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COMPUTING THE CHARACTERISTIC POLYNOMIAL OF A MULTIGRAPH 

1 . Introd uction 

raents of the Cartesian product VxV. An element ( v . , v . ) of * J 
V>V can appear more than once in thi s family. The ordered 
pair D = (V,E) i s called directed multigraph ( b r i e f l y : d i -
multigraph). Elements of V are v e r t i c e s , elements of E 
are arcs of the dimultigraph. A multigraph G i s the ordered 
pair G = (V,U) where U i s a family of subsets of V 6uch 
that each element of U oontains at most two elements of V. 
The elements of U are cal led the edges of G. The adjacen-
oy matrix A(D) = of the dimultigraph D = (V,E) with 
non-empty set V i s the matrix with entry a ^ equals the 
number of arcs leading from the vertex v. to the vertex v i # 
By the charac ter i s t i c polynomial of a dimultigraph D, written 

n . 
F(D,x) = a-ix t w e mean the charac ter i s t i c polynomial 

i=0 1 

of th9 adjacency matrix of D. I f D = (V,E) = KQ i s empty 
dimultigraph ( i . e . V = 0 ) , then i t i s both convenient and 
consistent to define the charac ter i s t i c polynomial of KQ as 
F ( K Q , X ) = 1 . I f two dimuldigraphs have the same charac ter i s -
t i c polynomial wi l l be cal led oospectral . For graph-theoreti-
cal terms used without e x p l i c i t d e f i n i t i o n s , see [ l ] , [3]. 

The fundamental paper on the charac ter i s t i c polynomials 
of simple graphs was published in 1957 by L.Collatz and 
U.Sinogowitz [2] . They obtained the re l a t ions between some 

Let be a set and E a family of e l e -
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2 M.Borowiecki, T.Jdzwiak 

of the coefficients aĵ  of F(G,x) and certain graphical 
properties of G. A fundamental result in this area is due 
to H.Sachs [4]» 

P r o p o s i t i o n 1. Let F(D,x) = a.xn_i 
i=0 1 

be the characteristic polynomial of an arbitrary dimultigraph 
D. Then 

^ ) (1) ai = » i=1,...,n, 
L^D 

where the summation is taken over all linear directed sub-
graphs L^ (see [3] page 151) with exactly i vertioeB; 
p(L^) denotes the number of components of I^. 

For multigraphs, we have the following specialization 
of Proposition 1» 

XI j 
P r o p o s i t i o n 2. Let F(G,x) « 2J a,*""1 

i=0 1 

be the characteristic polynomial of a multigraph G. Elemen-
tary figures ares 
(a) a graph with two vertioes (not necessary distinct) joined 

by an edge, 
(b) an elementary cycle with p (pi 3) vertioes. 
The basic figure U^ is every graph whose all components are 
elementary figures. Then 

p(U.) iU.) 
(2) - ( ' 1 ) 2 » i = 1 

U^cG 

where p(U^) is the number of components of U^, c(U^) is 
the number of components of U^ which are cyoles of length > 
>3, and the summation is taken over all basic figures U^ 
with exactly i vertioes which as partial subgraphs, are con-
tained in G. 

Several recurrence relations for computing the characte-
ristic polynomial of simple graph are given by A.J.Schwenk 
[5] in 1974. 

The present paper is concerned with the problem of com-
puting the characteristic polynomial of dimultigraph (or mul-
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t ig raph) by descr ib ing the reourrenoe r e l a t i o n s . Obviously, 
the theorems of Sohwenk fol low immediately from ours, 

2. Recurrenoe r e l a t i o n s 
T h e o r e m 1. Let v be a ver tex of a dimultigraph 

D = (V,E) and l e t (j> (v) be the set of a l l elementary c i r -
c u i t s of D containing v. Then 

(3) F(D,x) = x.F(D-v,x) - > F(D-V(o),x), 
C6ip(v ) 

where V(c) i s the se t of a l l v e r t i c e s of c i r o u i t o and 
D-v, D-V(c) are subdimultigraphe of D generated by V \ { v } 
and V \ V ( c ) , r e s p e c t i v e l y . 

P r o o f . Let F(D,x) = a.x11""1. Formula (1) ex-
i=0 1 

presses a^ in terms of the i - v e r t e x l i n e a r direoted sub-
graphs, Now, we e s t a b l i s h a one-to-one correspondence between 
those l i n e a r d i rec ted subgraphs cont r ibu t ing to a^ on the 
l e f t and those cont r ibu t ing to one of the terms on the r i g h t . 
Let L. be a given l i n e a r d i rec ted subgraph of D and l e t 

/ 
m̂  = (-1) . We have two p o s s i b i l i t i e s : 

( i ) If vgV(L^) , l e t L^ be the same l i n e a r d i reoted 
subgraph of D-v. Since Lj = L. , we see tha t L'. c o n t r i -n 1 butes m,. to the c o e f f i c i e n t of x in F(D-v,x), and n j 
thus suppl ies m̂  toward the c o e f f i c i e n t of x in 
x»F(D-v,x). 

( i i ) I f v e V ( c k ) , c k c L^c D. 
Let = L^ - V(c k ) c D - V^ 0 ^* Now» L i - k con t r ibu tes 

p(Ll v ) p (L. -V(c t ) ) p (L )-1 
(_1j = (.-,) i * = (_D i = to 
x n - k - ( i - k ) = x n - i . n P ( D _ V ( c k ) , x ) . 

This oompletes the proof of the theorem, 
A s p e c i a l i z a t i o n of Theorem 1 f o r multigraphs i s given 

below. 
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T h e o r e m 2. Let 
1° v be a vertex of a multigraph 0 » (V,B), 
2° tp(v) be the set of all elementary cycles of length > 3 

containing v, 
3° V(c) be the set of all vertioes of the cycle o, 
4° h(v,u) denotes the number of edges joining the vertioes 

v and u of G, 
5° l(vj be the number of loops incident to the vertex v. 
Then 

(4) F(G,x) = x»P(G-v,x) - l(v)F(G-v,x) -

- > (h(v,u))2.F(G-v-u,x) - 2 > F(G-V(c),x), 
u adj v cetp(v) 

P r o o f . Let G = (V,E) be a dimultigraph obtained 
from G s (v,E) by replacing any edge (not loops) of G by 
two oppositely direoted arcs. Obviously, F(G,x) = F(G,x) and 
P(G-v,x) = F(G-v,x). Hote that 

' P(G-V(c),x) = > P(G-V(Cl),x) + 
ceif(v) c^ecpfv) 

+ > P(G-V(c2),x) + 
c2e{f(v) 

+ P(G-V(ck),x), for k > 3, 
ckecp(v) 

where cf (v) is the set of all elementary circuits containing 
v and c ^ i=1,2,3,... are circuits of length i. By sim-
ple considerations, we have 
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> P(G-V(c^),x) = l(v).F(G-v,x), 
o^cpivj 

> P{G-V(C 2 ) ,X) = > (h(v,u))2.F(G-v-u,x), 
c2ecp(v) u adj v 

F(G-V(ck),x) = 2 P(G-V{c),x) 
ckecp(v) cecpiv) 

and from this our theorem follows. 
If G is a simple graph, then by putting l(v) = 0 and 

h(v,u) = 1 in (4), we obtain, as the corollary, the theorem 
of Schwenk [5]. 

The next two theorems display the relations between the 
characteristic polynomial of dimultigraph D (or multigraph 
G) and the polynomials of D (or G) minus one aro (or edge) 
and vertices. 

T h e o r e m 3. Let e be an arc of a dimultigraph 
D = (V,E) and let q>(e) be the set of all elementary cir-
cuits of D containing e. Then 

(5) F(D,x) = F(D-e,x) - F(D-V(c),x). 
ceif(e) 

P r o o f . Similarly as in the proof of Theorem 1 we 
consider two cases: 

(i) e ¿E(I^), I^cD. Let L'̂  be the same linear directed 
subgraph of D-e, Obviously, L'̂  = L^ and L'̂  contributes 
m^ to the coefficient of x n _ 1 in F(D-e,x). 

(ii) If eei(c kl, c k c L . c D . Let L ' ^ = - V(ck) c 
c M f c ^ ) . In similar way as in the proof of Theorem 1 part 
(ii), we obtain the formula (5). 

For multigraphs we have the following 
T h e o r e m 4. Let 

1° e be an edge joining two distinct vertices u and v of 
a multigraph G = (V,S), 
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2° Lp(e) be the set of a l l elementary cyc les of length >3 
containing e , 

3° V(c) be the set of a l l v e r t i c e s of the cycle c and 
4° h'(u tv) denote the number of edges joining the ve r t i c e s 

u and v of G. 
Then 

(6) F(G,x) = F'(G-e,x) - (2h(u,v)-1)•P(G-u-v,x) -

- 2 > ' F(G-V(c ) , x ) . 
cecp(e J 

P r o o f . Let a^ and ag be two oppositely directed 
arcs (of G) which are corresponding to edge e of G. By 
applying the formula (5) to G and a^, and in the next step 
to G-a1 and a^, we have 

(a ) F(G,x) = F(G,x) = F(G-a1 fx) - > F(G-V(c),x), 
cecp(a1 ) 

(aa) F(G-a1 fx) = F i G - a ^ a ^ x ) - \ F(G-a1-V(c ) , x ) . 
cecp(a2) 

Note that 

(*) G-a.,-a2 = G-i and G-a.,-V(c) = G-V(c). 

By the pa r t i t ion of cp (a^) on two s e t s tp1 and <f2 contain-
ing the c i r c u i t s of length two and length > 3, r e spec t i ve l y , 
we see that 

' F(G-V(c) tx) = h(u,v)«F(G-u-v,x) = h(u ,v) .F(G-u-v ,x) 
c e ^ 

- 366 -



Characterisito polynomial 7 

and 

> F(G-V(c),x) = > F(G-V(ck),x), k > 3. 
cecf2 ckecp(e) 

In similar way as above, let tlie sets of cir-
cuits of length two and of length >3 respectively, of G-a^. 
Then, by (*), 

F(G-V(c),x) = (h(u,vj-1)*F(G-u-v,x) 
ce<f3 

and 

> ' F(G-V(c),x) = F(G-V(ck),x), k >3. 
cetfy okecp{eJ 

By substituting (aa) to (a) and by above considerations, we 
obtain the relation (6). 

If G is a simple graph, then by putting h(u,v) = 1 
in (6) we obtain the theorem of Schwenk [5]» 

The coalescence of two rooted dimultigraphs Di >r-| and 
D2,r2, denoted is the dimultigraph formed by iden-
tifying the two roots. The new root r is a cutvertex joining 
D1 to D2. 

T h e o r e m 5. If D^ and D 2 are two rooted di-
multigraphs with roots r^ and r 2, then 

(7) F(D1.D2,XJ = F(D1,x).F(D2-r2,x) + F(D1-r1,X)*F(D2,X) -

- x F(D1-r1,x).F(D2-r2,x). 

P r o o f . By applying Theorem 1 to di*d
2» w e have 

(a) F(D1.D2,x) = x.FfD^Dg-r.x; - > F(D^ »D2-V(c ) ,x). 
ce<?(r) 
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S i n o e D ^ D p - r = ( D 1 - r 1 ) u ( D 2 - r 2 ) , we o b t a i n 

( b ) P i D ^ D g - r . x ) = P C D ^ ^ , x ) * P ( D 2 - r 2 , x ) . 

The s e t o f c i r c u i t s cp(r) we c a n p a r t i t i o n on two s e t s (p ( r 1 J , 

¿ p ( r 2 ) o f c i r c u i t s o f D^ and D 2 r e s p e c t i v e l y . T h u s 

( c ) > ' F i D ^ D g - V i o J . x ) = > ' F(D 1 - V ( c ) , x ) ' F O g - P o , x ) + 

c e c p ( r ) c e i f ( r 1 ) 

+ P ( D 2 - V ( c ) ^ ) * P ( D 1 - r 1 , x ) . 

c e i ? ( r 2 ) 

P r o m ( 3 ) f we h a v e 

( d ) P { D k - V ( c ) , x ) = x . P ( D k - r k , x ) - P ( D k , x ) , k = 1 , 2 . 

c e c f ( r k ) 

By t h e s u b s t i t u t i o n o f ( b ) t o ( e ) a n d ( d ) t o ( c ) , and o b t a i n e d , 

new f o r m o f ( o j t o ( a ) we o b t a i n , by e l e m e n t a r y c a l c u l a t i o n , 

t h e f o r m u l a ( 7 ) . 

O b v i o u s l y , we c a n a p p l y , t h e f o r m u l a ( 7 ) t o m u l t i g r a p h s 

a n d s i m p l e g r a p h s . P o r s i m p l e g r a p h s t h e f o r m u l a ( 7 ) was d i s -

c o v e r e d by Schwenk i n 1 9 7 4 [ 5 ] . 

T h e o r e m 6 , L e t D^ ,a? 1 and ^ 2
, r 2 t w o 

j o i n t r o o t e d d i m u l t i g r a p h s . L e t D be t h e d i m u l t i g r a p h f o r m e d 

by j o i n i n g t h e r o o t s w i t h new a r c s ; e ^ . . . , e ^ and a - j , . . , , a h 

w i t h i n i t i a l e n d v e r t e x r ^ and r 2 , r e s p e c t i v e l y . T h e n 

( 8 ) P ( D , x ) = P ( D 1 , X ) « P ( D 2 , X ) - h ^ h g . p f D ^ ^ , x ) » P ( D 2 - r 2 , x ) . 

P r o o f . By ( 5 ) , we h a v e 

F ( D , x } = P ( D - e 1 f x ) - P ( D - V ( c j , x j . 

O E ^ ( E 1 ) 
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Since the circuits c of M>(e.j) are formed by arc e1 and 
»a^ » w e have 

F(D-V(c),x) = hg.PiD-^-rg.x) = 
ceiffe., ) 

= hg.PtD^^ ,x).P(D2-r2,x). 

Thus 

F{D,x) = F(D-e1tx) - h^FfD.,-r., ,x) »FiDg-rg,*). 

By applying (5) do D-e^ we have 

F(D,x) = P{D-e^-e2,x) - 2hg»F(D1-r1,x)*F(Dg-r2,x). 

Repeating the process for all arcs , we obtain 

F(D,x) = P(D-o1-...-eh ,x)-h1h2«P(D1-r1,x)»F(D2-r2,x). 

Since P(D-e 1,.-e^ ,x) = P(D1,x)*P(D2,x), from the above 
our theorem follows. 

For multigraphs v/e have the following corollary. 
C o r o l l a r y 1. Let G1,r1 and G2 , r2 b e t w o 

disjoint rooted multigraphs. The characteristic polynomial of 
the multigraph G formed by joining the roots with the new h 
edges is 

F(G,x) = F(G1,X)»F(G2,X) - h2.F(G1-r1,x)«F(G2-r2,x). 

If G^,G2 are simple graphs and h = 1, then we have the 
theorem of Schwenk [ 5 ] . 

A.J.Schwenk in [ 5 ] introduced the cospectrally rooted 
graphs. Analogously, two rooted dimultigraphs >r-] an<^ 
D2,r2 are called cospectrally rooted if F(D.j,x) = F(D 2,X) 
and F(D^-r1,x) = F(D2-r2,x). 
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It i s easy to see that Theorem 5 implies the following 
corol lary . 

C o r o l l a r y 2. If D1 and D2 cospectrally 
rooted and D i s any rooted dimultigraph, then F(D.jtD»x) = 
= F(D2.D,X). 

Hence, the cospectrally rooted pair of dimultigraphs can 
be used to build larger cospectral pairs . 
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