

Lech Drewnowski

**EMBEDDINGS OF TOPOLOGICAL SEMIGROUPS
IN TOPOLOGICAL GROUPS AND SEMIGROUP-VALUED MEASURES**

Two simple theorems on embeddings of uniform or topological commutative semigroups in topological groups are proved. As an application, some recent results on semigroup-valued measures are quickly derived from their (earlier known and easier to prove) counterparts for group-valued measures.

Throughout this note, S is a commutative semigroup under the operation of addition $+$, with the zero element 0 .

Theorem 1. For any Hausdorff uniformity \mathcal{U} on S the properties (a), (b) and (c) below are mutually equivalent.

(a) There exists a Hausdorff topological commutative group G and a map $h:S \rightarrow G$ which is an algebraic isomorphism and simultaneously a uniform homeomorphism onto its image, where $h(S)$ is considered with the uniformity induced by the natural uniformity of G .

(b) For every $U \in \mathcal{U}$ there exists $V \in \mathcal{U}$ such that if $(x_1, x_2) \in V$ and $(x_1 + y_1, x_2 + y_2) \in V$, then $(y_1, y_2) \in U$.

(c) The following two conditions hold:

(c') The map $+: (S, \mathcal{U}) \times (S, \mathcal{U}) \rightarrow (S, \mathcal{U})$ is uniformly continuous.

(c'') For every $U \in \mathcal{U}$ there exists $V \in \mathcal{U}$ such that if $(x+z, y+z) \in V$, then $(x, y) \in U$.

Proof. (a) \Rightarrow (b) is obvious.

(b) \Rightarrow (c): Take any $U \in \mathcal{U}$ and select $V \in \mathcal{U}$ according to (b). Then to this V choose $W \in \mathcal{U}$ so that the implication in (b) holds with V, W in place of U, V . We may assume that W is symmetric and contained in V .

Suppose

$$(x, x') \in W, (y, y') \in W \quad \text{but} \quad (x+y, x'+y') \notin U.$$

Since

$$(x', x) \in W \subset V, \quad (x+y, x'+y') \notin U,$$

it follows by (b) that

$$(x'+x+y, x+x'+y') \notin V.$$

This together with $(y', y) \in W$, by (b) again, imply

$$(y'+x'+x+y, y+x+x'+y') \notin W,$$

which is false. This proves (c'). The argument showing (c'') is even simpler: If U, V are as in (b), $(x+z, y+z) \in V$ but $(x, y) \notin U$, then $(z, z) \notin V$ by (b), which is impossible.

(c) \Rightarrow (a) will immediately follow from [6], Proposition 1.2 and Remark 1 on p.711, if we show that the cancellation law

$$x+z = y+z \Rightarrow x = y$$

holds in S , and that

for every $U \in \mathcal{U}$ there exists $V \in \mathcal{U}$ such that whenever $(x, y) \in V$, then $(x+z, y+z) \in U$, for all $x, y, z \in S$.

Since \mathcal{U} is Hausdorff, the cancellation law is easily seen to follow from (c''); and the above condition is an obvious consequence of (c').

Theorem 2. Let τ be a Hausdorff topology on S under which S is a topological semigroup, i.e., the map

$$+: (S, \tau) \times (S, \tau) \rightarrow (S, \tau)$$

is continuous.

(a) There exists a Hausdorff uniformity \mathcal{U} on S which is the strongest among the uniformities \mathcal{U}' on S such that 1° the map $+: (S, \mathcal{U}) \times (S, \mathcal{U}) \rightarrow (S, \mathcal{U})$ is uniformly continuous, and

2° the identity map of (S, τ) into S equipped with the topology induced by \mathcal{U}' is continuous at 0.

(b) If (S, τ) satisfies the following condition

(*) for every $x \in S$ and every τ -neighbourhood U of 0 the set $x + U$ is a τ -neighbourhood of x ,

and if $\tilde{\tau}$ denotes the topology associated with \mathcal{U} , then $\tilde{\tau} \subset \tau$. Moreover, if A is an s -complete subset of (S, τ) , then $\tilde{\tau}|A = \tau|A$. (A is s -complete if every \mathcal{U} -Cauchy net in A is τ -convergent to a point in A ; cf. [5]).

(c) Suppose that the cancellation law holds in S and that condition (*) is satisfied. Then there exists a Hausdorff topological commutative group G and an algebraic isomorphic embedding $h: S \rightarrow G$ such that $h: (S, \tau) \rightarrow G$ is continuous and a homeomorphism on every s -complete subset of S , and $h: (S, \mathcal{U}) \rightarrow G$ is a uniform homeomorphism.

P r o o f . Let \mathcal{U} be the filter of all τ -neighbourhoods of 0. For each U in \mathcal{U} let

$$\tilde{U} = \{(x, y) \in S \times S : (x+U) \cap (y+U) \neq \emptyset\}.$$

Then

$$\tilde{\mathcal{U}} = \{\tilde{U} : U \in \mathcal{U}\}$$

is a base for a Hausdorff uniformity, \mathcal{U} , on S .

In fact, it is obvious that $\tilde{\mathcal{U}}$ is a filterbase on $S \times S$, each of whose members contains the diagonal of $S \times S$. If $U \in \mathcal{U}$, let $V \in \mathcal{U}$ be such that $V + V \subset U$; this is possible by the continuity of the map $+$ at $(0, 0)$. Then $\tilde{V} \circ \tilde{V} \subset \tilde{U}$. Indeed, let (x_1, x_2) and (x_2, x_3) be in \tilde{V} , i.e., $x_1 + v_1 = x_2 + v_2$ and $x_2 + v_2 = x_3 + v_3$ for some $v_i \in V$, $i = 1, 2$. Then

$x_1+v_1+w_1 = x_2+v_2+w_1 = x_3+w_2+v_2$ and so $x_1+u_1 = x_2+u_2$, where $u_i = v_i+w_i \in U$, $i=1,2$. Thus $(x_1, x_3) \in \tilde{U}$. Since each \tilde{U} is a symmetric subset of $S \times S$, we have thus checked all the conditions for \tilde{U} to be a base of a uniformity. The uniformity \mathcal{U} is Hausdorff: If $x, y \in S$ and $x \neq y$, then since τ is Hausdorff and the map $+$ is continuous, there exists $U \in \mathcal{U}$ such that $(x+U) \cap (y+U) = \emptyset$, i.e., $(x, y) \notin \tilde{U}$.

If $U, V \in \mathcal{U}$ are such that $V+V \subset U$, then $\tilde{V}+\tilde{V} \subset \tilde{U}$, and so $+: S \times S \rightarrow S$ is uniformly continuous under \mathcal{U} . It is also clear that condition 2^0 is fulfilled for \mathcal{U} .

Now let a uniformity \mathcal{U}' on S have the properties 1^0 and 2^0 . We have to prove that $\mathcal{U}' \subset \mathcal{U}$, i.e.,

$$\forall A \in \mathcal{U}', \exists U \in \mathcal{U} : \tilde{U} \subset A.$$

Let $A \in \mathcal{U}'$. Choose $A_1 \in \mathcal{U}'$ so that $A_1 \circ A_1 \subset A$, and then (by 1^0) a symmetric $A_2 \in \mathcal{U}'$ such that $A_2 + A_2 \subset A_1$. By 2^0 , there exists $U \in \mathcal{U}$ such that $U \subset A_2[0] = \{z \in S : (0, z) \in A_2\}$. Suppose $(x, y) \in \tilde{U}$, i.e., $x+u_1 = y+u_2$ for some $u_1, u_2 \in U$. Then (x, x) and $(0, u_1)$ are in A_2 , whence $(x, x+u_1) \in A_1$; similarly, $(y+u_2, y) \in A_1$. Since $x+u_1 = y+u_2$, from $A_1 \circ A_1 \subset A$ we have $(x, y) \in A$.

This completes the proof of the part (a).

Part (b) follows easily from the relation $x+U \subset \tilde{U}[x]$ which holds true for all $x \in S$ and $U \in \mathcal{U}$, and from the definition of s -completeness.

Part (c) now follows by applying the implication $(c) \Rightarrow (a)$ of Theorem 1 to our uniform semigroup (S, \mathcal{U}) , and employing part (b) of the present Theorem. We only note that the cancellation law implies condition (c'') of Theorem 1: If $U \in \mathcal{U}$ and $(x+z, y+z) \in \tilde{U}$, then $(x, y) \in \tilde{U}$.

Application to semigroup-valued measures.
 A set function μ is said to be exhaustive if $\mu(E_n) \rightarrow 0$ for every sequence (E_n) of pairwise disjoint sets from the domain of μ . An assertion of the Brooks-Jewett type is that

a convergent sequence of exhaustive set functions μ_n is uniformly exhaustive. A result of such a type was recently proved in [4] for exhaustive finitely additive measures from a sigma-ring to a uniform semigroup satisfying condition (b) of Theorem 1. Applying the implication $(b) \Rightarrow (a)$ of Theorem 1 we see that this result of [4] is immediately implied by the earlier extension of the Brooks-Jewett theorem to group-valued measures established in [3] (cf. also [1]).

A similar remark concerns the decomposition theorem (3.14) established in [7]. This result asserts the existence of a decomposition of a certain type for an exhaustive finitely additive measure μ from a sigma-ring to a topological semigroup S , under the following hypotheses: S satisfies the assumptions of Theorem 2(c), and the τ -closure of the range of μ is s -complete. Applying Theorem 2(c) we easily derive this result from the decomposition theorem for group-valued measures proved in [2].

REFERENCES

- [1] L. Drewnowski : Equivalence of Brooks-Jewett, Vitali-Hahn-Saks and Nikodym theorems, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astr. Phys. 20(1972) 725-731.
- [2] L. Drewnowski : Decompositions of set functions, Studia Math. 48 (1973) 23-48.
- [3] I. Labuda : Sur quelques généralisations des théorèmes de Nikodym et de Vitali-Hahn-Saks, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astr. Phys. 20(1972) 447-456.
- [4] W. Orlicz, R. Urbanski : A generalization of the Brooks-Jewett theorem, ibid. (to appear).
- [5] M. Sion : A theory of semigroup valued measures, Lecture Notes Math. 355 (1973).

- [6] R. Urbanski : A generalization of the Minkowski-Rådström-Hörmander theorem, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astr. Phys. 24 (1976) 709-715.
- [7] R. Urbanski : Decompositions of set functions with values in a topological semigroup, Studia Math. 61 (1977) 115-125.

INSTITUTE OF MATHEMATICS, A. MICKIEWICZ UNIVERSITY, POZNAN

Received November 23, 1979.