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ON THE GREEN FUNCTIONS FOR THE HEAT EQUATION
OVER THE m-DIMENSIONAL CUBCID

1. In this paper we shall construct by the method of sym-
metric images the first and second Green funotions for the
equation

(1) Pu{X,t) = £(X,t),

where

m
X = (Xq5000,x ), m>1, >0, P=ZD§1'D’G’
’ =1

and for the domain B = B,x T, where B, = {X:Ixil<ai
(i=1,...,m)}, T = {t: t:>0}, a; (i=1,...,m) are positive
constants. We denote these functions by G and g.

VWie shall foresee the solutions of Dirichlet and Neumann
problems for the equation (1) in the domain B by help of
the functions G and g respectively, but omit the synthe=~
sis of the solutions of these problems. In [1] the construc-
tion of the second Green function for the biparabolic egquation
over the rectangular parallelepiped in Z; was given. In (3]
the construction of the Green function for the heat eguation
over the three-dimensional cuboid was given. In [2] the Green
function for the heat equation over the rectangle is cited,
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2 F.Baranski, J.Musiakek

Let Ye B1, XeB and t>8>0, Let us consider the se-

quences x ,i where

1

(2) xg, = (=1)% (x + (-1)32a n) 0 = %54 % %y

(i=1,000,m3 §=1,25 N=0,1,2,000)
or

1 — 2 1 1 = - -’ - 14
xo’1 = xo’ = X453 x2n i = 4ain+xi; x2n 1,1° 4ain X5 Zai,
(3)
2 = - . %2 - -
| x2 ic 4a.n+xj, x2 1,1 ° 4a.n + Zai xi

(i=1,o.o,m; n=0,1,2,{..)-

dg,i = yi = xg,i (i=1’."’m; j=1’2; n=0’1,2,o.o)’

1

i )2
U 3, 3¢%30t3750x) = (4-8) Zexp [(-a(e-s))7"(a] ;)2],
4

U = (t-8) 2exp[—(-4(1:--8))"1(dJ 2:\,

0,i,1 = Y0,1,2 = Yo,1

where 1=1,.0e,03 j=1,2; N=0,1,2,00¢0
Consider now the series

. - .
0, (x;,574,8) = Uo,i‘U1,i,1'U1,i,2'*ZZ: (=110, 4 5+, 5 40,
n=2
o0
g; (x5,t33,,8) = Uo,1 *U1,1,2 * E (Un’i’1 + Un'i,2)
n=2
for i=1,...,m, and their products
m
G(X,t3Y,8) = T G lx;,t374,8)
i=1
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On Green functions 3

and

=]

g(X,t;Y,B) = 7 gi(xi’tiyivs)
i=1

respectively. Denote

3 . S B - 3
Ggx,t555,x) = Dxi(bo.i U1,i,1 U1,i,2) + Si(xi,t;yi,s).

J . - nd J
Ry(x;,8394,8) = Dxi(UO,i +Ug 30+ U 5 o) + T3(xy,%534,8),
where

== 1
j . _q)Pp3
sd(xy,t435,8) = D (-1) b} (Un 1,1 * Ung,2)s

=}
[
N

M

J . - J
Ti(xi,t,yi,s) = Dxi(Un,i,1 + Un,i,2)’

[}]
n

n

and i=1,.,..,m3 j=0,1,2.
Let us consider the following sets

Zi = {(xi,t;yigs): Ixil<ai’ l}'i|<ai. O<S<t} (i=1,...,m),

o] j s :
xo’i,j = (x,‘,...,xg_.',(-‘l)Jai,x2+1,...,x;) (J=1 ,2;1:2,3,...,!11—1),
. o .
x0)1,j = ((-1’331,12,...,}(;) (‘]:1,2),
= (x© 0 139 -
Xo,m,3 = (x1,...,xm_1,( 1)%, ) {i=1,2).

2. In this chapter we examine the properties of the fun-

ctions Un,i,j (N=0,1,00e93 i=1ysesym; J=1,2) and the series
S]J_’ T‘]]_ (i=1,ooo,m; j=0,1,2).

Lemma 1. If t>s>O,Ye§1,X€B1, then the

functions U (i=15000,m; 3=1,23 n=0,1,2,4..), s2tisfy

n,i,jJ
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4 F.Baratriski, . J.MusiaXek

2 .
the equations (Dxi - Dt)Un,i,j =0 (i=1,.0.,m3 j=1,2;
n=0,1,2,..-).

Vile omit the simple proof of Lemma 1.

We shall prove the following lemma.

Lemmsas 2. If t>820, xi,yie[-ai,ai] (i=1,400.,m},
then

1
2 -2
(1) IUn.i’jI <C4(t~8)%(n-1)
and
(1,) D% |<c(n-1)"2
i"n,i,j

for k=1,2; n=2,3,..s3 j=1,2, C, C1 being positive constants,
Proof. By (2), we obtain

)n+1xi + (-1)n+j+22ain | >

3 - ) - -
ldn,il = lyi xn,il = Iyi+( 1
2ly;+ (-1)n+1xi| - P(-1)n+j+12ain|| 2a;n - 2a; = 2a;(n-1)

(n=2,3,4,...; i=1,.oo,m; j=1,2) and

(4) (a3 )72 < (4af(n-11%)7" (1=2,3,0005m5 §=1,2)0

The function Un 1,3 can be represented in the form
r*e

1 .
Un,1,5° (t-a)a(dg,i)~2((dg’i)Z(t-s)‘1)exp[}_4(t_s),-1(dg’i)2]

(n=2,3,..0'; i=1,ooo'm; j=1,2). By the inequality
k

. ,
(5) _ 2¥exp [~2] < (£)” for z >0, k>0,
2

and by (4), we obtain (I). Moreover

D_ U = 271 (o )n¥lyd

e Y
X3 1,1, 3, 1(t-s) Pexpl(-aft-s))7"(a] ;)%),

- 374 -



On Green functions 5

2
D U =
Xy n,i,j

-2 -
= [-2'1+2'2(t-s)°1(dg,i)zj(t'S) : GXP(("4(t'B))-1(dg,i)2)

for n=2,3,ee¢y iz=1,eee,m, j=1,2. Applying the inequalities
(4) and (5) we obtain the following estimates

-2 |2 g )~2

(n=2,3,000y i=1,00s,m, j=1,2), and for C = max(Cz,CB), we
obtain the assertion (I1).

Lemma 3. The series Si(xi,t;yi,s) and
Tg(xi,t;yi,s) {(1=1,000,m, j=0,1,2) are uniformly convergent
at every point (xy,%374,8)€ 24 (1=1,404,m),

Proof., By Lemma 2, the series

1
S = C1(t-s)2 Z (n-1)~2

n=2

is the absolute majorant of the series Sg and Tg in the
sets Z; {i=1,444,m), respectively. Howeover the series
of the form

o

— -2
S1 =C é (n-1)

n=2

is the absolute majorant of the series Sg and Ti in the
sets Z; (i=1,...,m; J=1,2), respectively.

By Lemma 3 we obtain the following lemma. )

Lemma 4., The series Qg(xi,t;yi,s) and Rg(xi,tiyi,s)
are uniformly convergent at every point (xi,t;yi,s) eZi,
for i=1,,+.,m, j=0,1,2, As a consequence of Lemma 1 and 4
we obtain the following lemma,

Lemma 5. If t>s>O,X€B1,Y€§1, then the

functions Gi'gi are continuous with the derivatives Di Gi,
i
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6 Fo.Baraiski, J.iusiakek

D igl,Dt 3 tgi for i=1,2,e¢.,m, k=1,2, and satisfy the ho-
mogeneous equation Pu(X,t) = 0 for (X,t)eB.

Kow we shall prove the following theorem.

Theorem 1, If XeB, Ye]—s.,, 0<s8<t, then

(a) PX’tG(X,t;Y,s) =03 (b) Px,tg(x,t;Y,s) =

Proof. By definition of the function G, we have

m m m

2
Py, = Z ka(ﬂ Gi> - Dt(TT Gi>
k=1 i=1 i=1
” \ m m=1 m m
=<DxG1/ ﬂGi+Z< s ) TT 6 + 02 Gy ﬂc -
=2 k=2 i=1 i=1
m m=1
-~ DGy TT 6 Z(DGk)T—LG-DtG ﬂci
i= k=2 i=

m=1

[(D -, )64] ]"[ 6, + Z (0 -D )Gy ]‘[ Gy +(05 Dy Iy ]'[ 6y

it

and,by Lemma 5, we obtain the assertion (a)s The proof of the
assertion (b) is similar,
Lemma b, Let Ixil<ai, ]:yi|<a:L (i=1,000,m),
0<s<t, Then Gi(xi,t;yi,s) — 0 when x; — +84 (i=1yeee,m)e
Proof. ILetus write the function G;(x;,t3y¥;,8) in
the form

g
(6l 63 (xgs¥33508) = D, (Upn 1 1 = Upnyy,3,0) +
n=0

D (Upn,i,2 = Yon-1,1,1)
n=1
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or
!

(6) Gy (x50t575,8) = j?: (Uon 1,2 = Uonet,i,1) *
n=0

(o]
£ (Uon,i,1 = Yon,1,2)
n=1

Now in order to prove Lemma 6 we observe, by (3), that

N (62 =al L (n=0,1,2,000)5 42 = d] (n=1,2,00.)
ontt,i= %2n,1 10125000 )5 dop s = dpp g 5 1RS1H20eeedy
for x. = a (i:‘] cee i)

(7)J i i ’ ’ H
2 _al _ . a2 _oal _
9on,1 = Gonst,1 (0500 Theesds dpn gy = dpp 3 (0=1,2,3,00),

\fOI' Xi = ‘ai (i=1,ooo,m)o

By (6), (6"), {7), we obtain the thesis of Lemma 6.
Lemma 7. Let Ixil<ai,]yi]<ai (i=1,00e,m),

0<s<t, Then Dxigi(xi,t;yi,s)—>0 when x; —> +a..

Proof, Since

-2 .
DU = (-1)827 T (t-g) @ dg'i exp((-4(t-s))'1(dg’i)2)

X5 nyi,j

n=0,1400e3 1i=1.40e,m3 j=1,2, thus by formula (7), we obtain

( = -
Din2n+1,i,2 - DinZn,i,1
(n=0,1,2,...) for x;=a,,
Px,Y2n,1,2 = “Px,Y2n-1,1,1
(8) DinZn,i,Z = 'Din2n+1,i,1 (n=0,1,.s0) for x;=-ay,
Dx,Y2n-1,1,2 = 'Din2n,i,1 (n=1,2,00.) for x;=-a,,

" i=1,...,m.

Let us write the function gi(xi,t;yi,s) in the form
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8 F.Barairiski, J.MusiaZek-

o0
(9) 81(xi.t;yi’s, = ZO (U2n+1,i.2 + Uzn.iﬂ) +
n=

(-]
+ D Wop g0+ Upp g g q)

or

M

(9)  gylxypti3ge8) = 2 (Upy g o+ Uppyq,a,0)

=
[[]
(]

(Upp-1,1,2 + Uzn,1,1)

+
B[

n=

(i=1,e00,m)e By (8) and (9), (9') we obtain the thesis of Lem-
ma 7.
Now we shall prove the following lemma,
Lemma 8, Let |xl<a;, 133183, 0<8<t
(i=1,.4.,m), Then Dyici(xi.t;iai,s)-—» 0 when x;-—#aj.
Proof, Iet us write the function G;(x;,t;34,8)
in the form

Gy (x5,%375,8) = Z;i (Uon,i,2 = Y2ns1,1,2) *
n=0

+2 Wap 50 = Vong,i,1)
n=1 .

or

Gy (xyst53508) = > (U g g = Uppiq g q) +
n=0

+ > WUpp 3 0= Upng,1,2!)
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(i=1 ,2,00.,“1). Since

Dy Ung,g = = 3(6-0) 2 o) 4 expl(-4(e-a)7"(a] 1)?)
(i=1'000tm3 3=192)9

thus, by formule (3) we obtain

2 2 Lol _ 42 _ _
d2n,:l.='dQn+1,i (n=0,1’ooo)' d2n,i" d2n,i (n=1 ,2,...)f01‘ yi a,
and

1 1 2 Y
don,1=9n41,1 (8=0s1,e0e)y 45, 4 ==d5) 4 (n=1,2,.00) fory;=-a

which implies

(-]

(10) Dini(xi.t;ai,s) = 2 :E: DyiU2n,i,2(xi’t5iai'S) +
n=0

+ 2 :E; DyiUZn,i,1(xi’t‘iai’B)
n=

{i=1,40e4m)s By (3), we obtain

rdgn-z,i B -d;n,i (n=1,2,..0] for y;=a;, X3=-a,,

(1) 93,4 ° —d;n_g’l (n=1,2,4ss) for y;=-a;, x,=ay,
83,1 = 5,1 (n=1,2,...) for y;=x;=a,,
dgn,i = 'dgnbi (n=1,2,4..) for ¥i=X4=-84.

By (10) and (11), we have the thesis of Lemma 8,
From Lemmas 6, 7 and 8 we get the following theorem,
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Theorem 2. Lot XeB,, YeB,, lxg|<ai
(1=1,400,m), t >8>0 and let

Yi,j= (y1,..,,yi_1,(-1 )jai,yi+1,,...ym) (i=2,ooc,m-1; J=1 ,2),

Y1,j= ((-1)331,32"oo,3m), Ym,j :(31,32’,..'(_1)3am) (3=1,2).

Then
G(X,t3Y,8)—0 and D_ g(X,t;Y,s)—>0 when X — X
Xy 0,1,j
(i=1,ccc,m; j=1,2)
and
Din(X,t;Yi’j,s) -— (  when x_”(o,i,k (1=1,000,mk=1,2)s

3. At first we shall infroduce the following notation. Let

31=(32,.-. ’ym,; }’m=(31 ,...,7m_1 ); yl=(y1 ,_000331_1 ,yi+1,-o-,7m)
(i=2y3,o-o,m"1 )’

={(Y):yi=(-1)3ai, ka]<ak; (k=1,000,Mm3 1i=21,2,400,m;
k#iy §=1,2}e

Let
m
(12)  U(X,t) = U_(X,8) + > (U 40%,8) Ui’z(X,t))+ u_(%,1),
: i=1

where

i
13,s)D G(XtY J,s)dy ds

(1=1,;..'m; j=1,2),
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£
U (X,t) = A j'j £(Y,8)G(X,t;Y,8)dY ds,
) 51
and A = (2v7T )™, and let

m
(13) vX,8) = v (X, 8) + D vy ((X,8)4vy H(%,8))+ vy(X,t),
i=1

where

vo(X,t) = I h (Y)g(X,t5Y,0) dY,
B
1

vi,j(x,t)=

Oy ct

g hi’j(Yi’j,s)g(x,t;Yi’j,s)dyi ds

i,j (i=1,oa0’m; j=1’2)’

v (X,%) = - f(Y,s)g(X,t3X,s) dY ds,

O G,
o)

Tor Bor T3 £y 50 84 5 (i=1,ee0,m; j=1,2) being given functions.

Now we shall give without proof the theorem concerning the
solutions of Dirichlet and Neumann problems,

Theorem, If the function fo is continuous and
bounded in the set B,, the functions £33 (iz1,000,m; j=1,2)
are continuous and bounded in the sets Si,.xT (1=1,400,m;
j=1,2) respectively, the functions ngf(y,s) (k=1,400,m;

p=0,1} are continuous and “ounded in the set B, then the
function U given by foraula (12) is the solution of the eqgua-
tion (1) for ({,t)e B and of the limit conditions

Ulx,0) = £ (X) for Xe€B,,

GiZ.t) = £, {4,t) for (4,t)€ S xT {i=1,00e,m; J=1,2),
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and the function v given by formula (13) is the solution of
the equation (1) for (X,t)eB and of the limit cohditions

v(X,0) = h (X) for XeB,,

Dxiv(x,t) = hi,j(x,t) for (X,t)e Si’ij, 1=1,000,m5 j=1,2.
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