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ON SOME DIFFERENTIAL INEQUALITIES
FOR HOLOMORPHIC FUNCTIONS OF MANY VARIABLES

1. Introduction

Let f(Z) be a holomorphic funotion in the unit disk KcC,
By h we denote a complex function defined at a some domain
Ace’. S.S.Miller and P.T.Mocanu indicated (see [1]) the con-
ditions which should be satisfied by the function h in or-
der that the inequality ref(l)>0 resulted from the inequali-
ty ve h(£(r), C£'(C), £2€" (£)) >0,

In the present paper the authors extend this result to
holomorphic functions of many variables.

Let 2 = (z9,000,2,) and P = (B4,.00,F ). Iet Py =
={z.ecn: Izkl<x°-k, k = 1,000y ¢ and in particular

P={Z€cn= Izk|<1, k = 1,...,11}0

We shall oonsider the family HP of the holomorphic fun-
ctions F : P—C. Let DF(z)(w) denote the value of the
firgt differential of the function F at the point 2z on
the vectors w and let DZF(Z)(W,W) denote the value of the
second differential at the point 2z on the vectors w and
w, where W = (Wi,eee,w ).
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2. The main results of tais paper is as follows:
Theorem 1. Let F % const, F(0O) = 0 and Fe Hp.
If at the point

. 1y, 1d
(1) ﬁ =<1‘19 1,00"rne n>€P
the following equality holds

(2) |F(2)] = mex |F(2)],
zePf

then we have

(3) D F(2)(2) _ n>1
F(3)

and

(1) ro. DPRLEN(E,2) | 4 5p

D F{z)(2)

Proof, Consider a point

(5) z = (51e1¢1,...,fneiwn> ep,

where ik = likl, kK =1,0e04n and @q,e0.,9, are arbitrary
1 b .

rea Lz:m ers

(6) Plz) = R(q»1,....cpn)eim""°'¢“),

where R and ¢ are real functions of the real variables

(-p1,000,cpn0
It is easy to see that

sz;k(z) = o? (%;——— + R-———), K = Tyeeeye
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On differential inequalities 3

Therefore we have
D ¥lz)(z) _ 9% _ i
¥z ‘Z(wk R “’k).

From the condition (2 and the notations {5) and (6) it fol-
lows that the function R attains a local maximum at the
point (@1,...,¢n). Hence we have

aR | _ N
(7) m . . --0’ k—1,ooo’n
(Gq0esesty)
and
D F(2)(2) _ ., D.F(2)(2) _ Z 39
: & Ty, .
Flz) Flz) o1 Tk (¢1""’¢n)
Denote

D F(2)(z)
F(%)

= M,

We shall now prove, that m >1., For this purpose let us con-
sider the function

F(Z1é1,...,z i )

n“n
F(z)

G(z) = y 2 = (21,....zn)e P.

From the maximum principle for the modulus of the holomorphic
function of many variables it follows that F(2) # 0, there-
fore the funotion G is holomorphic on P, Moreover, G(0)=0
and, according to (2), |G(z)! <1 for zeP,

From Schwarz ‘s lemma for functions of many variables, we
obtain '

fe(z)1<lizll = max ENR

k=1,.o.'n
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In particular, for 0<9 <1 we have |G(P,ese,9)[< ¢ and as
a consequence re G(¢,...,9)< ¢ we obtains

re Floz) <o

, 0<9<1.
F(2) ’

It can be observed that

2, Fos (02)
d__(F(Pi_l>= lg 921( sz:QZ
49 \r(3) gF(z)
hence we have
_DF()(2) _d F(gi)) Y <1 Flg3) - F(%)) .
EREETTY a7(F(5) l9=1. o=1-\R(z)  #

= lim ! <1 -M>= re lim 1 <1 - Rlod) §)>=
9 F(3)

= 1lim ""J—<1-I‘6F 2)}11!5 11 (1-9)=1o
1 -

Hence m 21,
In order to prove the seocond part of the theorem let us
note at first that

k=1
n
o (5 - (5 2f -5 (3 8
Flz - )
k=1 K R \i=1 Kk
n n n
o D°R(z)(z,3) _ Z 39 \2 _ 38 _ 1 Z 3°R
Flz = 39y 9, "R 20:30;
k=1 k=1 Jok=1 ¥
ivq . 1
for 2z = r1e "ocgrne .
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From the above we obtain

Fl(z)

D“F(z ) D F(z)(z) D_F( 2
re << DF(zS(ﬂz" ) Flal ( wte] z>> =
(Z 1N 9%

3(Pk "R ¢339y *

\k=1 Jok=1

re <D2F(z)(Z).zl + D ggz)(z_)_ (D F(z)(_L))

]

We already know that the function R attains a local ma~
ximum at the point (@1,...,¢n). Hence we have

aT = 0, kK = T,00e,ny
(LPAI,.I.’(? )
and
n
%R
ya awjacpk> o , <O
J)k=1 ( 1,-00’-Pn)

Therefore we obtain

N [(D%(a)(a,a) . 1) DF(2) (%) _<Dp(ana)>1 So.
\ DF(z)(2) F(z) F(z)

Hence iaking into consideration the inequality (3), which was
alveady proved, we can obtain the inequality (4).

Before we formulate the next theorem, we shall prove the
following lemma,

Lemma . Iet g,g:t K—C, gf{0) = a, be an univalent
and nolomorphic function without at most one point
Zy I¢) =1, which is a single pole. Ilet £ ¥ const, £(0) =
and fe HP. Suppose that there is a point z..<r1 ,...,

. 1g
ses,yT @ (?n)e P for which
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(8) £(z)e glgl= 1)

and

(9) £(P, ) c glk).
r

Then there exists m>1 such that

(10) pe(2)(5) = m € g (£)

and

(11) re DPr(2)(4,4) +1>mnre <£_§_°5"(:) + 1),
D£(2) (%) g (£)

where [ = g~'(£(2)).
Proof., Put

(12) Flz) = g-1(f(z)), ze B,
o

The function P is holomorphio as a superposition of the

holomorphic funotions. Moreover F(0) = O, From (12), by (8)

and (9), we have |F(2)| =1 and |F(z)|<1 for ze?P,, and
r

80

|7(2)) = max |F(z)l.
2€P
b

It is easy to see that the function F of (12) satisfies the
assumptions of Theorem 1 and so for the function F inequa-
lities (3) and (4) hold.

At the same time we can see that

o

(13) g (F(2))pr(2)(2) = Df(2)(2)
and also

g (F(2))r(2)DR(2)(3) _ D (3] (E).
Flz)
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Taking

(14) B =g (£(2)) = F(3)
we have

2o (&) DE(2)(E) _ pe(s)(s).
5e'ls F(2) are

From the above in view of (3) we obtain the equality (10).
Next, we shall prove the inequality (11). Since

D2£(2)(5,8) = g"(F(2))(DF(2)(3))° + g (F(2))D°F(3)(5,2)
according to (13), we obtain

D2P(5)(5,8) _ & (F(2)) 1nig)(s) 4 DOE(2)(3,3) _
pf(z)(z) g(F(z)) DF(z)(z)

DF(£)(5) F(2)g"(F(%)) , D°R(2)(3,3)
F(2) g' (F(2)) DF(z)(2)

and next, in view of (14)

D?£(5)(5,5) _ DR(3)(5) Eg"(f) , D°F(3)(5,3)
Df(2)(3) F(z) 5) DF(2)(2)

Hence, using the theorem 1 we have

o sz(5)<%,&) S mre S&8EL 0y
DE{2){z2) g' (L)
and next the inequality (11},

Theorem 2, Let f# const, £(0) = a, fe Hp

, 1§ . 1y
and % = r.e seessT € ep, If

(15) re £f(z) = min re {{z),
ZEP,
r
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then

o108 la - £(3)]2
(16) Df(s)(z) ¢ - B =212/l

2re(a~f(z))
(17) re szléliiiél +120
DE(3) (%)

and
(18) re(D%£(%)(%,%) + DE(2)(E)< O.

Proof. Iet us observe that the function

_ a=(2re £(2)-a)C
8(;) = 1_;
satisfies the assumptions of the lemma, Since the function g
maps the unit disk K on to half-plane {gec : ref>re f(%)},
so f(%)eg(lfl= 1) for 2e P and according to (15) we have
f(ff)c:g(i). Therefore the function f satisfies the assump-

tions of lemma, too., Hence, there exists m>1 such that the
inegualities (10) and (11) hold.
It is easy to see that

=g (2(2)) = £13)-a
f(z) - (2re f(3)-a)
and so
Foi(t) - -l =£(8)I2
| 2re(a - £(2))
and

re §—511é1-+ 1 =0,
g (§)

Therefore, taking into consideration (10) and (11), we ob-
tain the inequality (17) and the equnality
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la - 2(8)]2

Df(z)(z) = = m .
2re(a - £(2))

Prom the above equality, in view of the conditions: m >1 and

re a>re £(2) we can obtain inequality (16). Inequality (18)

is a simple consequence of the inequalities (16) and (17).
Let us note also that in particular if a = 1 and

re f{(2) = 0 the inequality (16) takes the form '

(19) pe(3)(3) <= 3 (1 + (im 2(3))2)<- 3 .

Let u = uy + iuy, v = vy + iv,, T=1T, + iT,, aeC,
re a>0, Let ¥ (a,A) denotes the family of all complex and
continuous functions -h{u,v,T) defined on some domain ACCB,
(a,0,0) € A and satisfying the following conditions

(20) re h(a,0,0) >0
and
(21) re h(iug, vy, T) <O,
where
‘ |a - iu2|2
(iuyy vy tled, vi<- g » ¥ +T3 <0

Now, we shall show several examples of functions, which
belong to the family ¢ (a,A) for certain & and A (see [1]).
The functions

1 h's

u _+
2 +u+1’

h(u,v,‘t) =

v

hlu,v,T) = 15 MR

belong to the family ¥ (1,4), where A= (¢ - {-1})xcxm .
The functions
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h{u,v,T) =u +y + 7T,

hi{u,v,t) = ue" + v + <

belong to the family ¥ (a, ¢3), re a>0, while the functions

halu,v,7) = u + 2v + ¢ + % (1 - u)2,

h{u,v,T) = u + v,

h{u,v,t) = 2v + 1 +12-

belong to the family 7¢ (1, ¢°).
?Theorem 3. Let f # const, f£(0) = a, re a>0
and fecH If there exists a function h e¥ (a,a) such that

P.
(22) ' /\(f(z),Df(z)(z-),sz(z)(z,z))eAA
zZ€P
are hif(z),0e(z)(z),0%¢(z)(2,2)} >0)
then
(23) re flz} >0, 2 € P,

Proof. Suppose that there exists a point z*e P
for which re f(z*) < C. Then according to the condition
re £(0) > 0 we can find PfCP such that 2z*¢ P, and

T

0 = min re f(z),
ZePi

Let
re f{z) = min re f(z) = O.
zeP,
T

Because the assumptions of Theorem 2 are satisfied, we have

a1 2
pe(E)(3) < - &= LEIT
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re(D?r(3)(5,%) + DE(2)(2)) <o.

let v, = DE(8)(2), iu, = £(3), 1= DPe(2)(3,3).
Then for any function he?¥f (a,A) we obtain, according
to (21), the following inequality

re h(f£(%), DE(3)(%), D2£(%),(%,%)) < O,

which is contradictory to (22), Therefore our supposition
was false, which means that re f(z2)>0 for zeP.

Let us observe moreover that the set of functions f sa=-
tisfying the condition (22) is non-empty; for example the
function

f£(z) = a + 8324 + ees + 82, Tea >0

belongs to this set if Byseeeyd, are sufficiently small,

n
3. Some applications of Theorem 3
From Theorem 3 we can obfain easily the following theorem.
Theorem 4, Let he??(1,a), FeHp and re F{z)>0
for z P, If the function f 1is a holomorphic solution of
the differential equation

n(f(z), pflz)lz), D°f{z){z,2)) = Flz), ze?P, £(0) =1,
then we have
re flz) >0, =2 € P,

Next, let us denote by C, , V., My, Ny, O<a<1 families
of the functions FeHp, F(0) = 1 which satisfy the following
conditions for ze¢ P, respectively

re Flz)> o,

re L(F(z))>«,
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L{F(2 o
T® “Flz > %

LfLéFiz
re L(F ZHJ'>°"
where

(24) L(F(z2)) = F(z) + DF(z)(z).

These families of functions were considered by K.P.Bawrina
in the paper [2].

From the definitions of the families C,, V,, My and N,
it follows that

Cu€CpCCyy VuCVgCV,
(25)
Mo CMaC M, NyCNpCN

for arbitrary o and f3 such that O pA<<1.
Theorem 5, Forany ade< 0,1) we have V,C Cye
Proof., Observe at first that F = 1 Dbelongs to the
families C, and V, for oe<0,1), Let F be an arbi-
trary function of the family V., and F ¥ 1, We put

1
(26) f(Z) =(X?1 - =1 F(Z)o
Then fe Hy, f(0) = 1 and
(27) Lif(z)) = 5% - 52 L(R(z)).

Since FeV, we have re L(F(z))>x, From (27} it follows
that

{28) re L(f(z})>0 for =zeP,

Let h{u,v,T) = u + v, The function h Dbelongs to the fami-
1y {1, A) with A=¢°.
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The inequality (28} can be written in the form

re h(f(z), Df(z)(z}), Def(z)(z,z)) >0, z€P,
hence according to Theorem 3 we obtain
re £f{z) >0, 2z e P.

From the above and from (26) it follows that

re Flz)>x , 2 € P,

This means that FeC,, which ends this proof.
Theorem 6, Forany pe<o, 32-> we have

, 1
Ve €Cpy NyCVp, MgCCpsg for xe<y 1)

and
NyCllg, NyCCsp for  oe<0,1).

Proof, In view of (25) we see that it is sufficient
to show that

V,cC,y NCV

2

, M cC

1 1771
2 2

2

nj—=
=

and

NOCM1_' NOCCJ_’
2 2
respectively., Since F = 1 belongs to each of the above ocon-
sidered families, we may assume F # 1,
a) We prove at first that V,cCi. Let FeV, and

2 2

=

(29) £f{z) = 2F(z) - 1.
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Then feHp, £(0) = 1 and according to the definition Vy

re(f(z2) + b£(z)(z)) >0, zeP,
we have
re h(f(z), Df(z)(z), D2f(z)(z,z))>0, ze P,

where h(u,vt) = u + v, Therefore analogously as in Theorem 5
we get

re f{z) >0, zeP

and next, taking into consideration (29) we have

Te F(z)>% , 2EP,

Hence Fe C%. This means that Vlc Cl'

2 2
b) Now we prove that N,cV,. Let FeN, and
2 2 2
(30) f(z) = 2L(F(z)) = 1.

Then feHp, f£(0) =1 and

L(L(F(2 D £(z)(z)

'_'L'{F{znl =1+ 35 z) °
From the above equality and from the definition of the family
N it follows that

Taking h(u,v,?) = %1» '—1—}1 similarly as before basing on
Theorem 3 we obtain the inequality

1
2

re £{z)}) >0, 2 € P
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from which, according to (30), we get

Te L(F(z))>;— , Z€ P

and so FeV1.
>
¢) Analogously we prove Mlc C1. We only need to take

2 2

f(z) = 2F(z) -1, FeM,
2

and

h{u,v,t) = % + a—:{-i .

d) In order to prove that NoCM,, we take
2

where F eNo. Then we have

re (f(z) + 1, 11) f(z)éz)>> 0.

Putting hlu,v.T) = %1- + T}’-ﬁ according to Theorem 3 we get
re £(z)> 0 and consequently

L{F 1

hence FeMl and NOCM1'
2 2

e) From ¢) and d) immediately it follows NycC This

l.
way Theorem 6 was proved., 2
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Finally, let us add that the inclusion N,cCg for ae<
o €e<0,1) and fle<o, -;—> has been already proved by another
method in [3].
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