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PROBLEMES EXTREMAUX DANS LES CLASSES DE FONCTIONS
ETOILEES ET CONVEXES DE PLUSIEURS VARIABLES

1. Introduction
Soit D ¢ € un domaine complet de Reinhardt de centre
2z = O, Désignons par H(D) 1la famille des fonctioms holo-
morphes dans D. Soit 2z = (zq,za;...,zn) un point quelcon-
m
que du domaine D et posons z® = Z4 -z22,...,znn,
= (mﬂ’ma"'°’mn)’ lm| = my + My + eee m, m; € No Admettons

ensuite que si re¢ (0,1) est fixé, D, est l'ensemble des

m =

points ze€D tels que %eD.
Définissons sur la classe H(D) 1l'opérateur (cf. [2])

n

(1.1) K(h(z)) = Z 2,0, (2).
k=1 k

L'opérateur gqu'on a introduit par (1.1) sera utilisé pour
définir certaines classes de fonctions holomorphes de plu-
sieurs variables généralisant celles d'une variable discutées
dans [4] - [6:].

2. La classe ¥ (f,D)

Soit B un nombre arbitraire fixé de l'intervalle (0,1>
et désignons par T?([S,D) la sous - classe de H(D) des fonc-
tions P qui satisfont aux conditions

- 287 -



2 RMazur

(2.1) P(z)=1+Z<Z pmz">, Ppe €,

k=1 \|m|=k

(2.2) |P(z) - 1|<p|p(2) + 1],

Si z eCet D est le cercle unité, les conditions (2.1),
(2.2) déterminent la famille P () étudiée dans [3], [5].

rour les fonctions. de la famille ¥ (B,D) nous établirons
les théoremés sulvants:

Théoréme 1. Si Pe?P (,D) et zeD,, ona

(2.3) R << FHEE .

Démonstration. Soit zg (z?l,zg,...,zg)
un point arbitrairement fixé du domaine D.; alors, pour tout

z 2’0 [0}

z
t}et y | &)<, le point }r_o = }-]-:,—1 ,...,;-1:9-) appartient & D.
Considérons la fonction 3 +— ¢(3), ou

[

9) = 2(322), Per(p,D).

Des conditions (2.1) - (2+2) il résulte que ¢eP () et alors
on a, [5],

1 =513l 1 |
WT%! <l (1< 1_:%1_

(2¢4) pour |3]<1.

|
¥l

Posant |}| =T dans (2.4) on obtient (2.3). On vérifie
alsément yue les épalités dans (2.3) ont lieu pour la fonotion
définie par la formule

1+/5-!$1—(z,|+...+zn)

24 P =
(2.5) (2) 1 - /3"-5ﬁ (z,] + eee + zn)
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avec un choix convenable de £, (&= 1), ot 2z, =T,
k = 1,25¢00n¢

Théoréme 2. Sila fonction PeP(pH,D), on a
pour les coefficients de son développement (2.1) la limitation

(2.6) sup | '%;k pmzml < 2By k=1,25000

Démonstration. Soit z, un point arbitrai-
rement fixé du domaine D, Considérons la fonction 3 — ¢(3),
ou

(2.7) @(3) = ( 329y evey F2zp)s  131< T

On peut montrer que Pe?P(p,D) entraine q)e'?([b) et que
l'on a, de plus,

(2.8) 9(3) =1 + i <Z pmzm> }k.

k=1 M\ m}=k

On prouve facilement que ¢ e P(p) si et seulement s'il
existe une fonction holomorphe w, w(0) = 0, lw(3)| <1,
telle que

o(3) = 5o, 5.

En appliquant la méthode de Clunie [1] on trouve sans peine

que si @(3) =1 + §1§+ 5252 F oeee +'f>n§n + 400y On a

(2.9) 1Dyl <28 D= 1925000 o
De (2.8), (2.9) on tire (2.6).

Corollaire. Si PeP(p,D) et si le point
(aj,ass.e9a)eD, a £0, ona
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| > pm|<2_flbf powr k= 1,2y0e.

3. Les classes S*(jb,D) et Sc(ﬁ»,D)
La sous-classe des fonotions de la classe H(D) qui sa=-
tisfont aux conditions

3.1 I%l-1|</5lg%—s%l+1] pour ze€ D,

(3.2) £(0) = 0, f;k(O) = 1y K=1,25000,0

sera désignée par S*(p,D).
Désignons encore par Sc(jb,D) la sous-classe composée des
fonctions g ¢ H(D) qui satisfont aux conditions

00 [SHESR <ol <ol SR | e
(3.4) 5(0) = 0, g, (0 =1 powr k =1,2,ec0m,

ou- K est l'opérateur défini par (1.1).
Si z=3eC et -Dcl est le cercle unité, on a K(£(3))=
= F£7(3), KEEGN) = 3T7(3) + 322" (3) et (3.1) = (3.4)

prennent respectivement la formes:

Gy iR - l<plr g ]

(3.2") £(0) =0, £'(0) =1,
o | g8)- ool 8
(3.4") g(0) =0, g'(0) = 1.

- 290 -



Problémes extrémaux 5

Les conditions (3.1') et (3.2') déterminent la famille
S*(p) des fonctions holomorphes étoilées (cf. [3], [5]),
tandis que les relationms (3.3'), (3.4’) déterminent la famille
Sc(}b) étant un cas particulier d'une classe de fonctions con-
vexes étudiée dans [4].

Théoréme 3. Si1 fe S*(ﬁ,D), la fonction g
définie par la formule

1
g(2) = [ 22y 07" ¢p, zeD,
0

appartient & S°(p,D).
Théoréme 4, 3Si geSc([:},D), la fonction

£(z) = K(g(2)), 2z€D,

appartient a S*(/S,D).
Soit 2.: (11’ 2-2’.-0’ Xn_q), Oil a.i€<-'ﬁ,'ﬁ), i =
= 1525000,0-1, sont des nombres fixés. Césignons par D, r
?

le sous - ensemble du domaine D défini comme 11 suit

S 1A ia .
T TR T ERTIETN

il 12
ou rozsup{|§|:<§,}e 1,...,}e n_1>€D}.

Posons

12 i
@q(3) = <ro§, r y-e 1,...,1‘O ze n—1>

et remarquons yue ¥ — (91(3) représente le cercle [%[<1
sur Dy r* Avec ces notations on a le théoréme suivant.
e id
Théoréme 5. Si fe S*(pD) ot 1 +e |
ese + e D=1 £0, ona

+ eee
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1
i2 12
ro(1 +e 14 ae. te n-1

) £ 0 es ().

Démonstration. Soit fe S*(ﬂ,D) et

1
i1 ixn_n)(f 09 (7)-

q
r0<1 + e + ese + €

¥(3) =

Alors ¢(0) = 0, ¥'(0) =1 et, de plus,

il il
v _ K<£(}r°, jroe 1,..., Frye n-1>)
w(;% - iz

12 ’
f<5r°, jr e LI jroe 1)

dtou on tire, en tenant compte de la définition de la classe
S*(ﬁ,D), la relation suivante

gt - ool g

En vertu de (3.1'), (3.2') on a donc wﬁiS*(ﬁ) et, avec les
notations admises, on obtient la conclusion demandée.

Une démonstration analogue permet d'établir le théoréme
suivant. i1

Théoréme 6, Si ge Sc(ﬁ,D) et 1+e V4.
i
eve + O n-1 £0, ona

1 ) g 0y & 8°(P).
ro<1 +0 1 4eeete n_4>
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Théoréme 7. Si fes*(p,D), 0<P<1, et

f(z) = j;i < :E: ay zm), a, €t

k=1 \|m|=k

on a

IZ a, 2"

ml=k
(3.5) 2:% Ty oy ¥ eee 7L A pour Kk = 2,400,
ou

kﬂk-q’ k = 293,000yPy
(3.6) A

k = )
]I;—(g::szﬁ)pq, k:p‘f’l, p+2,oco,

p étant un nombre de l'intervalle < %f%%, 7%2;) et peN.

Démonstration. Soit un point quelcongue
z, = (zg,zg,...,zg) du domaine D et tel que

o o o
Zg ot 2o+ eee + 2y £ 0.

Considérons la fonction d'une variable complexe % ——= ¢(3),
ou

1 o o o]
Q( ) = f Z Z see Z pouI‘ <1o
3 Z:+Zg+... +Z.::;Jl <?1,}2’ ’}n> I}I

Soit fe S*(ﬁ,D); alors, en vertu de (3.1), (3.2), on a
¢e‘3*(ﬁ,D) et, de plus,

2(3) = 5 ) ! ) :E: < ZZ: %n Zm> 3k'

2y * 2y + eee + Zp ig \|nlak
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De 13, en tenant compte de la limitation des coefficients pow
la classe S*(p) [6], on obtient la conclusion du Théoréme 7.

Corollaire. Si fes (D) et (2°,2°%.00,2%¢€l
2° # 0, on a

| > g

[m|=k

<n|z°|l'k Ak, k=2,3,000,

ou A, est défini par (3.6).
Les Théorémes 4 et 7 entrainent celui qui suit.
Théoréme 8. Si ge Sc(ﬁ,D) et

g(z) =i<z bmzm>, b €€,

k=1 ‘|m|=k
on a
l :E: b_z"
-, m A
(3.7) |ml=k <=

A7 4 a7 IXT
zeD |Z1+22+"‘+Zn k

ou Ak est donné par la formule (3.6). _
Corollaire., Si gescg?),D) et (ZO’ZO’QOO'Z%GD’
z° £0, ona

Z by g% |z°‘l'k A, pour k=2,3,e.0

{m|=k

Théoréme 9. Si fe.S*(ﬂ,D), on'a pour tout

€
z Dr

|21 + Zy toees F zn|

(1 - pr)

|z1 + 22 + ese + 2

(1 +pr)2

al <] £(a)| <

(3.8)
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Cémonstration. Soit un point quelcongue
) _ /.0 0 0 0,.0 0
z € D, tel que 1z, = (21’22""’Zn) e? Zg+Zot eee + 2 £ O,

Considérons la fonction }—¢ (3}), ou

Z
(3.9) w(3) = — 5 r of<%2>, l31<1.

z1 + Z2 + L RN + Zn

On voit aisément gue si fe S*(ﬁ,D), on aye S*(p).
Profitant de la limitation du module d'une fonction dans
la classe S™(p) (cf. [3]) on obtient

13 el
(3.10) —— s |9 () < .
@iz SIS G
Posent | 3| =r dans (3.10) et profitant de (3.9) on obtient

par un simple calcul la conclusicn (3.8). On constate facile~
ment que si l'on choisit convenablement £ (€ = I1) la fonc~
tion 2z —-» f(2), ou

Z,} +‘Za+s o "'Zn

f(z)=, A 51
(1 =€ (zg+atencts )37

eéalise les égaiités dans (3.8).
Corollaire. DPosant n=2 et =1 on re-
trouve le résultat établi dans [2] (théoréme 7).
Théoréme 10. Si ges®(p,D), on a pour tout

€
A Dr

]Z,'+22+...+Zn] !Z,]+Z2+o 'vo+zni

(5°’M) 14T < ]g(z)l < 1_[51\ .

Démonstration, Soit z,e D, avec z, =
o _0 o 0, .0 0
= (zq,zz,...,zn) et Zy+Zotes e 42, # 0. Posons
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NN S
@ = e ol %)

profitant du Théoréme 6 on voit alors que we Sc(/s). Pour le
module d'une fonction de la classe Sc(p) on obtient la li-
mitation suivante, [4],

4 4
T3 p151 <l DI<T 377

et enfin, en tenant compte de la définition de la fonction ¢ ,
la conclusion (3.11).

Corollaire. Danslecasol n=2 et =1
on retrouve le résultat établi dans [2],
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