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COMPUTING THE CHARACTERISTIC POLYNOMIAL OF A MULTIGRAPH

1. Introduction

Let V = {v1,...,vn} be a set and £ a family of sle=-
ments of the Cartesian product VxV. 4&n element (vi,v-) of
VxV can appear more than once in this family. The ordered
pair D = (V,E} is called directed multigraph {(briefly: di=~
aultigraph). Elements of V are vertices, elements of E
are arces of the dimultigraph. A muliigraph G is the ordered
pair G = (V,U) where U 41is a family of subsets of V such
that each element of U oontains at mest two elements of V,
The elements of U are called the edges of G. The adjacen-
oy matrix A(D) = [a, } of the dimultigraph D = (V,E) with
non~-empty set V is the matrix with entry aij equals the
number of arcs leading from the vertex vy to the vertex v..
By the characterist;c polynomial of a dimultigraph D, written

(D,x) = ;E: a. xn 1, we mean the characteristic polynomial

of ths adgacency matrix of D If D = (V,E) = K; is empty
dimultigraph (i.e. V = @), then it is both convenient and
congistent to define the characteristic polynomial of KO as
F(Ko,x) = 1, If two dimulrigraphs have the same chareoteris-
tic polynomial will be called ocospectral., For graph-theoreti-
cal terms used without explicit definitions, see [1], [3].
The fundamental paper on the characteristic polynomials
of simple graphs was published in 1957 by L.Collatz and
U.Sinogowitz [2]. They obtained the relations between some
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of the coefficients a; of F(G,x) and certain graphical
proparties of G, A fundamental result in this area is dus
to H.S5achs [4]:

n
Proposition 1. Let F(D,x) = > aixn'
i=0
be the characteristio polynomial of an arbifrary dimultigraph

Ds Then

p(L;)
(1) ai = E (-1) i 'Y i=1,0.l.n'
LycD

1

where the summation is taken over all linear directed sub-
graphs L, (see [3] page 151) with exactly i vertices;
p(Li) denotes the number of components of Lj.

For multigraphs, we have the following specialization
of Proposition 1.

n
Proposition 2, Let F(G,x) = > aixn'i
i=0

be the characteristic polynomial of a multigraph G. ' Elemen-
tary figures are:
(a) a graph with two vertices (not necessary distinct) joined
by an edge, '
(b) an elementary cycle with p (p>3) vertices.
The basic figure Ui is every graph whose all components are
elementary figures, Then
(u U,
(2) a; = > (-1)p 1! 50! 1), 121, 000,0,
UscG

where p(U;) is the number of components of U, c(Uy) is
the number of components of Ui which are cyoles of length >
23, and the summation is taken over all basic figures Uy
with exactly 1 vertices which as partial subgraphs, are con=-
tained in G,

Several recurrence relations for computing the characte-
ristic polynomial of simple graph are given by A.J.Schwenk
[5] in 1974.

The present paper is coneerned with the problem of com-
puting the characteristic polynomial of dimultigraph (or mul-
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tigraph) by deseribing the reocurrence relations. Obviously,
the theorems of Schwenk follow immediately from ours.

2. Recurrence relations

Theorem 1, Let v be a vertex of a dimultigraph
D= (V,E) and let 3 (v) be the set of all elementary cir-
cuits of D containing v. Then

(3) F(Dy,x) = XeF(Dwv,x) = ZE F(D=V(0),x),
ceplv)

where V(c) 1s the set of all vertices of cirouit ¢ and
D=v, D=V(¢) are subdimultigraphs of D generated by V \{v}
and V\V({(c), respectively.

Proof. Let F(D,x) = :ﬁ: aixn'i. ‘Formula (1) ex-

=

presses &y in terms of the i-vertex linear directed sub-
graphs, Now, we establish a one-fo~one vorrespondence between
those linear directed subgraphs contributing fo a; on the
left and those contributing to one of the terms on the right,

Let Li be a given linear directed subgraph of D and let

p(Ly)
mg = (=1) . We have two possibilities:

(1) If v¢Vv(L;), let L; be the same linear directed
subgraph of D-v, Since L) = L;, we see that L; contri-
butes m; to the coefficient of x"~'"' in F(D-v,x), and
thus supplies m; toward the coeffieient of x4 4p
XeF(D=v,x).

(i1} If veV(oy), ¢, cL;cD.

Let Ly, =1L; -V(e)cD - V(e )s Now, L;, contributes

p(L;_,) p(L.-V(c, )) p(L;)=1

O e O B T O ) R R Y 2
gA-k=(i=k) _ n=i ) F(D=V(c, ),x).

This ocompletes the proorf of the theorem,

A specialization of Theorem 1 for multigraphs is given

below.
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Theorem 2. Let

v be a vertex of a multigraph G = (V,E),

2% ¢(v) be the set of all elementary cycles of length > 3
containing v,

3% ¥(c) be the set of all vertices of the cycle a,

4° h{v,u) denotes the number of edges joining the vertices
v and u of G, '

5° 1(v) be the number of loops incident to the vertex v,

Then

10

(4) F(G,x) = xeF(G=v,x) = L(V)F(G-v,x) =

-S> (h(v,u))2eP(Gav-u,x) =2 >  F(a=V(c),x),

uadj v - cey(v)

Proof. Let G = (V,E) be a dimultigraph obtained
from G = (V,E) by replacing any edge (not loops) of G by
two oppositely direoted arcs., Obviously, F(G,x) = F(G,x) and
F(G-v,x) = F(G-v,x). Note that

E_—‘ P(G-V(c),x) = E F(G-V(cy),x) +

cedlv) 04e9(v)
+ E F(G-V{c,),x) +
c2€@(v)

+ E F(@-V(ck),x), for k > 3,
¢ e@lv)

where @ (v) is the set of all elementary circuits containing

v and Cy i=1,2,3,..s are circuits of length 1i. By sim-
ple considerations, we have
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E F(G=V(cy)yx) = 1(v])eF(G-v,x),

04€(v)
> R(EV(ey)x) = > (h(v,u))2F(G-v-u,x),
czea(v) uadjv
E F(G-v(ck),x) =2 § F(G=V(c),x)
e eqlv) cep(v)

and from this our theorem follows,

If G 1is a simple graph, then by putting 1(v) = 0 and
h{v,u) =1 in (4), we obtain, as the corollary, the theorem
of Schwenk [5].

The next two theorems display the relations between the
characteristic polynomial of dimultigraph D (or multigraph
G) and the polynomials of D {or G) minus one arec (or edgs)
and vertioces,

Theoren 3. Let e be an arc of a dimultigraph
D=(V,E) and let ¢ (e) be the set of all elementary cir-
cuits of D containing e. Then

(5) F(D,x) = F(D-e,x) = E F(D-V(c),x).
cedle)

Proof. Similarly as in the proof of Theorem 1 we
consider two cases:

(i) e ¢E(L,), LycD, Let Li be the same linear directed
subgraph of D-e. Obviously, L; = L; and Lg contributes
m; to the coefficient of xP~* in F(D-e,x).

(11) If eeBle,), ¢ cLycDs Let L; . =L = Vi )c
CD-V(ck). In similar way as in the proof of Theorem 1 part
(i1), we obtain the formula (5),

For multigraphs we have the following

Theoremn 4. Let
1% ¢ be an edge joining two distinct vertices u and v of
a multigraph G = (V,2),

- 365 -



6 iieBorowiecki, T.,JdzZwiak

2° yle) be the set of all elementary cycles of length >3
containing e,

3% v{c) be the set of all vertices of the cycle ¢ and

4° h{u,v) denote the number of edges joining the vertices
u and v of G,
Then

(6) F(G,x) = F(G-e,x} = {2h{u,v)=1)}¢F(G=-u~v,x) =

-2 E F{G-V(c),x).

ceyle)

Proof . Let ay and a, be two oppositely directed
arcs (of G) which are corresponding to edge e of G. By
applying the formula (5) to G and a;, &nd in the next step
to G-a1 and ayy Wwe have

(a) P(G,x) = F(G,x) = F(G-ay,x) - E F(G=v(c),x),

ce@(&l )

(aa) F(G-aq,x) = F(@-a1-a2,x) - E F(G-a,=V(c),x).
cegla,)

Note that

(%) 5-&1-a2 = Gee and G-ay-V(c) = G-V(c).

By the partition of iﬁ(a1) on two sets 9y and ¢2 contain-
ing the circuits of length two and length > 3, respectively,
we see that

E F(G=V(c),x) = h(u,v)+F(G-a-v,x) = h(u,v)sF(G-u~v,x)
ceq,
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and

-S_ F(E-V(C),X) = E F(G"V(ck)’x)’ k >30

ceq, i€ ¢le)

In similar way as above, let wB and ¢4 be the sets of cir-
cuits of length two and of length >3 respectively, of G—a1.
Then, by (*]},

E P(G=V(c),x) = (h{u,v)=1)eF(G=-u=-v,x)
ce(p3

and

E F(G-v(c),x) 2 F(G=V(c)yx), k >3.

ceq, ckeq’(e)

By substituting (aa) to (a) and by above considerations, we
obtain the relation (6).

If G is a simple graph, then by putting h(u,v) = 1
in (6) we obtain the theorem of Schwenk [5 .

The coalescence of two rooted dimultigraphs D1,r1 and
D2,r2, denoted D1-D2, is the dimultigraph formed by iden-
tifying the two roots, The new root r is a cutvertex joining
D to D2.

Theoren Se If D, and D2
multigraphs with roots T4 and Tpy then

1
are two rooted di-

(7) F(Dy+D,,x) = F(D1,x)-F(D2-r2,x} + F(D1-r1,x)'F(D2,x) -
-x F(D1-r1 ,x)oF(DZ-rz,x).
Proof., By applying Theorgm 1 to D1-D2, we have

{a) F(D10D2,x) = x-F(D1-D2-r,x) - _5_ F(D1°D2-V(c),x).
cedir)
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Sinoe Dy*D,-r = (Dy-r;) v (D,-r,), we obtain

(v) F(DyeDy=ryx) = F(Dy=ry,x)eF(Dy=r,,x)s

The set of circuits @(r) we can partition on two sets @(r1),
@(rz) of circuits of D, and D, respectively, Thus

{c) E F(D1-D2-V(o),x)= Z F(Dy <V{o),x) sF Dy 4 X) +

cedlr) cedlr,)

+ EE FWDZ-V(c)gd'F(D1ér1,x).

Ce@(rz)

From (3), we have

(d) F(Dk-v(C),x) = X°F(Dk'-1‘kgx)-F(Dk,x), k=1 g20
cedlry)

By the substitution of (b) to () and (d) to (c¢), and obtained.
new form of (o) to (a) we obtain, by elementary calculation,
the formula (7). ,

Obviously, we can apply the formula (7) to multigraphs
and simple graphs. For simple graphs the formula (7) was dis-
covered by Schwenk in 1974 [5].

Theorem 6, Let D,,ry and D2,r2 be two dis-
joint rooted dimultigraphs, Let D be the dimultigraph formed
by joining the roots with new arcas: Bsecny eh1 and Bqsesesdy

with initial endvertex ry and Ty respectively. Then
(8) F(D,x) = F(Dy,x)+F(D,,x) = hyohyeF(D =ry,x)*F(Dy-r,,x)s

Proof. By (5), we have

F(D,x) = F(Dmoq,x) =~ > F{D=V(e),xl.
066(61)
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Since the circuits ¢ of @(91) are formed by arc 84 and
31 ,ooo’ahz, we have

E F(D=V(c),x)

cedley)

hz.F(D-r1 -r2,x) =

]

h2-F(D1-r1,x)oF(Dz-rz,x).

Thus

F(D,x) = F(D-e1,x) - hzoF(D1-r1,x)-F(Dz-rz,x).

By applying (5) do D-e, we have

F(D,x) = F(D—e1—32,x) - 2h2~F(D1-r1,x)°F(D2-r2,x).

Repeating the process for all arcs €yseeasCp we obtain
1

P(D,x) = F(D-e1-...-¢h1,x)-h1h2-F(D1-r1,x)°F(D2-r2,x).

Since F(D—e1—...-eh1,x) = F(Dy,x)*F(D,,x), from the above

our theorem follows,

For multigraphs we have the following corollary.

Corol .ary Te Let Gy,r, and 02,r2 be two
disjoint rooted multigraphs. The characteristic polynomial of
the multigraph G formed by joining the roots witih the new h
edges 1is

N al 2 u
F(Gyx) = F(Gy,x)*F(Gyyx) = heF(Gy=r, x)F(G,-r,,x),

If G1,G2 are simple grephs and h = 1, then we have the
theorem of Schwenk [SJ.

A.J.Schwenk in [5] introduced the cospectrally rooted
graphs. Analogously, two rooted dimultigraphs D1,r1 and
D,,r, are called cospectrally rooted if F(D1,x) = F(D,,x)
and F(D,~Tq,x) = F(Dz—rz,x).

- 369 -



10 M,Borowiecki, T.JéZwiak

It is easy to see that Theorem 5 implies the following
corollary.

Corollary 24 If D, and D2 cospectrally
rooted and D is any rooted dimultigraph, then F(D,eD,x) =
= F(DZOD,X).

Hence, the cospectrally rooted pair of dimultigraphs can
be used to build larger cospectral pairs,
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