

Krystyna Dobrowolska, Piotr Liczberski

ON SOME DIFFERENTIAL INEQUALITIES
FOR HOLOMORPHIC FUNCTIONS OF MANY VARIABLES1. Introduction

Let $f(\zeta)$ be a holomorphic function in the unit disk $K \subset \mathbb{C}$. By h we denote a complex function defined at a some domain $\Delta \subset \mathbb{C}^3$. S.S.Miller and P.T.Mocanu indicated (see [1]) the conditions which should be satisfied by the function h in order that the inequality $\operatorname{ref}(\zeta) > 0$ resulted from the inequality $\operatorname{re} h(f(\zeta), \zeta f'(\zeta), \zeta^2 f''(\zeta)) > 0$.

In the present paper the authors extend this result to holomorphic functions of many variables.

Let $z = (z_1, \dots, z_n)$ and $\dot{r} = (\dot{r}_1, \dots, \dot{r}_n)$. Let $P_{\dot{r}} = \{z \in \mathbb{C}^n : |z_k| < \dot{r}_k, k = 1, \dots, n\}$ and in particular

$$P = \{z \in \mathbb{C}^n : |z_k| < 1, k = 1, \dots, n\}.$$

We shall consider the family H_p of the holomorphic functions $F : P \rightarrow \mathbb{C}$. Let $DF(z)(w)$ denote the value of the first differential of the function F at the point z on the vectors w and let $D^2F(z)(w, w)$ denote the value of the second differential at the point z on the vectors w and w , where $w = (w_1, \dots, w_n)$.

2. The main results of this paper is as follows:

Theorem 1. Let $F \neq \text{const}$, $F(0) = 0$ and $F \in H_P$. If at the point

$$(1) \quad \dot{z} = \left(\dot{r}_1 e^{i\dot{\varphi}_1}, \dots, \dot{r}_n e^{i\dot{\varphi}_n} \right) \in P$$

the following equality holds

$$(2) \quad |F(\dot{z})| = \max_{z \in \bar{P}_{\frac{1}{2}}} |F(z)|,$$

then we have

$$(3) \quad \frac{D F(\dot{z})(\dot{z})}{F(\dot{z})} = m \geq 1$$

and

$$(4) \quad r e \frac{D^2 F(\dot{z})(\dot{z}, \dot{z})}{D F(\dot{z})(\dot{z})} + 1 \geq m.$$

Proof. Consider a point

$$(5) \quad z = \left(\dot{r}_1 e^{i\varphi_1}, \dots, \dot{r}_n e^{i\varphi_n} \right) \in P,$$

where $\dot{r}_k = |\dot{z}_k|$, $k = 1, \dots, n$ and $\varphi_1, \dots, \varphi_n$ are arbitrary real numbers.

Let

$$(6) \quad F(z) = R(\varphi_1, \dots, \varphi_n) e^{i\Phi(\varphi_1, \dots, \varphi_n)},$$

where R and Φ are real functions of the real variables $\varphi_1, \dots, \varphi_n$.

It is easy to see that

$$z_k F'_{z_k}(z) = e^{i\Phi} \left(\frac{1}{i} \frac{\partial R}{\partial \varphi_k} + R \frac{\partial \Phi}{\partial \varphi_k} \right), \quad k = 1, \dots, n.$$

Therefore we have

$$\frac{D F(z)(z)}{F(z)} = \sum_{k=1}^n \left(\frac{\partial \Phi}{\partial \varphi_k} - \frac{i}{R} \frac{\partial R}{\partial \varphi_k} \right).$$

From the condition (2) and the notations (5) and (6) it follows that the function R attains a local maximum at the point $(\dot{\varphi}_1, \dots, \dot{\varphi}_n)$. Hence we have

$$(7) \quad \left. \frac{\partial R}{\partial \varphi_k} \right|_{(\dot{\varphi}_1, \dots, \dot{\varphi}_n)} = 0, \quad k = 1, \dots, n$$

and

$$\frac{D F(\dot{z})(\dot{z})}{F(\dot{z})} = \text{re} \frac{D F(\dot{z})(\dot{z})}{F(\dot{z})} = \sum_{k=1}^n \left. \frac{\partial \Phi}{\partial \varphi_k} \right|_{(\dot{\varphi}_1, \dots, \dot{\varphi}_n)}.$$

Denote

$$\frac{D F(\dot{z})(\dot{z})}{F(\dot{z})} = m.$$

We shall now prove, that $m \geq 1$. For this purpose let us consider the function

$$G(z) = \frac{F(z_1 \dot{z}_1, \dots, z_n \dot{z}_n)}{F(\dot{z})}, \quad z = (z_1, \dots, z_n) \in P.$$

From the maximum principle for the modulus of the holomorphic function of many variables it follows that $F(\dot{z}) \neq 0$, therefore the function G is holomorphic on P . Moreover, $G(0) = 0$ and, according to (2), $|G(z)| < 1$ for $z \in P$.

From Schwarz's lemma for functions of many variables, we obtain

$$|G(z)| \leq \|z\| = \max_{k=1, \dots, n} |z_k|.$$

In particular, for $0 < \varrho < 1$ we have $|G(\varrho, \dots, \varrho)| \leq \varrho$ and as a consequence $\operatorname{re} G(\varrho, \dots, \varrho) \leq \varrho$ we obtains

$$\operatorname{re} \frac{F(\varrho \dot{z})}{F(\dot{z})} \leq \varrho, \quad 0 < \varrho < 1.$$

It can be observed that

$$\frac{d}{d\varrho} \left(\frac{F(\varrho \dot{z})}{F(\dot{z})} \right) = \frac{\sum_{k=1}^n \varrho \dot{z}_k F'_{\varrho \dot{z}_k}(\varrho \dot{z})}{\varrho F(\dot{z})}$$

hence we have

$$\begin{aligned} m &= \frac{D F(\dot{z})(\dot{z})}{F(\dot{z})} = \frac{d}{d\varrho} \left(\frac{F(\varrho \dot{z})}{F(\dot{z})} \right) \Big|_{\varrho=1} = \lim_{\varrho \rightarrow 1^-} \left(\frac{1}{F(\dot{z})} \frac{F(\varrho \dot{z}) - F(\dot{z})}{\varrho - 1} \right) = \\ &= \lim_{\varrho \rightarrow 1^-} \frac{1}{1 - \varrho} \left(1 - \frac{F(\varrho \dot{z})}{F(\dot{z})} \right) = \operatorname{re} \lim_{\varrho \rightarrow 1^-} \frac{1}{1 - \varrho} \left(1 - \frac{F(\varrho \dot{z})}{F(\dot{z})} \right) = \\ &= \lim_{\varrho \rightarrow 1^-} \frac{1}{1 - \varrho} \left(1 - \operatorname{re} \frac{F(\varrho \dot{z})}{F(\dot{z})} \right) \geq \lim_{\varrho \rightarrow 1^-} \frac{1}{1 - \varrho} (1 - \varrho) = 1. \end{aligned}$$

Hence $m \geq 1$.

In order to prove the second part of the theorem let us note at first that

$$\operatorname{re} \frac{D F(z)(z)}{F(z)} = \sum_{k=1}^n \frac{\partial \Phi}{\partial \varphi_k},$$

$$\operatorname{re} \left(\frac{D F(z)(z)}{F(z)} \right)^2 = \left(\sum_{k=1}^n \frac{\partial \Phi}{\partial \varphi_k} \right)^2 - \frac{1}{R^2} \left(\sum_{k=1}^n \frac{\partial R}{\partial \varphi_k} \right)^2,$$

$$\operatorname{re} \frac{D^2 F(z)(z, z)}{F(z)} = \left(\sum_{k=1}^n \frac{\partial \Phi}{\partial \varphi_k} \right)^2 - \sum_{k=1}^n \frac{\partial \Phi}{\partial \varphi_k} - \frac{1}{R} \sum_{j, k=1}^n \frac{\partial^2 R}{\partial \varphi_j \partial \varphi_k}$$

for $z = (\dot{r}_1 e^{i\varphi_1}, \dots, \dot{r}_n e^{i\varphi_n})$.

From the above we obtain

$$\begin{aligned}
 & \operatorname{re} \left(\frac{D^2 F(z)(z, z)}{F(z)} + \frac{D F(z)(z)}{F(z)} - \left(\frac{D F(z)(z)}{F(z)} \right)^2 \right) = \\
 & = \operatorname{re} \left(\left(\frac{D^2 F(z)(z, z)}{D F(z)(z)} + 1 \right) \frac{D F(z)(z)}{F(z)} - \left(\frac{D F(z)(z)}{F(z)} \right)^2 \right) = \\
 & = \frac{1}{R^2} \left(\sum_{k=1}^n \frac{\partial R}{\partial \varphi_k} \right)^2 - \frac{1}{R} \sum_{j, k=1}^n \frac{\partial^2 R}{\partial \varphi_j \partial \varphi_k}.
 \end{aligned}$$

We already know that the function R attains a local maximum at the point $(\dot{\varphi}_1, \dots, \dot{\varphi}_n)$. Hence we have

$$\left. \frac{\partial R}{\partial \varphi_k} \right|_{(\dot{\varphi}_1, \dots, \dot{\varphi}_n)} = 0, \quad k = 1, \dots, n,$$

and

$$\left. \left(\sum_{j, k=1}^n \frac{\partial^2 R}{\partial \varphi_j \partial \varphi_k} \right) \right|_{(\dot{\varphi}_1, \dots, \dot{\varphi}_n)} \leq 0.$$

Therefore we obtain

$$\operatorname{re} \left[\left(\frac{D^2 F(\dot{z})(\dot{z}, \dot{z})}{D F(\dot{z})(\dot{z})} + 1 \right) \frac{D F(\dot{z})(\dot{z})}{F(\dot{z})} - \left(\frac{D F(\dot{z})(\dot{z})}{F(\dot{z})} \right)^2 \right] \geq 0.$$

Hence taking into consideration the inequality (3), which was already proved, we can obtain the inequality (4).

Before we formulate the next theorem, we shall prove the following lemma.

Lemma. Let $g, g: \bar{K} \rightarrow \mathbb{C}$, $g(0) = a$, be an univalent and holomorphic function without at most one point ζ , $|\zeta| = 1$, which is a single pole. Let $f \neq \text{const}$, $f(0) = a$ and $f \in H_p$. Suppose that there is a point $\dot{z} = (\dot{r}_1 e^{i\dot{\varphi}_1}, \dots, \dot{r}_n e^{i\dot{\varphi}_n}) \in P$ for which

$$(8) \quad f(\dot{z}) \in g(|\zeta|=1)$$

and

$$(9) \quad f(\bar{P}_{\dot{r}}) \subset g(\bar{K}).$$

Then there exists $m > 1$ such that

$$(10) \quad Df(\dot{z})(\dot{z}) = m \zeta \dot{g}'(\dot{\zeta})$$

and

$$(11) \quad \operatorname{re} \frac{D^2f(\dot{z})(\dot{z}, \dot{z})}{Df(\dot{z})(\dot{z})} + 1 \geq m \operatorname{re} \left(\frac{\dot{\zeta} g''(\dot{\zeta})}{g'(\dot{\zeta})} + 1 \right),$$

where $\dot{\zeta} = g^{-1}(f(\dot{z}))$.

Proof. Put

$$(12) \quad F(z) = g^{-1}(f(z)), \quad z \in \bar{P}_{\dot{r}}.$$

The function F is holomorphic as a superposition of the holomorphic functions. Moreover $F(0) = 0$. From (12), by (8) and (9), we have $|F(\dot{z})| = 1$ and $|F(z)| \leq 1$ for $z \in \bar{P}_{\dot{r}}$, and so

$$|F(\dot{z})| = \max_{z \in \bar{P}_{\dot{r}}} |F(z)|.$$

It is easy to see that the function F of (12) satisfies the assumptions of Theorem 1 and so for the function F inequalities (3) and (4) hold.

At the same time we can see that

$$(13) \quad g'(F(\dot{z}))DF(\dot{z})(\dot{z}) = Df(\dot{z})(\dot{z})$$

and also

$$\frac{g'(F(\dot{z}))F(\dot{z})DF(\dot{z})(\dot{z})}{F(\dot{z})} = Df(\dot{z})(\dot{z}).$$

Taking

$$(14) \quad \dot{\zeta} = g^{-1}(f(\dot{z})) = F(\dot{z})$$

we have

$$\dot{\zeta} g'(\dot{\zeta}) \frac{DF(\dot{z})(\dot{z})}{F(\dot{z})} = Df(\dot{z})(\dot{z}).$$

From the above in view of (3) we obtain the equality (10).

Next, we shall prove the inequality (11). Since

$$D^2f(\dot{z})(\dot{z}, \dot{z}) = g''(F(\dot{z}))(DF(\dot{z})(\dot{z}))^2 + g'(F(\dot{z}))D^2F(\dot{z})(\dot{z}, \dot{z})$$

according to (13), we obtain

$$\begin{aligned} \frac{D^2f(\dot{z})(\dot{z}, \dot{z})}{Df(\dot{z})(\dot{z})} &= \frac{g''(F(\dot{z}))}{g'(F(\dot{z}))} DF(\dot{z})(\dot{z}) + \frac{D^2F(\dot{z})(\dot{z}, \dot{z})}{DF(\dot{z})(\dot{z})} = \\ &= \frac{DF(\dot{z})(\dot{z})}{F(\dot{z})} \frac{F(\dot{z})g''(F(\dot{z}))}{g'(F(\dot{z}))} + \frac{D^2F(\dot{z})(\dot{z}, \dot{z})}{DF(\dot{z})(\dot{z})} \end{aligned}$$

and next, in view of (14)

$$\frac{D^2f(\dot{z})(\dot{z}, \dot{z})}{Df(\dot{z})(\dot{z})} = \frac{DF(\dot{z})(\dot{z})}{F(\dot{z})} \frac{\dot{\zeta} g''(\dot{\zeta})}{g'(\dot{\zeta})} + \frac{D^2F(\dot{z})(\dot{z}, \dot{z})}{DF(\dot{z})(\dot{z})}.$$

Hence, using the theorem 1 we have

$$\operatorname{re} \frac{D^2f(\dot{z})(\dot{z}, \dot{z})}{Df(\dot{z})(\dot{z})} \geq m \operatorname{re} \frac{\dot{\zeta} g''(\dot{\zeta})}{g'(\dot{\zeta})} + m - 1$$

and next the inequality (11).

Theorem 2. Let $f \neq \text{const}$, $f(0) = a$, $f \in H_P$ and $\dot{z} = (\dot{r}_1 e^{i\dot{\varphi}_1}, \dots, \dot{r}_n e^{i\dot{\varphi}_n}) \in P$. If

$$(15) \quad \operatorname{re} f(\dot{z}) = \min_{\substack{z \in P \\ \dot{r}}} \operatorname{re} f(z),$$

then

$$(16) \quad Df(\dot{z})(\dot{z}) \leq - \frac{|a - f(\dot{z})|^2}{2\operatorname{re}(a - f(\dot{z}))},$$

$$(17) \quad \operatorname{re} \frac{D^2f(\dot{z})(\dot{z}, \dot{z})}{Df(\dot{z})(\dot{z})} + 1 \geq 0$$

and

$$(18) \quad \operatorname{re}(D^2f(\dot{z})(\dot{z}, \dot{z}) + Df(\dot{z})(\dot{z})) \leq 0.$$

Proof. Let us observe that the function

$$g(\zeta) = \frac{a - (2\operatorname{re} f(\dot{z}) - \bar{a})\zeta}{1 - \zeta}$$

satisfies the assumptions of the lemma. Since the function g maps the unit disk \bar{K} on to half-plane $\{\zeta \in \mathbb{C} : \operatorname{re} \zeta \geq \operatorname{re} f(\dot{z})\}$, so $f(\dot{z}) \in g(|\zeta|=1)$ for $\dot{z} \in P$ and according to (15) we have $f(\bar{P}_P) \subset g(\bar{K})$. Therefore the function f satisfies the assumptions of lemma, too. Hence, there exists $m > 1$ such that the inequalities (10) and (11) hold.

It is easy to see that

$$\dot{\zeta} = g^{-1}(f(\dot{z})) = \frac{f(\dot{z}) - a}{f(\dot{z}) - (2\operatorname{re} f(\dot{z}) - \bar{a})}$$

and so

$$\dot{\zeta} g'(\dot{\zeta}) = - \frac{|a - f(\dot{z})|^2}{2\operatorname{re}(a - f(\dot{z}))}$$

and

$$\operatorname{re} \frac{\dot{\zeta} g''(\dot{\zeta})}{g'(\dot{\zeta})} + 1 = 0.$$

Therefore, taking into consideration (10) and (11), we obtain the inequality (17) and the equality

$$Df(\dot{z})(\dot{z}) = -m \frac{|a - f(\dot{z})|^2}{2\operatorname{re}(a - f(\dot{z}))}.$$

From the above equality, in view of the conditions: $m > 1$ and $\operatorname{re} a > \operatorname{re} f(\dot{z})$ we can obtain inequality (16). Inequality (18) is a simple consequence of the inequalities (16) and (17).

Let us note also that in particular if $a = 1$ and $\operatorname{re} f(\dot{z}) = 0$ the inequality (16) takes the form

$$(19) \quad Df(\dot{z})(\dot{z}) \leq -\frac{1}{2} \left(1 + (\operatorname{im} f(\dot{z}))^2 \right) \leq -\frac{1}{2}.$$

Let $u = u_1 + iu_2$, $v = v_1 + iv_2$, $\tau = \tau_1 + i\tau_2$, $a \in \mathbb{C}$, $\operatorname{re} a > 0$. Let $\mathcal{H}(a, \Delta)$ denotes the family of all complex and continuous functions $h(u, v, \tau)$ defined on some domain $\Delta \subset \mathbb{C}^3$, $(a, 0, 0) \in \Delta$ and satisfying the following conditions

$$(20) \quad \operatorname{re} h(a, 0, 0) > 0$$

and

$$(21) \quad \operatorname{re} h(iu_2, v_1, \tau) \leq 0,$$

where

$$(iu_2, v_1, \tau) \in \Delta, \quad v_1 \leq -\frac{|a - iu_2|^2}{2\operatorname{re} a}, \quad v_1 + \tau_1 \leq 0.$$

Now, we shall show several examples of functions, which belong to the family $\mathcal{H}(a, \Delta)$ for certain a and Δ (see [1]). The functions

$$h(u, v, \tau) = \frac{u+1}{2} + \frac{v}{u+1},$$

$$h(u, v, \tau) = \frac{1}{2} + \frac{v}{u+1}$$

belong to the family $\mathcal{H}(1, \Delta)$, where $\Delta = (\mathbb{C} - \{-1\}) \times \mathbb{C} \times \mathbb{C}$. The functions

$$h(u, v, \tau) = u + v + \tau,$$

$$h(u, v, \tau) = ue^v + v + \tau$$

belong to the family $\mathcal{H}(a, \mathbb{C}^3)$, re $a > 0$, while the functions

$$h(u, v, \tau) = u + 2v + \tau + \frac{1}{2}(1 - u)^2,$$

$$h(u, v, \tau) = u + v,$$

$$h(u, v, \tau) = 2v + \tau + \frac{1}{2}$$

belong to the family $\mathcal{H}(1, \mathbb{C}^3)$.

Theorem 3. Let $f \neq \text{const}$, $f(0) = a$, re $a > 0$ and $f \in H_P$. If there exists a function $h \in \mathcal{H}(a, \Delta)$ such that

$$(22) \quad \bigwedge_{z \in P} (f(z), Df(z)(z), D^2f(z)(z, z)) \in \Delta \wedge$$

$$\wedge \text{re } h(f(z), Df(z)(z), D^2f(z)(z, z)) > 0$$

then

$$(23) \quad \text{re } f(z) > 0, \quad z \in P.$$

Proof. Suppose that there exists a point $z^* \in P$ for which $\text{re } f(z^*) \leq 0$. Then according to the condition $\text{re } f(0) > 0$ we can find $\overset{\circ}{P} \subset P$ such that $z^* \notin \overset{\circ}{P}$ and $0 = \min_{z \in \overset{\circ}{P}} \text{re } f(z)$.

Let

$$\text{re } f(\overset{\circ}{z}) = \min_{z \in \overset{\circ}{P}} \text{re } f(z) = 0.$$

Because the assumptions of Theorem 2 are satisfied, we have

$$Df(\overset{\circ}{z})(\overset{\circ}{z}) \leq - \frac{|a - f(\overset{\circ}{z})|^2}{2 \text{re } a},$$

$$\operatorname{re}(D^2f(\dot{z})(\dot{z}, \dot{z}) + Df(\dot{z})(\dot{z})) \leq 0.$$

$$\text{Let } v_1 = Df(\dot{z})(\dot{z}), \text{ } iu_2 = f(\dot{z}), \text{ } \tau = D^2f(\dot{z})(\dot{z}, \dot{z}).$$

Then for any function $h \in \mathcal{H}(a, \Delta)$ we obtain, according to (21), the following inequality

$$\operatorname{re} h(f(\dot{z}), Df(\dot{z})(\dot{z}), D^2f(\dot{z})(\dot{z}, \dot{z})) \leq 0,$$

which is contradictory to (22). Therefore our supposition was false, which means that $\operatorname{re} f(z) > 0$ for $z \in P$.

Let us observe moreover that the set of functions f satisfying the condition (22) is non-empty; for example the function

$$f(z) = a + a_1 z_1 + \dots + a_n z_n, \quad \operatorname{re} a > 0$$

belongs to this set if a_1, \dots, a_n are sufficiently small.

3. Some applications of Theorem 3

From Theorem 3 we can obtain easily the following theorem.

Theorem 4. Let $h \in \mathcal{H}(1, \Delta)$, $F \in H_p$ and $\operatorname{re} F(z) > 0$ for $z \in P$. If the function f is a holomorphic solution of the differential equation

$$h(f(z), Df(z)(z), D^2f(z)(z, z)) = F(z), \quad z \in P, \quad f(0) = 1,$$

then we have

$$\operatorname{re} f(z) > 0, \quad z \in P.$$

Next, let us denote by C_α , V_α , M_α , N_α , $0 \leq \alpha < 1$ families of the functions $F \in H_p$, $F(0) = 1$ which satisfy the following conditions for $z \in P$, respectively

$$\operatorname{re} F(z) > \alpha,$$

$$\operatorname{re} L(F(z)) > \alpha,$$

$$\operatorname{re} \frac{L(F(z))}{F(z)} > \alpha,$$

$$\operatorname{re} \frac{L(L(F(z)))}{L(F(z))} > \alpha,$$

where

$$(24) \quad L(F(z)) = F(z) + DF(z)(z).$$

These families of functions were considered by K.P.Bawrina in the paper [2].

From the definitions of the families C_α , V_α , M_α and N_α it follows that

$$(25) \quad \begin{aligned} C_\alpha &\subset C_\beta \subset C_0, & V_\alpha &\subset V_\beta \subset V_0, \\ M_\alpha &\subset M_\beta \subset M_0, & N_\alpha &\subset N_\beta \subset N_0 \end{aligned}$$

for arbitrary α and β such that $0 \leq \beta < \alpha < 1$.

Theorem 5. For any $\alpha \in (0, 1)$ we have $V_\alpha \subset C_\alpha$.

Proof. Observe at first that $F \equiv 1$ belongs to the families C_α and V_α for $\alpha \in (0, 1)$. Let F be an arbitrary function of the family V_α and $F \neq 1$. We put

$$(26) \quad f(z) = \frac{\alpha}{\alpha-1} - \frac{1}{\alpha-1} F(z).$$

Then $f \in H_P$, $f(0) = 1$ and

$$(27) \quad L(f(z)) = \frac{\alpha}{\alpha-1} - \frac{1}{\alpha-1} L(F(z)).$$

Since $F \in V_\alpha$ we have $\operatorname{re} L(F(z)) > \alpha$. From (27) it follows that

$$(28) \quad \operatorname{re} L(f(z)) > 0 \quad \text{for } z \in P.$$

Let $h(u, v, \tau) = u + v$. The function h belongs to the family $\mathfrak{H}(1, \Delta)$ with $\Delta = \mathfrak{C}^3$.

The inequality (28) can be written in the form

$$\operatorname{re} h(f(z), Df(z)(z), D^2f(z)(z, z)) > 0, \quad z \in P,$$

hence according to Theorem 3 we obtain

$$\operatorname{re} f(z) > 0, \quad z \in P.$$

From the above and from (26) it follows that

$$\operatorname{re} F(z) > \alpha, \quad z \in P.$$

This means that $F \in C_\alpha$, which ends this proof.

Theorem 6. For any $\beta \in (-\infty, \frac{1}{2})$ we have

$$V_\alpha \subset C_\beta, \quad N_\alpha \subset V_\beta, \quad M_\alpha \subset C_\beta \quad \text{for} \quad \alpha \in (-\frac{1}{2}, 1)$$

and

$$N_\alpha \subset M_\beta, \quad N_\alpha \subset C_\beta \quad \text{for} \quad \alpha \in (-\infty, 1).$$

Proof. In view of (25) we see that it is sufficient to show that

$$V_{\frac{1}{2}} \subset C_{\frac{1}{2}}, \quad N_{\frac{1}{2}} \subset V_{\frac{1}{2}}, \quad M_{\frac{1}{2}} \subset C_{\frac{1}{2}}$$

and

$$N_0 \subset M_{\frac{1}{2}}, \quad N_0 \subset C_{\frac{1}{2}},$$

respectively. Since $F \equiv 1$ belongs to each of the above considered families, we may assume $F \neq 1$.

a) We prove at first that $V_{\frac{1}{2}} \subset C_{\frac{1}{2}}$. Let $F \in V_{\frac{1}{2}}$ and

$$(29) \quad f(z) = 2F(z) - 1.$$

Then $f \in H_P$, $f(0) = 1$ and according to the definition V_α

$$\operatorname{re}(f(z) + Df(z)(z)) > 0, \quad z \in P,$$

we have

$$\operatorname{re} h(f(z), Df(z)(z), D^2f(z)(z,z)) > 0, \quad z \in P,$$

where $h(u,v,\tau) = u + v$. Therefore analogously as in Theorem 5 we get

$$\operatorname{re} f(z) > 0, \quad z \in P$$

and next, taking into consideration (29) we have

$$\operatorname{re} F(z) > \frac{1}{2}, \quad z \in P.$$

Hence $F \in C_{\frac{1}{2}}$. This means that $V_{\frac{1}{2}} \subset C_{\frac{1}{2}}$.

b) Now we prove that $N_{\frac{1}{2}} \subset V_{\frac{1}{2}}$. Let $F \in N_{\frac{1}{2}}$ and

$$(30) \quad f(z) = 2L(F(z)) - 1.$$

Then $f \in H_P$, $f(0) = 1$ and

$$\frac{L(L(F(z)))}{L(F(z))} = 1 + \frac{Df(z)(z)}{1 + f(z)}.$$

From the above equality and from the definition of the family $N_{\frac{1}{2}}$ it follows that

$$\operatorname{re} \left(\frac{1}{2} + \frac{Df(z)(z)}{1 + f(z)} \right) > 0, \quad z \in P.$$

Taking $h(u,v,\tau) = \frac{1}{2} + \frac{v}{u+1}$ similarly as before basing on Theorem 3 we obtain the inequality

$$\operatorname{re} f(z) > 0, \quad z \in P$$

from which, according to (30), we get

$$\operatorname{re} L(F(z)) > \frac{1}{2}, \quad z \in P$$

and so $F \in V_{\frac{1}{2}}$.

c) Analogously we prove $M_{\frac{1}{2}} \subset C_{\frac{1}{2}}$. We only need to take

$$f(z) = 2F(z) - 1, \quad F \in M_{\frac{1}{2}}$$

and

$$h(u, v, \tau) = \frac{1}{2} + \frac{v}{u+1}.$$

d) In order to prove that $N_0 \subset M_{\frac{1}{2}}$, we take

$$f(z) = 2 \frac{L(F(z))}{F(z)} - 1,$$

where $F \in N_0$. Then we have

$$\operatorname{re} \left(\frac{f(z) + 1}{2} + \frac{D f(z)(z)}{1 + f(z)} \right) > 0.$$

Putting $h(u, v, \tau) = \frac{u+1}{2} + \frac{v}{1+u}$ according to Theorem 3 we get
 $\operatorname{re} f(z) > 0$ and consequently

$$\operatorname{re} \frac{L(F(z))}{F(z)} > \frac{1}{2}, \quad z \in P$$

hence $F \in M_{\frac{1}{2}}$ and $N_0 \subset M_{\frac{1}{2}}$.

e) From c) and d) immediately it follows $N_0 \subset C_{\frac{1}{2}}$. This way Theorem 6 was proved.

Finally, let us add that the inclusion $N_\alpha \subset C_\beta$ for $\alpha \in (-0,1)$ and $\beta \in (0, \frac{1}{2})$ has been already proved by another method in [3].

REFERENCES

- [1] S.S. Miller, P.T. Moisanu: Second order differential inequalities in the complex plane, *J. Math. Anal. Appl.* 65 (1978).
- [2] К.П. Баврина: Обобщение функций с ограниченным вращением порядка α на случай двух комплексных переменных. О двух классах голоморфных функций двух комплексных переменных, *Sb. Trudov Moskov. Oblast. Pedag. Univ.*, 15 (2) (1972).
- [3] P. Liczbierski: Extremal problems in certain classes of holomorphic functions of two complex variables, *Zeszyty Nauk. Politech. Łódź. Matematyka* 11 (1977).

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY, ŁÓDŹ

Received December 19, 1979.