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ON A NONLINEAR EQUATION OF THE TYPE
OF NONSTATIONARY FILTRATION

In this paper there is presented a method of separation
of variables for some nonlinear parabolioc equation of the ty-
pe of nonstationary filtration. By this method we find the so-
lution from which it follows that a support of this solutfion
expands with the growth of the time, In the case when the non=-
linear squation reduces to a linear equation, the support of
the solution does not expand at all, this fact is well~known,

Consider the flow of a gas through a homogeneous porous
medium, The density u = ul(r,t) of the gas in the case of
radial or spherical symmetry satisfies the nonlinear parabo-
lic equation

(1) g = r'k[rk(um)r]r,

where t and 1 denote respeotively time and space variable,
the constant m 1is positive and k+1 is the dimension of
the considered euclidean space.

Equation (1) is the mathematical description of several
physical phenomena as for example: heat transfer in politro=
pic medium, bomb blast, burst of radiation, seepage of liquids
into porous bodies (see [3]). For that reason equation (1) is
called the equation of nonstationary filtration.

We shall look for the exact solution of (1) by the method
of separation of variables.
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M. Wyskup

(2) u(r,t) = R{z)T(t), =z = r/S(t),

where the functions R(z), T(t), S(t) are different from con-
stants, Substituting (2) into (1) we get

(3) Tm-z-k[zk(nm)']l = [ms1’ - 218’87 s,

where a prime denotes differentiation with respect to argu-
ment, If we assume tnat

(4) 78’ = ~pST', = const., >0,

then the right side of (3) will take the form

521’ [R + paR’]
and equation (3) becomes
) ! '
2 %[X™)] %

: , = = == const, > O,
R +pzR o

From (4) it follows that

s(t) = mPs),

therefors

{
P -0 1| I S
R + AzR’ T opm¥2p T ¢

If A= 1/{k+1), then

hence

T(t) = [01 4-7,‘0(1;}"!/T
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where ¢4 is an arbitrary positive constant, ¥ =m - %f%
and

27k [k (r)] I
R+zR' /(k+1)

henoce

[zk(Rm)]’ = - l_c?i-‘_1 [(k+‘l)sz + zk+1Rj = - Tc% [(zk”R)}, .

If 1im z5(R®) = 0 then (R®) = - 25 R,
20 +

A second integration yields

2
Xz =
02 eXP = S(k+1) form =1

where 02 is an arbitrary positive constant,
Finally the solution of equation (1) has tze form:
1° for m = 1

R(z) =

{1 \,..,,2 =
uale,t) = 02[51(t}}-\'{+1) expli- L‘—'-—l———-—‘

L 2k )s2(e )]
where S1(t) =1/Cq + ﬁ:t ’
2° for m £ 1
f G for »30(t)
|
(5) u(r,t) = 1
o] =les1) (m=1)x? "
't(t)l‘ K+ C - m=-1i)r-" for OKr< (t)
[ 4 \ "2 2m(k+1)52(%) s

where
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2m(k+1)C
o(t) = S(t)\/%{ﬁ .

From (5) it follows that for m>2

and

lim (r,t) = =0, 1im (r,t) = 0
-9 - r—o* i
and r{i?t) w.(r,t) non exist,

From the obtained result it follows that for m>1 the
support of the function u(r,t) expands with the increasing
of time whereas for mg1 this support is the set (r,t)
€ [0,00)x[0,) and it does not change at all,

It is generally known that the equation (1) for m>1
describes the behaviour of sudden phenomens (for example =~
an explosion) occuring in the diffusion, radiation or filtra-
tion which has according to the experiment the finite speed
of expansion of tais phenomena. Our result attest it,

Now, we shall show that every solution of (1) which sa=-
tisfles some conditions has also such property as (5)e

We shall assume that there exists a classical solution
of (1). By a classiocal solution we understood such a solution
which is continuous and has continuous partial derivatives,

Lemma. Let uy and Uy be bounded and positive
solutions of the equation (1) in a set d; = {e,R)x{0,T] ,
where £ >0, R and T are arbitrary positive constants,
1f on [ ={e}x[0,7] u[e,R]x{0} u{R}x[0,T] the inequality
u1k‘< uzh, is sdtisfied then also

uygu, everywhere in Qp = [0,R]x[0,T].

Proof. Substituting u™ = v into (1) we obtain

(6) mv(m'1)/m[}rr + % vr] =ve, m#,
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Replacing in (6) the function v by \L and next by vy
and subtracting, we see that the difference w = Ve =V,
satisfies the equation

mvgm-1)/merr*_§ Wr] - Wy 4 (m-1)”-1/m[:(v2 | (v2 r]w =0,

where ¥ 18 some value between v, and Voo
Xow we sssgsume that

(7) (met v B (v, ) + £ (v,),]

is bounded in 5;. Iet M be a constant greater than the
absolute value of (7). We assert that w = Ve =¥y <0 If
this is not true, then the function z = we~Mt ig positive
in 5; and satisfies the equation

(8) mvgm 1)/m[:rr +‘% zr] -2 =

~=1/m k ]
[ M+ (m-1)¥ Bva)rr + 3 (v, ]z,
which right eide is negative for 2z > 0., Hence it follows

that the function 2z ocannot attain its minimum in QR' If
it is attained on the boundary " of the set QR then

zlr = we'Mtlr = (v1-v2)|r < 0.

Thus v1<'v2 in 5;, and this 1s equivalent to the inequali-
ty u1s;u2. If we suppose that u, 1is the solution defined
by (5) then
~-1/m['_ + K
(m-1)¥ Volpe + 3 (Voo

-& -
is bounded for r = 0, and for ¢ — 0 we have QR — Qg
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Now we consider the next problem:

r'kl:rk(um)r]r = ug for (r,t)eQp, m>1,

() u(0,t) =9,(t) >0 for te [0,T],
a(R,t) =w,(t) 20 for te [0,T],
u(r,0) =9(r)20 for re [0,R]

and besides that the following compatibility conditions
v4(0) = ¢l0), ¢,(0) =¢(R)

are gatisfied,

Theorem 1, If u=ulr,t) is the solution of
the problem (9) and ¢4(t) =0 for t>t >0, ¢(r)=0 for
r>r, or v, (t)=0 for t>%,20, @(r)=0 for r>ry
then this solution has e finite support i.e. there exists
a set SCQp such that u|g= O,

Proof. If w1>o, 9,20, 9 >0 then also u(r,t)>0
in QR. This fact is well-known from the theory of parabolic
equations, We now denote by v the solution (5) and express
it by the formula

o 1/ (m-1) 5
J for 0<r<C(B+t)

3
A(B+t) [cz - E
(B+t)
vir,t) = s
0 for r »>C{B+t) ,

k+ 2 : ‘s
where & = - alke1)-(k=3] amd A, B, C° are arbitrary positi-

ve constants,
If we choose 4, B, C as follows

v(0,t) = AB‘SCZ/(m‘1’>cp1(t)>o for te [0,T],
2 J1/(m~-1)
{v(R,t) = A(B+t)6 ¢?- R 2} . 29,(t) >0 for te [o,1],
(B+t)
2]1/(m=1)
v(r,0) = AF° [02 -—B%] >¢(r) 20 for re[O,R],
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then from the lemma we have

o<ulr,t)<vir,t) in  Qp,

which means. that u(r,t) has a finite support.
As a corollary we obtain the following theorems.
Theorem 2, The solution of the problem

r¥ [rk(um)r:lr = uy in Qp,
u(0,t) = ¢4(t) >0 for te [0,T7],
ulr,0) = 9(r) 20 for re[0,R],
41'(6) = ¢(0)

hes a finite support if ¢ (r)= 0 for r>r, >0.
Theorem 3., If g(r)=0 for r>r, >0, then
the solution of the Cauchy problem

r K [rk(um)r]r =u, in Q. = [0,00) x [0,T],

u{r,0) =q>(r)>0 for >0

has e finite support i.e. there exists a point Ty such that
for each ue[0,T] alr,t) =0 if r>r.

In paper [1] Je. Graveleau and P, Jamet have investigated
the equation

uy = f(x,t,u)uxx + e.ui,

where a 1is a constant and showed that for a = 0 the fune~-
tion support u(e,t), does not expand at all but for a>0
it expands with a finite speed. From that it follows that a
nonlinear component auﬁ has an influence on the expansion
of the function support ul(e,t).

A, Kalashnikov has investigated in this paper [2] the
equation
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8 M.Wyskup
u = (um)xx, m 22,
u{x,0) = u (x) for x>0
and proved that if uo(x) = 0 in a certain interval a<{x<b
and uo(x)i# 0, then for t>0 a point of discontinuity of
u, can be found, In our case we have the same property.
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