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SEQUENCES OF CONTRACTIONS
AND RANDOM FIXED POINT THEOREMS IN DYNAMIC PROGRAMMING

In this paper we consider a non-stationary disocounted dy-
namic programming model with a random parameter, We associate
with this model a backward sequence of decision problems with
inoreasing planning horizon, and study the asymptotioc beha-
viour of optimal rewards, In this analysis we use some results
on multifunctions and sequences of contractions, and apply a
random analogue of the Banach fixed point theorem, Similar
problems were investigated by Gapar [3], and we generalize
his results,

1. Preliminaries

Throughout this seotion (X,d) is a metric space, and
{(a,U, P) a complete probability space. A function f : n —X
is measurable if for any Borel set Bc X, £ ' (B)e U. By
C(X) we denote the Banach space of all real-valued bounded
continuous functions on X with the sup norm. A mapping
g ¢+ X—X is called a k-contractioh, where O0<k<1, if
for every x,ye X, dlg(x),ag(y))<kd(x,y).

Let (gi) be a sequence of functions gy ¢ X— X such
that 84 is a ki-contraction. If X 1is complete, then each

g4 has a unique fixed point aje Denote k := sup ki‘
’ ieN
The following theorem is a generalization of a result of

Gapar ([3], Theorem 1).
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2 A,Nowak

Theoren 1.1, Suppose X 1is complete, the sequen-
ce (g;) converges pointwise to g, and k<1, Then the se-
quence (ai) converges to a, the unique fixed point of g,
Moreover, for any X, € X,

i

lim gi(gi_1(...g1 (xo)ono)) 8,

i—»oo

Proof. By ([2], pp.6-7), lim ay
and denote 1—ee

a., PFix X, € X

Xi HE gi(gi_1(...g1(xo)...)), i=1,2,coo
b := lim sup d(xi,a).
~» 0O

We have
d(x;,a) = dlgg(x, _,),a) < dlgylx;_4),85(a)) +d(g la),ak
<kd(x;_q,a) + dlgsla),gla)).

This implies b<kb and the boundness of the sequence

(d(x;,a)). Hence b = 0, which is equivalent to 1lim x; =a.
1 —+oo

A function F :ax X — X 1s a random contraction if for
any xeX, F(e,x) is measurable, and P-almost surely F(w,s)
is a k(w)-contraction, where k : :1—-[0, 1) 1is a measurable
function. A measurable mapping £ : o — X 1is called a ran-
dom fixed voint of F if Flw,f{w)) = f{w) a.s.

We will use the following random analogue of the Banach
fixed point theorem:

Theorem 1.2 (see [5], Theorem 5}, ILet X be
a Polish space (i.e. a separable complete metric space), and
F taoxX —X a random contraction. Then there exists a unigue
random fixed point f of F; that is, if f 1is another
fixed point, then f(w) = flw) a.s.

The following lemma is very useful:
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Sequences of contractions 3

Lemma 1,3 (see [4], Lemma 165 [8], Prop.4.2).
(1) If £ : o — C(X) 4is measurable, then the funotion
g :axX— R defined by glw,x) := f{w)(x) is measurable
inw.,

(11) If X 4is compact, and g :axX— R is measurable
in « and continuous in x, then the funotion f : o — C(X)
given by f{w)} := glw,*} is measurable.

A multifunction ¢ from Y do X, where Y 'isz an ar-
bitrary set, is a funetion defined on ¥, whose values are
ncn-empty subsets of X, A multifunction ¢ is called bound-
ed (closed, compact)-valued if ¢ (y) is bounded (closed, com=
paot) for all ye Y, The family of all nonempty closed bound-
ed subsets of X oan be considered as a metrio space, with
the Hausdorff metric D induced by d. Thus, if Y is a
topological space, then the continuity of a closed bounded-va-
lued multifunction ¢ from Y +to X is well defined,

Theorem 1.4, {see [1], p.122), Let ¢ be a mul-
tifunction from Y to X, and u : ¥YxX—R, If ¢ 1is
compact-valued and continuous, and u is continuous, then
the function v : Y — R defined by

(1.1) viy) := su? uly,x)
xeq(y)
is continuous.

Theorem 1.5 let Y be a compaot meiric spaoce,
(wi) a sequence of compact-valued and continuous multifuno-
tions from Y to X, and (ui) a sequenoce of continuous
functions u; : YxX-—=R, Define a new sequence (vi) of
functions vyt Y— R Dby

vil(y) ¢=  sn ug (y,x).
If the sequence (¢i) is uniformly convergent to a compact-va=-
lued multifunction ¢, i.es 1im D(9;(y),9(y)) = 0O uniformly

i—=oo
on ¥, and (u;) is uniformly oonvergent to u, then the
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4 A.Nowak

sequence (vi) is uniformly convergent to the funoction v
defined by (1.1).
Proof. For any Y€Y we have

(1.2) v(y) =vi(3N<lvly) - su? u{y,x)! +
XG(Pi y)

+ xL;ﬁy) u(y,x) jri(y)l.
We shall prove that both terms on the right hand side of this
inequality are uniformly convergent to O,

Note that the multifunction ¢ is continuous, as the
uniform limit of continuous multifunctions, We shall show
that its graph

G := {(y,x)e YxX 3 xeqa(y)}

is compact. Since ¢ 1is gontinuous and compagt-valued, G is
closed and the set

oY) 1= U oly)
yeY
is oompact (see [1], pps116, 118). Thus G is compact, as a
closed subset of Yx ¢(Y).
Now we shall prove that for any € > 0 there exists n(e)
such that for all i>n(é), yeY,

(1.3] Iv(y) - su? ul{y,x)I<eé,

xXeqy y)
Since u is uniformly oontinuous on G, there exists J >0
such that d(x,x')< 8§ implies lu{y,x) - uly,x’ )< € for
all yeY, x, x'¢ ¢{y). By the uniform convergence of (9 ),
there is n  suoh that for all i>ng, ye Y, Dl¢;(y},vly))<d.
Hence, for any i>n_, yeY and xe ¢(y) there exists
x'e ¢;(y) suca that d{x,x')< 8., For such y, x and x’
we have uly,x) - uly,x’)1<e, and consequently,
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Sequences of contractions 5

(1.4) viy) < su? uly,x) + €.
Xeqy y)

Similary, for any i>n,, y€Y and xe <pi(y) there is
x'€ ¢(y) such that d(x,x')<8. This implies

su? uly,x)<vly) + €.

xeq;(y)

This inequality together with (1.4) give (1.3), where n(c) =n,.
For any yeY,

| su uly,x) - vy(3)1 € sup luly,x) - u,(y,x)l.
xe<pi?y) 1 XGCPi?N) 1

Since (ui) is uniformly convergent to u, the right hand
side of the last inequality uniformly converges to O on Y,
This completes the proof.

A multifunction ¢ from o to X is measurable if for
any open BCX, {we.o.:cp(w)nB £ ¢}eU.. A mapping f: o —X
is a measureble selector of ¢ , if f 1s measurable and for
any we o, flole ¢lw).

Theorem 1.6 (see [7], Prope1). ILet X be a Po-
lish space, and ¢, ¢; (i=1,2,...) closed bounded~valued mul-
tifunctions from n to X. If ¢; are measurable and
.lj.;noD(cpi(w),cp(w)) =0 a.8., then ¢ is measurable.

' Theorem 1,7 (c.fe [9], Theorem 9.1). ILet X

be a Polish space, ¢ a measurable compact-valued multifunction
from n to X, u a real-valued function defined on Qx X
such that for any xeX, u(e,x) is measurable, and for almost
all wen, u{w,*) is continuous., Then the function

v{w) := su ulw,x), wea,
xeglw)
is measurable.
Remark. For the sake of simplicity we do not gi-
ve the most general formulations of the theorems of this sec-
tion.
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6 A,Nowak

2. Dynamic programming model

We study a dynamic programming model (S,A,(qi),(Ti),(ri),
(ﬁi)), where S, A are non-empty sets, ¢; is a multifunc-
tion from axS to A, Ti maps QxSxA into S, Ty is a real-
-valued function defined on axSxA, and P, : o — (o, 1)
for ieN,

We interpret S as the set of states of some controlled

system, A as the set of actions, and o as the set of ran-

dom perametrs (states of nature)., By s; and a; we denote
the state of the system and the action performed i steps
backward from the end of the planning horizon. ¢,;f{w,s;) 1is
interpreted as the set of all admissible actions at this step,
when the state of nature is w, The transifion function T,
is the deterministic law of motion of the system between time
i and i~1. Fineally, T is interpreted as a‘ggygggAgggg:
tion, and f; as a discount factor at the i-th step before
the end of the planning horizon.

We associate with our dynamic programming model a sequence
nggggi§32£\££32;3g§_with increasing planning horizon. Now we
desoribe the decision problem with the horizon n,

We start to control our system at {time 'n, when it is in
a state Spe We assume that the random parameter w 1is known
before the decision making. We observe 8, and take an actlon
anecpn(w,sn), receive a reward rn(w,sn,an), and the system
moves to a new state S .1 = Tn(w,sn,an), and so on until
after n-1 of these steps we observe s,, take an action
84€ 9,4(w,84), receive v (w,sy,a;) and then the process
stops. The reward of one unit at time i-1 1is worth only
ﬁi(w) at time 1, Our total discounted reward is given by

Rnko,sn,an,an_1,...,a1)=rn(w,sn,an)+ﬁn(w)(rn_1&»,sn_1,an_1) +

+ jZ)n_1 (w)(rn_Q(w'Sn_z,&n-Z)'l' see + /Sz(w)r‘] ((‘*)'51 ’a»] ) )l.t)).

We are going to maximize this function for every we a, s,€ S
by the appropriate choice of (an,an_1,...,a1). The optimal
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Egﬂg;é\iﬁggﬁiggﬂvn corresponding to the decision problem with
forizon n is defined by

Vn(w,s) = Sun Rn(w,s,an,a ,000’81)’ WELD ses,

n-1
where supremum is taken over 3all ssguences (an,an_1,...,a1)
such that a;eg,(w,84) for i =n,n-1,...,1, and s, := s,
Si"1 = Ti(w’si’ai).

The functions (Rn) satisfy the equations

Rn(mvs '8 ""'a1) = rn(wtsnvan)"'ﬁ!(u)Rn_,!(ulTn(w’snyan)-an_,jo---131)

n-n

for nekN, where R0 s= 0, It follows from these relations
that the optimal reward functious (Vn) satisfy the optimali-
%y _equations

(2.1} Vn(m,s) = aewiag,s) (rn&a,s,a)+ﬁn&uivn_1(w,Tn(w,s,a))),

vV, 3= 0, wea, se€sS, nel,

3+ Asymptotic behaviour of Vn
For the mein result of this paper we shall assume:

Al. (Q,U,P) is a complete probability space.

A2, 8 1is a compact metric space, and A 1is a separable me=-
tric space.

A3, Multifunctions (wi) are compact~-valued, measurable in o
and continuous in s,

A4, Transition functions (T;) and rewards (r;) are measurable
in « and continuous in (s,a).

A5, Discount factors (ﬁi) are measurable functions,

A6, Tor almost all weQ we have:
a) the segquence (@i{w,°)) is wniformly convergent on S

to a compact-valued multifunction ¢ from xS to Aj;
b} the sequerces (T;{w,*;+}) and (r {w,*,*)) are uniformly
convergant on SxA to functions T ¢ axSxi — 8 and

¢ Qx8x4 -+ R, respecliively:
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8 A.Nowek

¢) lim B lw) = plw);

i+
d) kiw) &= sup p,(w) < 1,
ieN
Por uecC(S) we define

lule) = o (vy (08,8048 @)ulty (0,5,a) ),

Lw,u)(s) := sup (r(w,s,a)+!5(w)u(m(w,s,a))),
aeglw,s)

wen, sesS, ieN,

Lemma 3e1s If we assume A1-A5, then for any ieN,
Li is a random contraction on C(S), If we additionally assu-
me A6, then L 1is a rendom contraction on C(S).

Proof. Por fixed ieN and ueC(S) we denote

viw,s8,a) := ri(w,s,a) + ﬁi(w)u(Ti(w,s,a)),

wlw,s) := sup v(iw,s,a), wen, seS, ac€A,
aeg, (w,s)

The function v 1is measurable in w, and continuous in
(s,a)s From Theorems 1.4 and 1,7 we conclude that for any
wen, wlw,*)e C(S), and for eny s€S, wl(e,s8) 1is measurable,
In virtue of Lemma 1,3(i), the operator I, : axC(s) — C(S)

is measurable in 2 For any u1,uzeC(S) and se€ S we have

“-‘1(“'“1 )(5 )'Li(wvuz )(5 )|<ﬂ1(w).ae¢su(§ s |'u1(Ti(co,s,a))-uz('l‘i(w,s,a))k
1 1 ]

YA u,]-uzll.

Hence I;(w,*) is a p,(w)-contraction,

¥ow we consider the operator L. By Theorem 1.6, the
multifunction ¢ 1is measurable in w . For almost all wea ,
¢{w,») is continuous, as the uniform 1limit of continuous
multifunctions, By the same argument, T and r are measu-
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Sequences of contractions 9

rable in w, and continuous in (s,a) for almost all w . It
is obvious, that 3 is measurable, and f3(w)<1 a.s. The
rest of the proof is the same as for the operator L,, and
we omit it,

By Theorem 1,2, each operator Li has a unique rendom fi-
xed point f. : a —= ¢(s). Similary, L has a unique random
fixed point f : o — C(S), We associate with these fixed

points functions V, v; :ax8 — R defined by
V((A-),S) = f(w)(s),
Vilw,8) t= £y(w)(s), deN.

The following theorem interrelates the functions Vn' V;
and V. ’
Theorem 3.2. (c.f. [3], Theorem 2). 4ssume
A1-A6, For almost all weaq,

*
lim V (0,8) = 1im V (0,s) = V(o,s),
n --oo n—oo

uniformly on S,

Prootf, There exists UeWU with P(U) = 1 such
that for €11 weU the following conditions are satisfied:
(1) ¢plwy*) — ¢lw,») uniformly on S,

(11) T (w,ey*) — Tlw,*,+) and r (w,*,*) —rlw,+,*) uni-
formly on SxA,

(ii1) B (w) — plw) and klw) <1,

{iv} for any neN, s€ S,

(3.1) V;(w.s) = Ln(u,V;(w,-))(s), V{w,s) = Llw,V(w,*))(s).

By use of the operators (Ln), we can rewrite the optimality
equations (2.1) in the form

(3.2) Vo (@,8) = I(0,V, ,(,*))(s), neN,
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10 so.Nowak

It can be compared with the equations (3.1) satisfied by the
functions (V;).

TPix weU for the rest of the proof, It follows from
(3.2) that

Voloys) = Dylo,Ly qlwyees,Iylo,V ))eead(s), nel,

In order to apply Theorem 1.1, we prove that

(3.3) lim L (w,u) = Li{w,u)

n —oo
for uec(S), It is not difficult +to see that for any
uecC(s),

roloyey) + pplolull (wyey0)) — rlo,e,*) + BlwlulTlo,=,)),

uniformly on SxA, Thus Theorem 1.5 implies {3.3). By Theo-
rem 1.1, the sequences (V;&o,°)) and (V (w,+)) are conver-
gent to V({w,*) in C(S)., This completes the proof.
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