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SEQUENCES OF CONTRACTIONS 
AND RANDOM FIXED POINT THEOREMS IN DYNAMIC PROGRAMMING 

In t h i s paper we cons ide r a n o n - s t a t i o n a r y discounted dy-
namic programming model wi th a random parameter . We a s s o c i a t e 
wi th t h i s model a backward sequence of d e c i s i o n problems wi th 
i n c r e a s i n g planning h o r i z o n , and study the asymptotio beha-
v iour of optimal rewards . I n t h i s a n a l y s i s we use some r e s u l t s 
on m u l t i f u n c t i o n s and sequences of c o n t r a c t i o n s , and apply a 
random analogue of the Banach f i x e d point theorem. S i m i l a r 
problems were i n v e s t i g a t e d by Qapar [ 3 ] , and we g e n e r a l i z e 
h i s r e s u l t s . 

1. P r e l i m i n a r i e s 
Throughout t h i s s e o t i o n (X,d) i s a met r ic space , and 

( n , K , P) a complete p r o b a b i l i t y space . A f u n c t i o n f : n -—X 
i s measurable i f f o r any Borel s e t Be X, f (B)e U . By 
C(X) we denote the Banaoh space of a l l r e a l - v a l u e d bounded 
cont inuous f u n c t i o n s on X wi th the sup norm. A mapping 
g s X —- X i s c a l l e d a k^contraoj t ion, where 0 < k < 1, i f 
f o r every x , y e X , d ( g ( x ) , g ( y ) ) < k d ( x , y ) . 

Let (g^) be a sequence of f u n c t i o n s g^ : X—-X such 
t h a t g^ i s a k ^ - c o n t r a c t i o n , I f X i s complete , then each 
g. has a unique f i xed point a . . Denote k := sup k^. 

1 1 ieN 
The fo l lowing theorem i s a g e n e r a l i z a t i o n of a r e s u l t of 

<?apar ( [ 3 ] , Theorem 1 ) . 
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2 A.Nowak 

T h e o r e m 1.1 . Suppose X i s complete, the sequen-
ce (gj^) converges pointwise to g , and k < 1 . Then the s e -
quence ( a i ) converges to a , the unique f i x ed point of g . 
Moreover, f o r any XQG X, 

^lim gi(&i_1(...g1(x0)...)) a a . 

P r o o f . By { [2] , p p . 6 - 7 ) , l im a, = a . F ix x e X 
j X o 

and denote 1 — 00 

s= (•••g- j ( x 0 ) . . . ) ) , i = 1 , 2 , . . . 

b := l im sup d ( x . , a ) , 
i—00 1 

We have 

d i x ^ a ) = d f g ^ x ^ ) , a ) < d ( g ^ X j ^ ) » g i ( a ) ) + d ( g i ( a ) , a ) < 

< k d ( x i - 1 , a ) + d i g ^ a j . g i a ) ) . 

This impl ies b < kb and the boundness of the sequenoe 
( d f x ^ . a ) ) . Hence b = 0, which i s equ iva lent to l im x. = a . 

i —00 
A func t ion F : n x X —1- X i s a rand^m^c^ntraotiori i f f o r 

any x e X , F ( * , x ) i s measurable, and P-almost sure ly F ( w , « ) 
i s a k (co ) -contract ion, where k : n — - [ 0 , 1) i s a measurable 
f unc t i on . A measurable mapping f : a — - X i s c a l l ed a r a n -
dom^^ced^ooint of F i f F ( w , f { « ) ) = f ( c j ) a . s . 

We w i l l use the f o l l o w i n g random analogue of the Banach 
f i x ed point theorem: 

T h e o r e m 1.2 (see [ 5 ] , Theorem 5 ) . Let X be 
a Po l i sh space ( i . e . a separab le complete metric s pace ) , and 
F s nxX — - X a random cont rac t ion . Then there e x i s t s a unique 
random f i x e d point f of F§ that i s , i f f i s another 
f i x e d point , then f ( u ) = f ( c j ) a . s . 

The f o l l o w i n g lemma i s very u s e f u l : 
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Sequences of contraptions 2 

L e m m a 1.3 (see [4] , Lemma 16} [8] , Prop,4 .2) . 
( i ) I f f s .q —- C(X) i s measurable, then the function 
g s nxX—- R defined by g(to,x) := f{co)(x) is measurable 
in « . 

( i i ) I f X is oompact, and g j^ixX—-R i s measurable 
in w and continuous in x , then the funotion f : ii —- C(X) 
given by f(co) := g(u>,*) is measurable. 

A multifunction y> from Y do X, where Y ia an a r -
bitrary s e t , is a function defined on Y, whose values are 
non-empty subsets of X, A multifunction tf i s called bound_-
ed. OtiSSSil» -̂ valjJiejd i f if (y) is bounded (closed, oom-
pact) for a l l y e Y . The family of a l l nonempty closed bound-
ed subsets of X oan be considered as a metrio space, with 
the Hausdorff metric D induced by d. Thus, i f Y is a 
topological space, then the continuity of a closed bounded-va-
lued multifunction q> from Y to X is well defined. 

T h e o r e m 1 . 4 . (see [l] , p .122) . Let q> be a mul-
tifunction from Y to X, and u : Y x X — R. I f <f i s 
compaot-valued and continuous, and u is continuous, then 
the function v : Y —- R defined by 

i s continuous. 
T h e o r e m 1 .5 . .Let Y be a compaot metric spaoe, 

(cp )̂ a sequence of compact-valued and continuous multif unc-
tions from Y to X, and (u^) a sequenoe of continuous 
functions û  : Y x X — • R. Define a new sequence (v^) of 
functions v. : Y — R by 

I f the sequence ) i s uniformly convergent to a compact-va-
lued multifunction i . e . lim D(iMy ) (y)) = 0 uniformly 

i--oo 
on Y, and (u^) is uniformly convergent to u, then the 

(1.1) 

v ^ y ) sup 
x e ^ I y 

u ^ y . x ) . 
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4 A.Nowak 

sequence (v^) i s uniformly convergent to the funotion v 
defined by ( 1 . 1 ) . 

P r o o f . For any y e Y we have 

( 1 . 2 ) lv(y) - Vjfy )l < I v(y) - sup u(y,x)l + 
xetpjlj) 

+ I sup u(y,x) - v ± ( y ) I . 
xecf^iy) 

We sha l l prove that both terms on the r ight hand side of t h i s 
inequality are uniformly convergent to 0 . 

Note that the multifunction cp i s continuous, as the 
uniform l imit of continuous multifunctions. We s h a l l show 
that i t s graph 

i s compact. Since cp i s continuous and compact-valued, G i s 
closed and the set 

i s oompact (see [l] , pp.116, 118) . Thus G i s oompaot, as a 
closed subset of Yxcp(Y). 

Wow we shal l prove that f o r any e > 0 there e x i s t s n(fi) 
such that f o r a l l i > n ( £ ) , y e Y, 

Since u i s uniformly continuous on G, there e x i s t s 6 > 0 
such that d ( x , x ' X < 5 implies lu(y ,x) - u ( y , x ' ) l < £ f o r 
a l l y e Y , x , x ' e ^ ( y ) . By the uniform convergence of (4^) , 
there i s nQ suoh that for a l l yeY, Dftp^y) ,4>(y) )< 6. 
Hence, for any i > n Q , y e Y and xecp(y) there e x i s t s 
x'ecp^ly) such that d ( x , x ' ) < < 5 . For such y , x and x ' 
we have u(y,x) - u ( y , x ' K & , and consequently, 

q>(Y) U <p(y) 
yeY 

(1 .3 / 
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SequanoeB of oontraotions 5 

(1 .4 ) v ( y ) < sup u (y ,x ) + £ . 
xecp^y) 

Similary, f o r any i > n 0 , y e Y and x e ^ l y ) there i s 
x ' e cp ( y ) such that d ( x , x ' ) < 5 . This implies 

sup u(y ,x ) < v ( y ) + e, 
x e ^ i y ) 

This inequality together with (1 .4 ) g ive ( 1 . 3 ) , where n ( e ) s n • 
For any y e Y, 

I sup u(y ,x ) - v . ( y ) I < sup I u (y ,x ) - u . ( y , x ) l . 
xecp^iy) x e ^ l y ) 

Sinoe (u^) i s uniformly convergent to u, the r ight hand 
side of the last inequality uniformly converges to 0 on Y. 
This completes the proof. 

A multi function cp from xi to X i s measurable i f f o r 
any open B c X, jo e a : cp ( o ) n B 4 0 j e l l , A mapping f t fl-I 
i s a measurable se lector of ip , i f f i s measurable and f o r 
any coexi, f (CJ ) e cp ( « ) . 

T h e o r e m 1.6 (see [ ? ] , Prop.1) . Let X be a Po-
l i s h space, and <f, cp̂  ( i = 1 , 2 , . . . ) closed bounded-valued mul-
t i funct ions from a to X. I f cp̂  are measurable and 
lim D(tf. (cj) ,tf(co)) = 0 a . s . , then cp i s measurable. 

i— cw 
T h e o r e m 1.7 ( c . f . [9] , Theorem 9 .1 ) . Let X 

be a Pol ish space, tp a measurable compact-valued multifunction 
from A to X, u a real-valued function defined on 
such that f o r any x e X , u ( » , x ) is measurable, and f o r almost 
a l l to e n , U(CJ,*) i s continuous. Then the function 

v (CO) s u p U ( C J , X ) , O e rt , 
xecptcj) 

i s measurable. 
fl e ra a r k . For the sake of s impl ic i ty we do not g i -

ve the most general formulations of the theorems of this seo-
t ion. 
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6 A.Nowak 

2. Dynamic programming model 
We study a dxnamd£_^o^i^mming_jiode^ (S,A, (cf̂ ), (Ti), (r^), 

(/3j_))» where S, A are non-empty sets, ^ is a multifunc-
tion from ftxS to A, T^ maps nxSxA into S, r^ is a real-
-valued funotion defined on nxSxA, and : n — - [o, 1) 
for i e N. 

We interpret S as the set^of^states^ of some controlled 
system, A as the j3eĴ j3£jictions_, and .n as the set of ran-
dom parametrs (states of nature). By s. and a. we denote 
the state of the system and the action performed i steps 
backward from the end of the planning horizon. cp̂ (co,ŝ ) is 
interpreted as the set_ of_a_l 1 admisBible^actions at this step, 
when the state of nature is u , The transitd^n^func^ Tj_ 
is the deterministic law of motion of the system between time 
i and i~1. Finally, r^ is interpreted as a ̂ reward^func^-
tion, and jî  as a discount^factor at the i-th step before 
the end of the planning horizon. 

We associate with our dynamic programming model a sequence 
ofj3e£isoon^j)i^bl^ increasing planning horizon. Now we 
desoribe the decision problem with the horizon n. 

We start to control our system at time n, when it is in 
a state s^. V/e assume that the random parameter oo is known 
before the decision making. V/e observe s n and take an action 
a ne q>n(co,sn), receive a reward r

n(C0»s
n»a

nJ» a n d system 
moves to a new state s

n-i = ^n^CJ'sn'an^' an<^ s o o n 

after n-1 of these steps we observe s.] , take an action 
a^ e cp̂  (w,s.| ), receive r-j ) and then the process 
stops. The reward of one unit at time i-1 is worth only 
/3̂ (co) at time i. Our is given by 

Rn(w,sn,an,an_1,...,a1)=rn{co,an,an)+/3n(^)(rn_1(co,sn_1,an_1) + 

+ ̂ n-1 (tJ,^rn-2(w»sn-2'Gn-2,+ + ( u ) r 1 (w,Sl ,a1 ))...)). 

We are going to maximize this function for every co 6 , sfleS 
by the appropriate choice of (a

n»a
n_i • • • • »ai ' • -"-h0 optimaJ 
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Sequences of contractions 7 

reward function corresponding to the decision problem with 
horizon n i s defined by 

Vn(co,s) = sup E ( u , s , a ,a 1 , . . . t a 1 ) , toeii , s e S , 

v;here supremum is taken over a l l sequences ( a n » a n _ i»• • • »a-j ) 
such that a^e for i = n , n - 1 , . . . , 1 , and s^ := s , 
s i - 1 J = T i ( w » a i » a i J « 

The functions (R ) sa t i s fy the equations 

V u . W " ' a 1 ) = r ni < J ' s a' a a ) + Ai(" ) \-^" ' T n^' 8 n» a D ) ' a n-1 a 1 } 

for n e K . where R„ := 0 . I t follows from these re la t ions ' o 
that the optimal reward functions (V ) sa t i s fy the opt^imali^-
ty^eqjjatijjns 

(2 .1 ) V (cots) = sup fr (o,sfa)+/3 (cj ATn_-, (to.T ( o , s , a ) ) ) , 
aecpn(co,s) * 

VQ := 0 , weri, s e S , neN, 

3. Asymptotic behaviour of Vn 

For the main resul t of th i s paper we shal l assumes 
A1. ( n , U t p ) i s a complete probability space. 
A2. S i s a compact metric space, and A is a separable me-

t r i c space. 
A3. Multifunctions (cp )̂ are compact-valued, measurable in co 

and continuous in s . 
A4. Transition functions (T^J and rewards (r^) are measurable 

in « and continuous in ( s , a j . 
A5. Discount factors are measurable functions. 
A6. For almost a l l uesi we have: 

a) the sequence (<p^(w,*J) i s uniformly convergent on S 
to a compact-valued multifunction from iixS to A; 

b) the sequences ( l . ( u , ' , ' i ) and (r^ («j, •, • ) ) are uniformly 
convergent on SxA to functions T : nxSxA =—- S, and 
r j QxSxA R, respectively?. 
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8 A.Nowak 

c) lim /3.(u) = (S{m}| 
i—00 

d) k(c0) := sup < 1. 
ieN 1 

For ueC(S) we def ine 

L ^ c ^ u M s ) := sup ( r . (co,s,a)+/3. (w)u(T.(u , s , a ) ) ) , 
a e ^ i u . s ) v 

L(co,u)(s) := sup (r{oo,s,a)+j3(Go)u{T(co,s,a))) , 
ae(p{co,s) x 

u e n , 36 S, i e N . 

L e m m a 3 .1 . I f we assume A1-A5, then f o r any i e N , 
L^ i s a random con t rac t ion on C(S). I f we add i t i ona l l y a s s u -
me A6, then L i s a random con t rac t ion on C(S). 

P r o o f . For f ixed i e N and ueC(S) we denote 

v (w,s ,a ) := ^ ( 0 , 3 , 8 ) + f i i ( u ) u ( T i ( u , 8 , a ) ) , 

w(w,s) := sup v ( c j , s , a ) , o e n , s e S , a e A . 
aecpn(co,s) 

The f u n c t i o n v i s measurable in go , and continuous in 
( s , a ) . From Theorems 1.4 and 1.7 we conclude tha t f o r any 
wen, w(co,*)e C(S), and f o r any s e S , w(*,s ) i s measurable. 
In v i r t u e of Lemma 1 . 3 ( i ) , the operator 1 nxC(S) —• C(S) 
i s measurable in u , For any u ^ u ^ e C f S ) and s e S we have 

)(s)-L (w,u )(s)k|3 (m). sup I u (T (io,s,a))-u2(T.(io,6,a;j|< 
aeifjfco.s) 

< ̂ (w) II V -̂Ugll. 

Hence L-^co,*) i s a / ^ ( u j - c o n t r a c t i o n . 
Now we consider the operator L. By Theorem 1 .6 , the 

mul t i func t ion cp i s measurable i n w . For almost a l l cjea , 
ip(<j,.) i s continuous, as the uniform l im i t of continuous 
mu l t i f unc t i ons . By the same argument, T and r are measu-
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Sequences of contraptions 9 

rable in u , and continuous in ( s f a ) for almost a l l cj , I t 
i s obvious, that /3 i s measurable, and /2>(w) < 1 a . s . The 
res t of the proof i s the same as for the operator Lj,, and 
we omit i t . 

By Theorem 1.2, each operator L^ has a unique random f i -
xed point f j ! xi — C(S). Similary, L has a unique random 
fixed point f : n —>- C(S). We associate with these fixed 
points functions V, V^ : n x S —» R defined by 

V(co,s) := f ( « ) ( s ) , 

Vi(w,s) f i ( w ) ( s ) , i e N . 

The following theorem interre la tes the functions V , V* n n 
and V. 

T h e o r e m 3.2. ( c . f . [3], Theorem 2) . Assume 
A1-A6, For almost a l l coea, 

lim Vn(cj,s) = lim V*(u,s ) = V(u , s ) , 
n -»00 n —00 

uniformly on S. 
P r o o f , There e x i s t s UeU with P(U) = 1 such 

that for a l l coeU the following conditions are s a t i s f i e d : 

( i ) cpn(u,»)—»q>(cj f») uniformly on S, 
( i i ) T n ( o , • , • ) —»- T(cj , • , • ) and r (w, • , • ) —~ r(w, • , • ) uni-

formly on SxA, 
( i i i ) /3n(u) — /3(cj) and k ( c j )<1 , 
( iv) for any ne N, s e S , 

(3.1) V*{u,s) = Ln (uFV*(u t . ) ) { s ) , V(cj,s) L(wTV(w,* ) ) ( s ) . 

By use of the operators (L n ) , we can rewrite the optimality 
equations (2.1) in the form 

(3.2) Vn(w,s) = L n {£o,V n - 1 {w, ' ) ) {8) t neN. 
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10 A.Nowak 

I t can be compared with the equations (3.1 } s a t i s f i e d by the 
functions (V^). 

F ix ueU f o r the r e s t of the proof. I t follows from 
( 3 . 2 ) that 

V n (w,s) = L n (u ,L n _ 1 ( u , . . . (w,V Q ) ) . . . ) (s ) , ne E, 

In order to apply Theorem 1 . 1 , we prove that 

( 3 . 3 ) lim L (cj,u) = L(co,u) 
n -»w 

f o r u e C ( S ) . I t i s not d i f f i c u l t to see that for any 
ue C(S) , 

r n ( " » ' » * J + / 3 n ( c j ) u f T n ( c o , - ) ) — r (co, •, * ) + fi (co) u (T (w, •, • ) ) , 

uniformly on SxA. Thus Theorem 1.5 implies ( 3 . 3 ) . By Theo-
rem 1 . 1 , the sequences ( V * ( « t * ) ) and (V^co,«)) are conver-
gent to V(co,») in C(S) . This completes the proof. 
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