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ON SOME DIFFERENTIAL INEQUALITIES 
FOR HOLOMORPHIC FUNCTIONS OF MANY VARIABLES 

1. In t roduc t ion 
Let f ( £ ) be a holomorphic funo t ion i n the uni t d i sk K c C . 

By h we denote a oomplex f u n c t i o n def ined a t a some domain 
A cC^. S .S .Mi l l e r and P.T.Mocanu ind ica ted (see [ l] ) the con-
d i t i o n s which should be s a t i s f i e d by the f u n c t i o n h in o r -
der t ha t the i nequa l i t y r e f ( £ ) > 0 r e s u l t e d from the i n e q u a l i -
ty r e h ( f ( £ ) , C f (£ ) , £ 2 f " ( £ ) ) > 0 . 

In the present paper the au thors extend t h i s r e s u l t t o 
holomorphic f u n c t i o n s of many v a r i a b l e s . 

Let z = ( z 1 f . . . t z J and r = ( r 1 , . . . , r n ) . Let P«, = 
= | z e C n : ' S k ' ^ i d » ^ = 1 » , , * » n } an<i i*1 p a r t i c u l a r 

P = { z e C n : IzfcI < 1, k = 1 , . . . , n J . 

We s h a l l oonsider the family Hp of the holomorphic f u n -
c t i o n s P : P —»C • Let DF(z)(w) denote the value of the 
f i r s t d i f f e r e n t i a l of the f u n c t i o n P a t the point z on 
the vec to r s w and l e t D F(z)(w,w) denote the value of the 
second d i f f e r e n t i a l a t the point z on the v e c t o r s w and 
w, where w = ( w 1 , . . . , v ) . 
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2 K.Dobrowolska,•P.Liczberski 

2. The main r e s u l t s of t h i s paper i s as fo l lows : 
T h e o r e m 1. Let F $ cons t , F(0) = 0 and Pe Hp. 

I f a t the point 

( 1 ) i = 

the following equa l i ty holds 

(21 IF (z ) I = max | P ( z ) 
zePf, 

then we have 

(3) D F ( i ) ( * ) . B > 1 

P ( i ) 

and 

U > r e , D 2 F ( z ) ( z t z ) + 1 > m > 
D F{2)( ! ) 

P r o o f , Consider a point 

( ! ) . . ( f / V . . . * / ^ . 

where r f c = I z^ I , k = 1 . . f n and ,<Pn are a r b i t r a r y 
r e a l numbers. 

Let 

(6) F(z) = R(cp1 , . . . ,<P n )e n , 

where R and $ are r e a l func t ions of the r e a l va r i ab l e s 

I t i s easy to see tha t 

•d ' / i i i / l 3B , D 3 i \ v 1 z k F z k
( z ) = e + k = 1 n* 
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On d i f f e r e n t i a l i n e q u a l i t i e s 3 

Therefore we have 
n 

D P(z ) (2 ) y i 
P(z) = i aqj. " R 

3R_ 
3 «Pi 

k=1 

Prom the cond i t i on (2) and the n o t a t i o n s (5) and (6) i t f o l -
lows tha t the f u n c t i o n R a t t a i n s a l o c a l maximum a t the 
point ( < f j , . . . , t f ) . Hence we have 

(7) 

and 

3R 
3<pk 

= 0, k = 1 , . . . f n 

D F ( z ) ( z ) a r Q D. F ( z ) ( z ) _ 
F(z) F'(z ) " fa 3(Ck 

Denote 

D F ( z ) ( z ) m — U l * 

F ( i ) 

We s h a l l now prove, t h a t For t h i s purpose l e t us con-
s i d e r the f u n c t i o n 

F ( z 1 z 1 . . , z z ) 
G(z) = U , z = ( z 1 , . . . ,z ) e P. 

F(z) 1 n 

From the maximum p r i n c i p l e f o r the modulus of the holomorphic 
f u n c t i o n of many v a r i a b l e s i t fo l lows t h a t F(z) 0 , t h e r e -
f o r e the f u n c t i o n G i s holomorphic on P. Moreover, G ( 0 ) = 0 
and, according to (2 ) , |G(z) l <1 f o r z e P , 

From Schwarz 's lemma f o r f u n c t i o n s of many v a r i a b l e s , we 
ob ta in 

|G(z ) l <| | z II * max I z . | . 
k = 1 , . . . , n 
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4 K.DobrowolBka, P.Liozberalci 

I n p a r t i c u l a r , for 0 < f < 1 we have | G ( p , , . . t p ) | < p and as 
a consequence re ) < 9 we obtains 

r e * M > < P , 0 < 9 < 1 . 
F ( z ) 

I t can be observed that 

d (,Mi\ È W9'" 
"»Vfat J ' frai 

hence we have 

m _ D F ( z ) ( z ) _ d / F ( ç z ) 
FU) 

m l i o ( J - ' < > * ) - / ( * * 
P = 1 P " 1 

. l i n i f ! . I i £ i l ) m r e l i » 1 A - l l i l i ) . 
ç - 1 - 1 " 9 V P(â) / 9 - 1 - 1 " 9 \ P(â) 7 

= l im 1 — : f 1 - r e ^ ^ U l i m = - ¡ - 5 (1 - 9 ) - 1 . 
p - 1 - 1 " 9 V P(4J / 9 - 1 - 1 " ? 

Hence m > 1 , 
I n order to prove the seoond part of the theorem l e t us 

note at f i r s t that 

» s i î P - É ^ . 
k=1 K 

- - g 

„ D 2 P ( 8 ) I » . z i Y y 1 1 1 V . y * i i . 1 y - 1 32R 
? u v è r N " ¿ e î " * » * 

for z = I r ^ , . . . , r n e 
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On differential inequalities 5 

From the above we obtain 

We already know that the function R attains a local ma-
ximum at the point (<f,»»• • »"K.) • Hence we have 

3R 
3<tk = 0, k = 1 

0 t 

' V 
and 

< 0. 

Therefore we obtain 

re /D
2p(z)(z,z) + A DP(z)(z) _ ( DF(z)lz) 

\ DF(z)(z) J F(z) V F(z) , >0. 

Hence taking into consideration the inequality (3), which was 
already proved, we can obtain the inequality (4J. 

Before we formulate the next theorem, we shall prove the 
following lemma. 

L e m m a . Let g,g: K — - C , g(0) = a, be an univalent 
an<5 iiDlomorphic function without at mo3t one point 
Ct I iT I = 1, which is a single pole. Let f const, f(0) = a 

i 1 / » t T O i» ^ r-i 4> U n ^ U A m a A #*l M «« 4 I * _ I ^ A * fe Hp. Suppose that there is a point z 
M: 

ri e »• • •» 

...,rne n ) e P for which 
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6 K.Dobrowolska, P.Liczberski 

(8) f ( * ) e gflSl- 1) 

and 

(9) f ( P , ) c g ( K ) . 
r 

Then there ex i s t s m>1 suoh that 

(10) Df(S)U) = m t (?) 

and 

> 

The function F i s holomorphio as a superposition of the 
holomorphic funotions. Moreover P(0) = 0. Prom (12), by (8) 
and (9) , we have |P(z)| = 1 and |F(z)|<1 for z e Po, and 

r so 

|p(z)| = max |F (z)I • 
zeP 

e r 

It i s easy to see that the function F of (12) s a t i s f i e s the 
assumptions of Theorem 1 and so for the function P inequa-
l i t i e s (3) and (4) hold. 

At the same time we can see that 

(13) g'(F(z))DF(z)(z) = Df(z)(z) 

and also 
g' (F(z ) )F(z )DF(z ) (z) . D f ( £ ) ( i ) . 

F(z) 
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( 1 1 ) r e D^ lUHiA l + 1 > m r 6 f i f t M ^ + i 
Df(S)(&) \ 6'C.C) 

where % = g~ 1 ( f (z) ) . 
P r o o f . Put 

(12) F(z) = g~ 1 ( f (z ) ) , ze P„. 
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T a k i n g 

(14) ; = g~1(f(z)) = F(S) 
we h a v e 

% ¿til Milan m Brunt). 
F(ii 

F r o m t h e a b o v e i n v i e w o f ( 3 ) we o b t a i n t h e e q u a l i t y ( 1 0 ) . 

N e x t , we s h a l l p r o v e t h e i n e q u a l i t y ( 1 1 ) . S i n c e 

D 2 f ( z ) ( z , z ) = g " ( F ( z ) ) ( D F ( z ) ( z ) ) 2 + & ' ( F ( i ) ) D 2 F ( z ) ( z , l ) 

a c c o r d i n g t o ( 1 3 ) » we o b t a i n 

P2f(&)(S.&) a"(F(z)) D F ( £ ) ( i ) + D
2F(z)(z.z) 

Df(z)(z ) g'( F (z )) DF(z)(z ) 

_ D F ( z ) ( z ) F ( z ) g " ( F ( z ) ) + D 2 F ( z ) ( z t z ) 

F ( z ) g ' ( F ( z ) ) D F ( z ) ( z ) 

a n d n e x t , i n v i e w o f ( 1 4 ) 

L2f[i)(z.i) _ D F ( l ) ( z ) j g " ( J ) + D 2 F ( z ) ( z , z ) 

Df(i)d) ~ F ( z ) g ' ( ? J D F ( z } ( z ) 

H e n c e , u s i n g t h e t h e o r e m 1 we h a v e 

r e 
D f ( z ) ( z ) g ' ( £ ) 

and n e x t t h e i n e q u a l i t y ( 1 1 ) . 

T h e o r e m 2. L e t f £ c o n s t , f ( o ) = a , f e H p 

/ if \ r 

and z = ( i ^ e r ^ e n J e P . I f 

( 1 5 ) r e f ( z ) = min r e r ( z ) , 
i e ? o 

r 
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8 K.Dobrowolska, P.Liczberski 

then 

( 1 6 ) Df(z)(z) < - J a _ - _ f ( i ) i i 
2re(a-f (z ) ) 

( 1 7 , r e E f i i i i i A i + ! > o 
Df(z)U) 

and 

(18) re(D 2f (z) (z ,z) + Df(z)(z))< 0. 

P r o o f . Let us observe that the function 

g<$) • a-(2re_f(z)-a)C 

s a t i s f i e s the assumptions of the lemma. Since the function g 
maps the unit disk K on to half-plane s rei ;>re f (z )} t 

so f ( I ) e g(|£J= 1) for z e P and according to (15) we have 
f ( P , ) c g ( K ) . Therefore the function f s a t i s f i e s the assump-
tions of lemma, too. Hence, there ex is ts m>1 such that the 
inequal i t ies (10) and (11) hold. 

It i s easy to see that 

£ = g" 1 ( f ( z ) ) = f iA)-a^ 

and so 

£g'(C> = -

f ( z ) - (2re f ( z ) - a ) 

a - f ( z ) l 2 

2re(a - f ( z ) ) 

and 
o o 

re ^ (£> + -j = o. 
g' (C) 

Therefore, taking into consideration (10) and (11), we ob-
tain the inequality (17) and the equality 
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On differential inequalities 9 

Df(z)(z) = - m 'a - f ( S )' 2 . 
2re(a - f(z)) 

Prom the above equality, in view of the conditions: m >1 and 
re a>re f(z) we can obtain inequality (16). Inequality (18) 
is a simple consequence of the inequalities (16) and (17)« 

Let us note also that in particular if a = 1 and 
re f(z) = 0 the inequality (16) takes the form 

(19) Df(!)(!)<- J (l + (im f(z))2)<- I . 

Let u = u1 + iu2, v = v1 + iv2, z = t^ + it2, a e C , 
re a>0. Let (a,A) denotes the family of all complex and 
continuous functions •h(u,v,t) defined on some domain AcC , 
(a,0,0)eA and satisfying the following conditions 

(20) re h(a,0,0) > 0 

and 

(21) re h(iu2, v.,, T ) < 0 , 

where 
o | a - iu2| 

(iu2, v1, X )e A, v1 < 2 r e a , v1 T ^ ^ v1 + T, < 0. 

How, we shall show several examples of functions, which 
belong to the family TC (a,A) for certain a and A (see [l] 
The functions 

h(u,v„ . ^ + ^ , 

hU.v.T) - ¡ » j f . 

belong to the family Till,a), where A = (c - {-lj)xCxC 
The functions 
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10 K.Dobrowolska, P.Liczberski 

h(u,v,*c) = u + y + t , 

h(u,v,i:) = uev + v + x 

belong to the family 7t (a, C3), re a>0, while the functions 

1 2 

h(u,v,r) = u + 2v + % + ^ (1 - u) , 

h(u,v,T) = u + v, 1 hlu,v,t) = 2v + t +2 

belong tb the family ft (1, C3). 
T h e o r e m 3. Let f £ const, f(0) = a, re a>0 

and f e Hp. If there exists a function heft (a,A) such that 

(22) A (f(z),Df(z)(z),D2f(z)(z,z))€AA 
zeP 

A re h(f(z),Df(z)(z),D2f(z)(z,z))>0) 

then 

(23) re flz) >0, z e P. 

P r o o f . Suppose that there exists a point z* e P 
for which re f(z*) < 0. Then according to the condition 
re f(0) > 0 we can find P0c P such that z* 4 P0 and r r 

0 a rain re f(z). 

Let 
re f(z) = min re f(z) = 0. zeP0 r Because the assumptions of Theorem 2 are satisfied, we have 

la - f(&)l2 
Df(z)(z) < - —2 re a ' 
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r e ( D 2 f ( z ) ( z , z ) + Df (z ) ( z ) ) < 0 . 

Let v., = D f ( z ) ( z ) , i u 2 = f ( z ) , T = D 2 f ( z ) ( z , z ) . 
Then f o r any func t ion hetft (a,A) we ob ta in , according 

to (21 J, the following inequa l i ty 

r e h ( f ( z ) , D f ( z ) ( z ) , D 2 f [ z ) , ( z , z ) ) < 0, 

which i s contradic tory to (22) . Therefore our supposi t ion 
was f a l s e , which means tha t re f ( z ) > 0 f o r z e P. 

Let us observe moreover tha t the se t of func t ions f s a -
t i s f y i n g the condit ion (22) i s non-empty; f o r example the 
func t ion 

f ( z ) = a + a^z^ + . . . + anzn» re a > 0 

belongs to t h i s s e t i f a ^ , . . . , a n are s u f f i c i e n t l y small . 

3. Some app l ica t ions of Theorem 3 
Prom Theorem 3 we can obtain ea s i ly the following theorem. 
T h e o r e m 4. Let h G 1ft ( 1 ,A) , F e Hp and re F(z ) > 0 

f o r z P. If the func t ion f i s a holomorphic so lu t ion of 
the d i f f e r e n t i a l equation 

h ( f ( z ) , Df ( z ) ( z ) , D 2 f ( z ) ( z , z i ) = F (z ) , z e P, f ( 0 ) = 1, 

then we have 

re f l z ) > 0 , z e P. 

Next, l e t us denote by C^, V^, M ,̂ Na , 0 < a < 1 f ami l i e s 
of the func t ions F e H p , F(0) = 1 which s a t i s f y the fol lowing 
condi t ions f o r z e P, r e spec t ive ly 

re F ( z ) > oc , 

r e L(P(z ) ) > ci , 
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where 

( 2 4 ) L ( F ( s ) ) = F ( z ) + D F ( z ) ( z ) . 

These f a m i l i e s of f u n c t i o n s were considered by K.P.Bawrina 
i n the paper [ 2 ] . 

Prom the d e f i n i t i o n s of the f a m i l i e s C a , V^, Mj, and Na 

i t f o l l o w s t h a t 

C « x c C * c C 0 ' V « C V / J C V 0 * 
(25) 

M « C M / S C M 0 * B « C H f l C 1 I o 

f o r a r b i t r a r y a and ¡i such t h a t 0 < / 3 < a < 1 . 
T h e o r e m 5 . For any oie< 0 , 1 ) we have Vw c C r t . 
P r o o f . Observe a t f i r s t t h a t F s 1 belongs t o the 

f a m i l i e s C a and V^ f o r a e < 0 , 1 ) . Let P be an a r b i -
t r a r y f u n c t i o n of the family V^ and P £ 1 . We put 

(26 ) f ( z ) - F ( z ) . 

Then f e H p , f ( 0 ) = 1 and 

(27) L ( f ( z ) ) = - L ( P ( z ) ) . 

S ince F e V a we have re L ( F ( z ) ) > a . Prom (27 ) i t f o l l o w s 
tha t 

(28 ) re L ( f ( z ) ) > 0 f o r s e P , 

Let h ( u , v , T ) = u + v . The f u n c t i o n h belongs t o the f a m i -
ly Vt ( 1 , A) with A = C 3. 
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The inequa l i ty (28) can be wr i t t en in the form 

re h ( f ( z ) , Df (z ) ( z ) , D 2 f ( z ) ( z , z ) ) > 0 , z e P, 

hence according to Theorem 3 we obtain 

r e f ( z ) > 0 , z e p . 

Prom the above and from (26) i t fol lows tha t 

r e P (z ) > a , % e P. 

This means tha t F e C a , whioh ends t h i s proof . 
T h e o r e m 6. For any /5e< 0 , g > we have 

voccC/5. KcicV/3. MacC/5 f o r <*e< | , 1) 

and 

NucMfi t Na c Cy3 f o r o c e < 0 , l ) . 

P r o o f . In view of (25) we see tha t i t i s s u f f i c i e n t 
to show tha t 

2 2 2 2 2 2 
and 

Hq c Mif N 0 C C 1 ( 

2 2 

r e s p e c t i v e l y . Since F s 1 belongs to each of the above con-
sidered f a m i l i e s , we may assume F # 1. 

a) We prove a t f i r s t t ha t V1 c c ^ . Let FeV^ and 
2 2 2 

(29) f ( z ) = 2F(z) - 1. 
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14 K.DobrowolBka, P.Liczbarski 

Then feH p, f(0) « 1 and aocording to the definition Va 

re(f(z) + Df(z)(z)) >0, z e P, 

we have 

re h(.f(z), Df(z)(z), D2f(z)(z,z))>0, zeP, 

where h(u,vc) = u + v. Therefore analogously as in Theorem 5 
we get 

re f(z) >0, ze P 

and next, taking into consideration (29) we have 

re F(z)>! , ze P. 

Henoe P e C^. This means that V^c C^. 
2 2 2 

b) Now we prove that N., cV1# Let PeN 1 and 
2 2 2 

(30) f(z) = 2L(F(z)) - 1. 

Then feH p t f(0) = 1 and 

L(L(F(z))) = . . D f(z)(z) L(P(z )) = 1 + 1 + f(z) ' 

Prom the above equality and from the definition of the family 
H1 it follows that 
2 

/1 a. p f(z)(z)\ > ,, _ _ p re ..(? + TTtUrj> zeP-
Taking h(u,v?t) = \ + ^ similarly as before basing on 
Theorem 3 we obtain the inequality 

re f(z) > 0 , z e P 
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from which, according to (30), we get 

re L(F(z))> j , ze P 

and so P e V^. 
? 

c) Analogously we prove M^c^. We only need to take 
2 2 

f(z) = 2F(z) -1, PeM1 
2 

and 

h(upv,T) = \ + ̂  . 

d) In order to prove that NQCM-J, we take 
2 

f ( z ) = 2 1' 

where P eNQ. Then we have 

r e (f<z> _+ 1 + LZlzjUl) > o re y g + 1 + f ( 2 j J > 0. 

Putting h(u,v.t) = + ŷ jj according to Theorem 3 we get 
re f(z)>0 and consequently 

r e > 1 z e P r e F(z) 2 ' z e p 

hence P e M1 and NQ c M.,. 
2 2 

ej Prom c) and d) immediately it follows KQCC^ This 
way Theorem 6 was proved. 2 
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16 K.Dobrowolska, P«Liczberski 

F i n a l l y , l e t us add t h a t the i n c l u s i o n NacCy3 f o r a e < 
(v e <0 ,1 J and /J e <0 , has been a l ready proved by ano the r 
method i n [ 3 ] . 
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