = \bar{X} - \overline{[X, T^p]} - \sum_{p=1}^r A_p(\overline{[X, T^p]}) T^p,$$

$$(3.9) \quad (D_X F)(\bar{Y}) - \overline{(D_X F)(Y)} = X \sum_{p=1}^r A_p(Y)T^p + A_p(Y)\bar{X} - \sum_{p=1}^r A_p(D_X Y)T^p.$$

Proof. Putting T^p for Y in (3.4) and making use of (3.1), we get

$$(3.10) \quad S(X, T^p) = \bar{X} - D_{T^p}(X) - [X, T^p].$$

Barring X in (3.2) and making use of (1.1) and (3.1), we obtain

$$\begin{aligned} D_{\bar{X}} \bar{Y} &= D_Y X + D_Y \left(\sum_{p=1}^r A_p(X)T^p \right) + [\bar{X}, Y] + \bar{X} A_p(Y) = \\ &= D_Y X + A_p(X)\bar{Y} + Y \sum_{p=1}^r A_p(X)T^p + [\bar{X}, Y] + \bar{X} A_p(Y). \end{aligned}$$

Putting T^p for Y in the above equation and making use of (1.3), (1.5) and (3.3), we get

$$\begin{aligned} (3.11) \quad D_{T^p} X &= D_{\bar{X}} \bar{T}^p - \sum_{p=1}^r A_p(X)\bar{T}^p - T^p \sum_{p=1}^r A_p(X)T^p - \\ &\quad - [\bar{X}, T^p] - \bar{X} \sum_{p=1}^r A_p(T^p) = \\ &= \bar{X} - [\bar{X}, T^p] - T^p \sum_{p=1}^r A_p(D_{T^p}(X)). \end{aligned}$$

Therefore in consequence of (3.10) and (3.11), we have

$$S(\bar{X}, T^p) = \overline{[\bar{X}, T^p]} + T^p \sum_{p=1}^r A_p(D_{T^p}(\bar{X})) - [\bar{X}, T^p],$$

which in view of (1.1), (1.4) and (3.3) yields (3.7). Barring X in (3.11) and making use of (1.1), (1.4) and (3.3), we obtain

$$(3.12) \quad D_{T^p} \bar{X} = \bar{X} - \overline{[\bar{X}, T^p]} - T^p \sum_{p=1}^r A_p(D_{T^p}(\bar{X})) = \\ = X + \sum_{p=1}^r A_p(X)T^p - \overline{[X, T^p]}.$$

Barring (3.12) throughout and making use of (1.1) and (1.3) we get (3.8).

We know [5] that

$$(3.13) \quad (D_X F)(Y) = D_X \bar{Y} + \overline{D_X Y}.$$

Barring Y in (3.13) and making use of (1.1) and (3.1), we obtain

$$(3.14) \quad (D_X F)\bar{Y} = D_X Y + D_X \left(\sum_{p=1}^r A_p(Y)T^p \right) + \overline{D_X Y} = \\ = D_X Y + X \sum_{p=1}^r A_p(Y)T^p + A_p(Y)\bar{X} + \overline{D_X \bar{Y}}.$$

Barring (3.13) throughout and making use of (1.1), we get

$$(3.15) \quad \overline{(D_X F)Y} = \overline{D_X \bar{Y}} + D_X Y + \sum_{p=1}^r A_p(D_X Y)T^p.$$

Subtracting (3.15) from (3.14) we have (3.9).

Theorem 3.2. If G is the Einstein tensor, then we have

$$(3.16) \quad G(\bar{X}, T^p) = 0.$$

Proof. We have [2]

$$(3.17) \quad G(X, Y) = \text{Ric}(X, Y) - \frac{1}{2} k g(X, Y).$$

Putting T^p for Y in (3.17) and making use of (2.3), we get

$$(3.18) \quad G(X, T^p) = \left\{ (n-1) - \frac{1}{2} k \right\} A_p(X),$$

since [3]

$$\text{Ric}(X, T^p) = (n-1) A_p(X).$$

Barring X in (3.18) and making use of (1.4) we obtain (3.16).

4. The Nijenhuis tensor

Let $N(X, Y)$ be the Nijenhuis tensor of F , then we have

$$(4.1) \quad N(X, Y) = [\bar{X}, \bar{Y}] - [\bar{X}, Y] - [X, \bar{Y}] + \overline{[X, Y]},$$

which in view of (1.1) becomes

$$(4.2) \quad N(X, Y) = [\bar{X}, \bar{Y}] - [\bar{X}, Y] - [X, \bar{Y}] + [X, Y] + \sum_{p=1}^r A_p([X, Y]) T^p.$$

Theorem 4.1. In an almost r-contact product manifold, we have

$$(4.3) \quad \overline{N(\bar{X}, Y)} = - \left\{ N(\bar{X}, Y) + \sum_{p=1}^r A_p(X)N(T^p, Y) + \sum_{p=1}^r A_p([\bar{X}, \bar{Y}])T^p \right\},$$

and

$$(4.4) \quad N(\bar{X}, Y) - N(X, \bar{Y}) = \sum_{p=1}^r A_p(X)([T^p, \bar{Y}] - [\bar{T}^p, Y]) +$$

$$+ \sum_{p=1}^r A_p(Y)([\bar{X}, T^p] - [\bar{X}, \bar{T}^p]) + \sum_{p=1}^r A_p([\bar{X}, Y])T^p -$$

$$- \sum_{p=1}^r A_p([X, \bar{Y}])T^p.$$

Proof. Barring X in (4.2) and then barring throughout, we obtain

$$\overline{N(\bar{X}, Y)} = [\bar{\bar{X}}, \bar{Y}] - [\bar{\bar{X}}, \bar{Y}] - [\bar{\bar{X}}, \bar{Y}] + [\bar{\bar{X}}, \bar{Y}] + \sum_{p=1}^r \overline{A_p([\bar{X}, Y])T^p},$$

which in view of (1.1) and (1.3) yields

$$(4.5) \quad \overline{N(\bar{X}, Y)} = \overline{\left[X + \sum_{p=1}^r A_p(X)T^p, \bar{Y} \right]} - [\bar{\bar{X}}, \bar{Y}] - \sum_{p=1}^r A_p([\bar{\bar{X}}, Y])T^p - [\bar{\bar{X}}, \bar{Y}] -$$

$$- \sum_{p=1}^r A_p([\bar{X}, \bar{Y}])T^p + [\bar{\bar{X}}, Y] = [\bar{\bar{X}}, \bar{Y}] + \sum_{p=1}^r A_p(X)[T^p, \bar{Y}] -$$

$$- [X, Y] - \sum_{p=1}^r A_p(X)[T^p, Y] -$$

$$- \sum_{p=1}^r A_p([X, Y]) + \sum_{q=1}^r A_q(X)[T^q, Y])T^p -$$

$$\begin{aligned}
 -[\bar{X}, \bar{Y}] - \sum_{p=1}^r A_p([\bar{X}, \bar{Y}])T^p + \overline{[\bar{X}, \bar{Y}]} = \\
 = - \left\{ [\bar{X}, \bar{Y}] - \overline{[\bar{X}, \bar{Y}]} - \overline{[X, Y]} + [X, Y] + \sum_{p=1}^r A_p([X, Y])T^p + \right. \\
 \left. + \sum_{p=1}^r A_p(X) \left([T^p, Y] - \overline{[T^p, Y]} + \sum_{q=1}^r A_q([T^p, Y])T^q \right) + \right. \\
 \left. + \sum_{p=1}^r A_p([\bar{X}, \bar{Y}])T^p \right\}.
 \end{aligned}$$

Putting T^p for X in (4.2) and making use of (1.3), we get

$$(4.6) \quad N(T^p, Y) = [T^p, Y] - \overline{[T^p, Y]} + \sum_{q=1}^r A_q([T^p, Y])T^q.$$

Equation (4.5) in consequence of (4.2) and (4.6) yields (4.3).

Barring X and Y respectively in (4.1) and making use of (1.1) we get (4.4).

Theorem 4.2. In an almost r-contact product manifold, we have

$$(4.7) \quad A_p N(X, Y) = - \sum_{q=1}^r A_q(X) A_p(N(T^q, Y)) + A_p([\bar{X}, \bar{Y}]),$$

and

$$(4.8) \quad \overline{N(\bar{X}, T^p)} = - N(X, T^p).$$

Proof. Operating (4.3) by A_p and making use of (1.5) and (1.4) we obtain (4.7). Replacing Y by T^p in (4.3) and making use of (1.3) and (4.1) we get (4.8).

Acknowledgements: We are thankful to Dr.M.D.Upadhyay, D.Sc. for his valuable suggestions in preparing this paper. The first author is thankful to C.S.I.R. Complex, New Delhi for financial assistance as Pool-Officer and the second author is also thankful to C.S.I.R., New Delhi for financial support in the form of research fellowship.

REFERENCES

- [1] K.K. D u b e , Ram Niwas : Almost r-contact hyperbolic structure in a product manifold, Demonstratio Math. 11 (1978) 887-897.
- [2] Ram Hit : On almost product manifolds, Indian J. Pure Appl. Math., 4 (1973) 149-154.
- [3] R.S. Mishra : Almost contact manifolds with specified affine connexion, Tensor (N.S.), 23 (1972) 41-45.
- [4] M.D. Upadhyay , K.K. D u b e : Almost contact Hyperbolic (f,g,η,ξ) -structure, Acta Math. 28 (1976) 1-4.
- [5] K. Yano : Integral formulas in Riemannian Geometry, New York 1970.

DEPARTMENT OF MATHEMATICS AND ASTRONOMY, LUCKNOW UNIVERSITY,
LUCKNOW (INDIA)

Received January 10, 1980.