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ON THE GREEN FUNCTIONS FOR THE HEAT EQUATION 
OVER THE m-DIMENSIONAL CUBCID 

In t h i s paper we s h a l l cons t ruc t by the method of sym-
metr ic images the f i r s t and second Green f u n c t i o n s f o r the 
equat ion 

(1) Pu(X,t) = f ( X , t ) , 

where 

m 
X = ( x i , . . . , x m ) , m>1 , t > 0 , P = D* - D t , 

i=1 1 

and f o r the domain 3 = B^* 1 , where B̂  = {Xs < a^ 
( i = 1 , . . . , m ) } , T = { t : t > o } , a.̂  ( i = 1 , . . . , m ) are pos i t i ve 
c o n s t a n t s . We denote these f u n c t i o n s by G and g . 

We s h a l l fo re see the s o l u t i o n s of D i r i c h l e t and Neumann 
problems f o r the equat ion (1) in the domain B by he lp of 
the f u n c t i o n s G and g r e s p e c t i v e l y , but omit the syn the -
s i s of the s o l u t i o n s of these problems. In [l] the c o n s t r u c -
t i o n of the second Green f u n c t i o n f o r the b ipa rabo l i c equat ion 
over the r e c t a n g u l a r pa ra l l e l ep iped i n E^ was g iven . In [3] 
the c o n s t r u c t i o n of the Green f u n c t i o n f o r the heat equat ion 
over the three-d imensional cuboid was g iven . In [2] the Green 
f u n c t i o n f o r the heat equat ion over the r e c t a n g l e i s c i t e d . 
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2 F.Baranski, J.Musiaiek 

let Y e B ^ , X e B̂  and t > s > 0, Let us consider the se-
quences i» where 

( 2 ) 

( i=1 
or 

rm; j = 1 , 2 } n = 0 , 1 , 2 , . . . ) 

(3) 4 

xO,1 = x 0 , i . = x i i x 2 n , i " 4 a i n + x i , x j n + 1 ^ = - 4 a i n - x 1 - 2 a 1 , 

x 2 n , i = - 4 H a + x l * x2n+1 = 4 a i n + 2 a i " x i 

( i = 1 , . . . , m ; n = 0 , 1 , 2 , . . . ). 
Let 

d n , i = ~ x n , i »•••»">•» 0=1,2; n = 0 , 1 , 2 , . . . ) , 

J n , i , j i x i ' t 5 y i , x ) = ( t " s ) 2exp [( -4(t -s))~ 1 ( d j ^ ) 2 

. - 1 

where i = 1 , . . . , m } j = 1 , 2 } n = 0 , 1 , 2 , . . . . 
Consider now the series 

G . i x ^ t ^ s N U ^ - U ^ . ^ - U ^ ^ + ^ r ( - 1 ^ n , i , 2 + ^ n , i , 1 
n=2 

oo 
S i U ^ t ^ . B ) = U 0 , i + U 1 , i , 2 + E ( u n , i , 1 + U n , i , 2 ^ 

n=2 

for i = 1 , . . . , m , and their products 
m 

G(X,t;Y,s) = JT G i ( x i , t i y i , s ) 
i=1 
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On G r e e n f u n c t i o n s 3 

and 

m 

g ( X , t ; Y , s ) = XT g i ^ . t j ^ . s ) 
i = 1 

r e s p e c t i v e l y . D e n o t e 

Q j ( x i t t ; y i , x ) = D ^ a i ^ - U 1 § l f 1 - U 1 f l > 2 ) + S . ^ . t ^ . s ) , 

H j ( x l t t , y i , B ) = D ^ ( U 0 > 1 + U 1 f l | 1 + U 1 f i f 2 ) + T j ( X i , t ; y i , s ) , 

w h e r e 

oo 
s i ( x i f t ; y i , 8 ) = ( U n > i t 1 + D i 2 ) , 

n = 2 1 

^ ( x - . t ^ . s ) ( D n f ± ! + 0 n § 1 2 ) f 

n = 2 1 

a n d i = 1 , . . . , m ; j = 0 , 1 , 2 . 

L e t u s c o n s i d e r t h e f o l l o w i n g s e t s 

Z i = { ( x i ' t ; y i ' s , ! l x i l < a i , I y ± l < a ± , 0 < s < t | ( i = 1 , m ) , 

x O , 1 , d = ( ( - D ^ ^ x ® , . . . ^ ® ) l j = 1 , 2 ) , 

x O , m , j = ( x1° i i - 1 . 2 ) . 

2 . I n t h i s c h a p t e r we e x a m i n e t h e p r o p e r t i e s o f t h e f u n -
c t i o n s U . . ( n = o f 1 i = 1 , . . . , m ; j = 1 , 2 ) a n d t h e s e r i e s 

n t 1 f J 
s j , T j ( i = 1 , . . . , m ; ¿ = 0 , 1 , 2 ) . 

L e m m a 1 , I f t > s ) 0 , Y e B ^ , Z e B ^ , t h e n t h e 

f u n c t i o n s U , . ( i = 1 , . . . , .u ; ,1 = 1 , 2 ; n = 0 , 1 , 2 , . . . ) , s a t i s f y 
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4 F.Baran8ki,J.Musia3:ek 

the equations (D2 - D.)U . , = 0 (i=1,...,m; j=1,2; 

n=0,1,2,...). 

We omit the simple proof of Lemma 1. 

We shall prove the following lemma. 

L e m m a 2. If t > s > 0 , e [~ai»ai] »• • • » 

then 
1 

(I) l u n > . J U c 1 ( t - s )
2 ( n - 1 ) - 2 

and 

Ci-) Id* k c ( n - i ) - 2 

i 

for k=1,2; n=2,3»...; 3=1,2, C, C^ being positive constants. 

P r o o f . By (2), we obtain 

Idj^l = l7i-xjtil = ly i+(-1)
n + 1x i + (-1 ) n +^ + 22a^n I > 

>l!yi+ (-1)
n + 1

X il - I (-1) n +^ + 12 a in II 2a^n - 2 8 i = 28^0-1) 

ln=2,3,4,...; i=1,...,m; j=1,2) and 

( 4 ) ( dn,i )" 2 < (4a|(n-1 )2)""1 (i=2,3,...,m; j=1,2). 

The function Ufi ^ ^ can be represented in the form 

(n=2,3,...,{ i=1,...,m; j=1,2). By the inequality 
k 

(5) zkexp [-a] < for z > 0 , k > 0 , 

and by (4), we obtain (I). Moreover 

_3 
u , , = 2-1(-1)n+1d2 ,(t-s) 2exp((-4(t-s))-1(d^ ,)2), Aĵ  II, X , J n»-L 111-*-
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On Green functions 5 

^ n . i . J " 

= [-2-l+2-2(t-s)-1(dJfi)2](t-s)"2 exp((-4(t-s))-1(d^i)2) 

for n=2,3,..., i=1,...,m, 3=1,2. Applying the inequalities 
(4J and (5) we obtain the following estimates 

I V M , J 1 < C 2 U - 1 1 I < C3 ( n- 1 >~2 

(n=2,3,..., 1-1 j=1,2), and for C « max(C2,Cj), we 
obtain the assertion (I.). I 4 

L e m m a 3. The series Sj[(xi,t;yiPs') and 
Tj(xlft|yi,B) (i=1,...,m, 1,2) are uniformly convergent 
at every point (x^tjy^s ) e Z^ (i=l,...,m). 

P r o o f * By Lemma 2, the series 
1 oo 

S = C^t-s)2 { ß- 1 ) 

n«2 
-2 

is the absolute majorant of the series S^ and T^ in the 
sets Z^ (i=1,...,m), respectively. Howeover the series 
of the form 

oo 
si - c Z 

n=2 

is the absolute majorant of the series S? and T^ in the 
sets Z^ (i=1,...,m; j=1,2), respectively. 

By Lemma 3 we obtain the following lemma. 
L e m m a 4. The series Q^ix^tjy^»6J and t}yifsj 

are uniformly convergent at every point (x^,tjy^,s) e Z^, 
for i=1,,..,m, j=0f'1,2. As a consequence of Lemma 1 and 4 
we obtain the following lemma. 

L e m m a 5. If t > 8 ) 0 , XeB 1 ( Y e l , then the 
k functions G.,g. are continuous with the derivatives D„ G., X X X^ X 
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F.Bara t i sk i , J . i i l u s i a i ek 

g,-»D+G. ,D.g. fo r 1 = 1 , 2 , . . . , m , k=1,2, and s a t i s f y the ho-A4 X U X b 1 
mogeneous equat ion Pu(X, t ) = 0 f o r ( X , t M B . 

Kow we s h a l l prove the fo l low ing theorem. 
T h e o r e m 1. I f X e B, Y e B^, 0 < s < t , then 

( a ) P x > t G ( X , t ; Y , s ) = 0* (b) P X ) t g ( X , t ; Y , s ) = 0 . 

P r o o f . By d e f i n i t i o n of the func t ion G, we have 

m 

X̂ , b i 1 A. \ I 
k=1 K \l«1 

. m m-1 

= I D?_ G j i T d4 + 7 | D t G J T7 G, +• Dt Gm J~\ G± -

m m-1 m 

n g i - Z ( i w n 
i=2 k=2 i=1 

m m-1 m m 

\ / m \ 
- D t n G i -

/ Vui / 

m m 

n G i + Dx Gm n 
i=1 ffl 1=1 

m 

G i - • DtGm T1 G1 -
i=1 

iu m— i M* ••• 

( D i - D t , G i ] n g i + Z ( D x . - D t , G k n g 1 + (d2 -Dt)Gra n G i 
1 J i=2 k=2 k 1=1 m i=1 

and,by Lemma 5, we obta in the a s s e r t i o n ( a ) . The proof of the 
a s s e r t i o n (b) i s s i m i l a r . 

L e m m a 6. Let I XjJ < a i t | I < â ^ ( i = 1 , . . . , m ) , 
0 < s < t . Then G i ( x i , t j y i , 8 ) — > 0 when x ± — » + a t ( i = 1 , . . . , m). 

P r o o f . Let us w r i t e the func t ion G ^ x ^ t ^ ^ s ) i n 

the form 

ao 
(6 ) G . U ^ t ^ . e ) = ^ ( U 2 n , i , 1 " U 2 n + 1 , i , 2 ) + 

n=0 

+ ( U 2 n , i , 2 " U 2 n - 1 t i , 1 } 

n=1 
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On G r e e n f o n c t i o n s 1 

or 

1 6 ' ) G . U - . t ; ? . , * ) ( ü 2 n t i f 2 - u 2 n + 1 , i , 1 ) 

n=0 

( u 2 n , i , 1 - U 2 n , i , 2 ) -
n=1 

How i n o r d e r t o prove Lemma 6 we o b s e r v e , by ( 3 ) . t h a t 

\ 

( 7 ) 

d 2 n + 1 , i = d 2 n , i ( n = 0 ' 1 » 2 " • • } » d 2 n , i = d 2 n - 1 , i < » = 1 . 2 . . . . ) , 

f o r x ± = a^ ( i = 1 , . . . , m j ; 

d 2 n , i = d 2 n + 1 , i ( «=0 .1 • • • • >I d L - 1 , i = d 2 n , i ( n = 1 * 2 ' 3 ' — 

f o r x i = -a.^ ( i = 1 , . . . , m ) . 

By ( 6 ) , ( 6 ' ) , ( 7 ) , we o b t a i n the t h e s i s o f Lemma 6. 
L e m m a 7. L e t I I < a i t I y^ I < ( i = 1 , . . . , m ) , 

0 < s < t . Then D x ^ & i f X i . t . y i » 8 ) — w h e n x ^ — » ¿ a . ^ . 

P r o o f . S i n o e 

D x U n i 1 - ( - 1 ) n 2 _ 1 ( t - s ) 2 djj , o j c p ( ( - 4 ( t - B ) ) - 1 ( d J , ) 2 ) i i , x , j n»3- ^ t 1 

n = 0 , 1 , « . . ; i=1 . . . , m ; 3=1,2 , t h u s by f o r m u l a ( 7 ) , we o b t a i n 

(8) 

^ ^ + 1 , 1 , 2 = ~ D x^ U 2n , i , 1 

D x ^ 2 n , i , 2 = ~ ^ x ^ 2 n - 1 , i , 1 

D „ U 

( n = 0 , 1 , 2 , . . . ) f o r x i = a i , 

' x ^ n . i ^ = - D x . U 2 n + 1 , i , 1 f o r x ^ - a . , 

D x U ^ 2 n ~ 1 , i , 2 = ~ ^ x ^ 2 n , i , 1 ( n = 1 , 2 , . . . ) f o r x ^ - a ^ 

i = 1 , * • • , m . 

L e t us w r i t e t he f u n c t i o n g ^ x ^ t j y ^ s ) i n t h e fo rm 
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8 F .Baranski , J .Musiaiek 

(9) g ^ ^ t ^ s ) = ( U 2n+1, i ,2 + U 2 n , i , 1 ) + 

n=0 

uo 
+ X ( U 2 n , i , 2 + U 2 n - 1 , i , 1 ) 

n=1 

or 

19' ) B ^ t i J ^ B ) = ( U 2 n | l f 2 + U 2 n + 1 > i > 1 ) + 
n=0 

( U 2 n - 1 , i , 2 + U 2 n , i , 1 ) 

n=1 

( i = 1 , . . . , m ) . By (8) and (9 ) , ( 9 ' ) we obtain the t h e s i s of lem-
ma 7. 

Now we s h a l l prove the fo l lowing lemma. 
L e m m a 8. Let I x i l < a i f | y i l < a i , 0 < s < t 

( i = 1 , . . . , m ) . Then D ( ^ U ^ t j + a ^ s ) — » 0 when x± —»¿a^ 

P r o o f . Let as wr i t e the funo t ion G ^ x ^ t j y ^ s ) 
in the form 

G i U ^ t ^ - . s ) = ( U 2 n , i , 2 - U 2 n + 1 , i , 2 ) + 

n=0 

+ ( U 2 n , i , 1 " ^ n - l . i . l 5 

n=1 

or 
QO 

G ^ x ^ t s y - . e ) = ] T ( U 2 n , i , 1 " U 2 n + 1 , i , 1 ) + 

n=0 

+ X ( u 2 n , i , 2 - U 2 n - 1 , i , 2 } 

n=1 
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( i = » 1 , 2 , . . . ,m) . Since 

J 

( i = 1 , . . . ,m; 0 = 1 , 2 ) , 

t h u s , by f o rmu la (3) we o b t a i n 

dlnt±m m4x»1,i t a - 0 , 1 f . . . ) , ¿In,!* , 2 , . . . ) for y ^ a , 

and 

d 2 n , i * d 2 n + 1 , i ( « - 0 . 1 . - . . ) « d L , i = ^ L - l < » - 1 . 2 , . . . ) t o r y ± 

wh ich i m p l i e s 

oo 
(10) D Q 1 ( x 1 , t , a 1 , 8 ) = 2 2 V 2 n , i , 2 ( x i ' t ' ± a i ' 8 ) + 

1 n=0 1 

OO 
+ 2 Z V 2 n » i . 1 ( X i , t ; ± a i ' 8 , 

n=1 

( i = 1 , . . . , m ) . By ( 3 ) , we o b t a i n 

=-a 

( 1 1 ) 

-2,1 = ~ d 2 n , i ( n = 1 , 2 , . . . ) f o r y i = a ± , 

2 n , i = (n=1 , 2 , . . . ) f o r y ^ - a . , x - a . , 

2n 
2 

d 2 n , i = " d L , i ( n = 1 , 2 , . . . ) f o r y ^ x - a ^ 

d L , i = ~d 2n, i ( n = 1 , 2 , . . . ) f o r y - x . - a . . 

By (10) and ( 1 1 ) , we have the t h e s i s o f Lemma 8 . 
Prom Lemmas 6, 7 and 8 we get the f o l l o w i n g theorem. 
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10 F . B a r a f l s k i . J . M a s i a i e k 

T h e o r e m 2 . L e t X e B ^ Y e B ^ I I < aj^ 

( i = 1 , . . . , m j , t > s > 0 and l e t 

^ » j 3 U - 2 , . . . , m - 1 | 3 = 1 , 2 ) , 

Y 1 f J - ( ( - 1 ) ^ , ^ , . . . , y a ) , Y m , j = ( 7 r y 2 ( 3 - 1 . 2 ) . 

Then 

G ( X , t ; Y , s ) — * 0 and D x ^ g ( X , t ; Y , s ) — > 0 when X — » X ^ ^ 

( i = 1 , . . . , f f l } j = 1 , 2 ) 

and 

D G ( X , t ; Y j . , s ) — > C when X — X . k ( i = 1 , . . . ,m;k=1,2). 

3 . At f i r s t we s h a l l i n t r o d u c e t h e f o l l o w i n g n o t a t i o n . L e t 

y 1 = ( y 2 , . . . , y m J { y m = ( y 1 ) ; y l = ( y 1 , . . . , 7 i _ 1 , y i + 1 , . . . , 7 m ) 

( i = 2 , 3 , . . . , m - 1 ) , 

S i i = { ( Y } s 7 i = , 3 a i * ' 7 k ' < a k J ( k = 1 » " > " m 5 i=1 , 2 , . . . , d i } 

M i ; 3 = 1 , 2 } . 

L e t 

m 

( 1 2 ) u ( x , t ) = u Q ( x , t ) f ( u i t 1 ( x , t ) + u i > 2 ( x , t ) ) + u m ( x , t ) , 

i=1 

w h e r e 

U ( X , t ) = A J f o ( Y ) G ( X , t ; Y , 0 ) d Y , -

B 1 
t 

U ( X , t ) = ( - l H + 1 A j f f { y ) D G i X . t , ^ ^ s J d y 1 ds 

0 S . . ' 3 

' ( i = 1 , . . . , r a j 0 = 1 , 2 ) , 
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On Green f u n c t i o n s 11 

t 
Um(X,t) > -A J $ f (Y , s )G(X, t ;Y , s )dY d s , 

) B J1 

and A = (2V3T)"m, and l e t 

in 
(13) v ( X , t ) = v Q ( X , t ) + + 2 ( X , t ) ) + v m ( X , t ) , 

i = 1 

where 

v Q (X , t ) = / h o (Y)g(X, t ;Y ,0 ) dY, 
B 

' i , 3 ( X , t ) = J | h i t ^ Y i , j . 3 > s ( X , t } Y i J , 8 ) d y i ds 

( i = 1 , . . . , m ; j = 1 , 2 ) , 

t 
v m ( X , t ) = - / / f ( Y , s ) g ( X , t } X , s ) dY d s , 

0 B 
1 

f o ' ho» f » f i j ' i ( i=1»• • •»« ; j=1»2) being given f u n c t i o n s . 
Nov/ we s h a l l give wi thout proof the theorem concerning the 

s o l u t i o n s of D i r i c h l e t and Neumann problems. 
T h e o r e m . I f the f u n c t i o n f i s cont inuous and 

bounded in the s e t B.,, the f u n c t i o n s f . . ( i = 1 , . . . , m ; j = 1 ,2) 1 1»J 
are cont inuous and bounded i n the s e t s S^ ^xT ( i = 1 , . . . , m ; 
j=1 ,2) r e s p e c t i v e l y , the f u n c t i o n s DP f {y , s ) ( k = 1 , . . . , m ; 

y k 
p=0,1 ) a re cont inuous and bounded in the s e t B, then the 
f u n c t i o n U givc-n by formula (12) i s the s o l u t i o n of the equa-
t i o n (1 ) t ) e B and of the l im i t c o n d i t i o n s 

U(a,0 ) = f (X) f o r Xe B1 , 

UU.-t) = f . . ( X , t ) f o r U , t ) £ S. . *T ( i = 1 , . . . , m ; j = 1 , 2 ) , i t J -•-»«) 



12 F.Barariski, J.Musiatek 

and the function v given by formula (13) is the solution of 
the equation (1) for (X,t) eB and of the limit cohditions 

v(X,0) = hQ(X) for X € B V 

D v(X,t ) = h, , (X , t ) for (X , t ) eS . .xT, i=1, . . . ,m; j=1,2. j. » j j-»j 
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