

Czesław Bagiński

SOME REMARKS ON FINITE p -GROUPS

This paper contains some results concerning finite p -groups. We investigate p -groups of the property W introduced by J.Ambrosiewicz in [2]. We give some results on p -groups of order p^{p+2} and p -groups of exponent p^p .

We start with the definition of the property W for p -groups.

D e f i n i t i o n (J.Ambrosiewicz). We shall say that a p -group G has the property W if $K_n \neq \emptyset$ implies $K_n K_n \leq G$, where $K_n = \{x \in G: o(x) = p^n\}$ and $AB = \{ab: a \in A, b \in B\}$. The symbol $o(x)$ denotes the order of x .

In [1] it was proved that all regular p -groups have this property. In [3] a unique group of the order 2^4 was found which is not a W -group. This group is of the smallest order which does not have the property W . The first theorem and example show that the above observations can be generalized. In the second theorem we prove that the class of W -groups of exponent p^2 is closed under operation of direct product. The proof that this fact is not valid for different exponents will be given in a separate paper. We also prove two propositions concerning p -groups of the exponent not grater than p^p .

In the paper symbols and terminology are standard.

T h e o r e m 1. If G is a p -group of the order less than p^{p+2} , then G has the property W .

P r o o f. Let G be a group satisfying the assumption of the theorem. If the order of G is less than p^{p+1} or

class of nilpotency of G is less than p , then G is regular ([4].III.10.2.). So, according to the result of [1] mentioned above, we may assume $G = p^{p+1}$ and $c(G) = p$. Moreover let us assume $p > 3$. For $p = 2$ the theorem is simple; for $p = 3$ see [3].

If $\langle K_1 \rangle = H < G$, then $K_1 K_1 = H$ follows from the regularity of H . Let $\langle K_1 \rangle = G$. Lemma III.14.2 ([4]) implies $|G/G'| = p^2$ (i.e., $d(G) = 2$) and by lemma III.14.14. ([4]) $\exp G = p$. Since $\frac{G}{G'}$ cannot be cyclic, p 'th power of each element of G belongs to G' . Then only K_1 and K_2 are non-empty. Let us choose two elements x, y from K_1 such that $G = \langle x, y \rangle$. It is clear that $G = \langle x \rangle \langle y, G' \rangle$. This means that each element of G is of the form $x^m y^n c$ ($c \in G'$, $0 < m, n \leq p^2$).

For $(m, p) = (n, p) = 1$ $o(x^m) = o(y^n c) = p^i$. Indeed, $c(\langle y, G' \rangle) \leq p-1$ and by regularity of $\langle y, G' \rangle$ $(y^n c)^p = y^{np}$. If $p|m$ or $p|n$, then $o(x^m y^n c) = p^i$ or $x^m y^n c \in G'$. But $\langle y, G' \rangle \subset K_1 K_1$ and for $p \neq 2$ $K_1 \subset K_1 K_1$. Hence the theorem is proved.

The following example shows that for each odd prime p there exist a group of the order p^{p+2} which has not the property W .

Example. Let G be a group generated by elements a, a_1, a_2, \dots, a_p which satisfy the following relations

$$(1) \quad \left\{ \begin{array}{l} a^p = a_1^p = \dots = a_{p-1}^p = a_p^{p^2} = 1 \quad (p - \text{fixed odd prime number}) \\ [a_i, a_j] = 1, \quad 1 \leq i, j \leq p \\ [a, a_1] = [a, a_p] = a_2, [a, a_2] = a_3, \dots, [a, a_{p-2}] = a_{p-1} \\ [a, a_{p-1}] = a_p^{-p}. \end{array} \right.$$

The subgroup A generated by the elements a_1, a_2, \dots, a_p is abelian, its order is equal to p^{p+1} and $|G : A| = p$. Hence G is of the order p^{p+2} . We will show that G is generated by elements of the order p and $K_1 K_1 \neq G$.

To this aim we need some calculations. By the relations (1) we have

$$(2) \quad \left\{ \begin{array}{l} a^{-1}a_1a = a_1a_2^{-1} \\ a^{-2}a_1a^2 = a_1a_2^{-2}a_3 \\ \dots \dots \dots \dots \\ a^{-(p-1)}a_1a^{p-1} = a_1^{(p-1)}a_2^{(p-1)}a_3^{(p-1)} \dots a_{p-1}^{(p-1)}a_p^{(p-1)} \end{array} \right.$$

so

$$(3) \quad \begin{aligned} & (a^{-(p-1)}a_1a^{p-1})(a^{-(p-2)}a_1a^{p-2}) \dots (a^{-1}a_1a)a_1 = \\ & = a^{\sum_{k=0}^{p-1} \binom{k}{0}} a_2^{\sum_{k=1}^{p-1} \binom{k}{1}} a_3^{\sum_{k=2}^{p-1} \binom{k}{2}} \dots a_{p-1}^{\sum_{k=p-2}^{p-1} \binom{k}{p-2}} a_p^{-p} = \\ & = a_1^{\binom{p}{1}} a_2^{\binom{p}{2}} a_3^{\binom{p}{3}} \dots a_{p-1}^{\binom{p}{p-1}} a_p^{-p} = a_p^{-p}. \end{aligned}$$

Similarly

$$(4) \quad \begin{aligned} & (a^{-(p-1)}a_p a^{p-1})(a^{-(p-2)}a_p a^{p-2}) \dots (a^{-1}a_p a)a_p = a_p^{\binom{p}{1}} a_2^{\binom{p}{2}} a_3^{\binom{p}{3}} \dots \\ & \dots a_{p-1}^{\binom{p}{p-1}} a_p^{-p} = 1 \end{aligned}$$

and for $1 < i < p$

$$\begin{aligned} & (a^{-(p-1)}a_i a^{p-1})(a^{-(p-2)}a_i a^{p-2}) \dots (a^{-1}a_i a)a_i = \\ & = a_i^{\binom{p}{1}} a_{i+1}^{\binom{p}{2}} \dots a_{p-1}^{(-1)^{p-i-1} \binom{p}{p-i}} a_p^{(-1)^{p-1} \binom{p}{p-i+1}} = 1. \end{aligned}$$

Let now $g \in A$. Then $g = \prod_{j=1}^p a_j^{n_j}$ and (1)-(4) implies

$$\begin{aligned}
 (5) \quad (ag)^p &= a^p a^{-(p-1)} g a^{p-1} \dots (a^{-1} g a) g = \prod_{i=1}^p \left(a^{-(p-i)} g a^{p-i} \right) = \\
 &= \prod_{i=1}^p \left(a^{-(p-i)} \left(\prod_{j=1}^p a_j^{n_j} \right) a^{p-i} \right) = \prod_{j=1}^p \left(\prod_{i=1}^p \left(a^{-(p-i)} a_j^{n_j} a^{p-i} \right) \right) = \\
 &= \prod_{i=1}^p \left(a^{-(p-i)} a_1^{n_1} a^{p-i} \right) \cdot \prod_{j=2}^p \left(\prod_{i=1}^p \left(a^{-(p-i)} a_j^{n_j} a^{p-i} \right) \right) = \\
 &= \prod_{i=1}^p \left(a^{-(p-i)} a_1^{n_1} a^{p-i} \right).
 \end{aligned}$$

Therefore $o(ag) = p$ if and only if $n_1 \equiv 0 \pmod{p}$ i.e. when $g \in B$ where B is the subgroup generated by the elements a_2, a_3, \dots, a_p . Similarly it can be proved by means of (1)-(4) that for $m \not\equiv 0 \pmod{p}$ $o(a^m g) = p$ if and only if $g \in B$.

As a_2, a_3, \dots, a_{p-1} belong to G' and G' is contained in the Frattini subgroup of G , G is generated by the elements a, a_1, a_p . Hence the elements $a, a_1, a a_p$ generate the group G too and by (5) $o(a) = o(a_1) = o(a a_p) = p$.

Now we will show that the element $a_1 a_p$ from $A \setminus B$ does not belong to $K_1 K_1$. Since $a_1 a_p$ is of the order p^2 , $a_1 a_p$ cannot be expressed as a product of two elements of order p from A because A is abelian. If $o(a^n g_1) = o(a^m g_2) = p$, then $g_1, g_2 \in B$ and $(a^n g_1)(a^m g_2) = a^{n+m} (a^{-m} g_1 a^m) g_2 \in A$ if and only if $n+m \equiv 0 \pmod{p}$. But $(a^{-m} g_1 a^m) g_2$ belongs to B . Thus $a_1 a_p \notin K_1 K_1$.

In the further part of the paper we consider only finite p -groups for p odd.

Proposition 2. If G is a p -group of exponent p^n , where $n \leq p$, then there exists i , $1 \leq m \leq n$, such that $\langle K_m \rangle = G$.

Proof. We proceed by induction on the order of G . If G is cyclic, then the proposition is clear. So we can assume that G is not cyclic. According to Burnside's basis theorem, there exist at least $p+1$ maximal subgroups M_1, \dots, M_k , $k \geq p+1$. Each M_i is of exponent less than p^{p+1} and

$|M_i| < |G|$. Then by induction M_i is generated by elements of the order p^m for some m , $1 \leq m \leq n$, i.e. $M_i = \langle K_m \cap M_i \rangle$. The number of maximal subgroups M_i of G is greater than the number of sets K_m . Then at least two subgroups M_i, M_j must be generated by elements from this same set K_m , that is $M_i = \langle K_m \cap M_i \rangle$ and $M_j = \langle K_m \cap M_j \rangle$. Hence $G = \langle M_i \cup M_j \rangle = \langle (M_i \cap K_m) \cup (M_j \cap K_m) \rangle = \langle K_m \rangle$.

Proposition 3. G is a p-group of exponent p^n , where $n \leq p$, and for each i , $1 \leq i \leq n$, $i \neq m$, $\langle K_i \rangle \neq G$ then $K_m K_m = G$.

Proof. Since for $i \neq m$ $\langle K_i \rangle \neq G$, each subgroup $\langle K_i \rangle$ is contained in any maximal subgroup M_i . We have not more than $n-1$ subgroups M_i , $i \neq m$, containing all sets K_i except K_m . By inequality $n-1 < p$, $\bigcup_{i \neq m} M_i \neq G$. Let x be any element from $G \setminus \bigcup_{i \neq m} M_i$. Since for $i \neq m$ $K_i \subset \bigcup_{i \neq j} M_i$, $x \in K_m$.

Now let y be any element of a group G . If $y \in K_m$, then $K_m \subset K_m K_m$ yields $y \in K_m K_m$. Suppose $y \in K_{i_1}$, $i_1 \neq m$. Therefore $xy \in K_{i_2}$, $i_2 \neq i_1$; otherwise $y \in K_{i_1}$. But then $x = (xy)y^{-1} \in K_{i_1} K_{i_1} \subset \bigcup_{i \neq m} M_i$. If $xy \in K_m$ then $y = x^{-1}(xy) \in K_m K_m$. By the same argument $x^2y \in K_{i_3}$, $i_3 \neq i_1, i_2$. Really, if $x^2y \in K_{i_2}$ then $(x^2y)y^{-1} \in K_{i_2} K_{i_2} \subset \bigcup_{i \neq m} M_i$; if $x^2y \in K_{i_1}$ then $x = (x^2y)(y^{-1}x^{-1}) \in K_{i_1} K_{i_1} \subset \bigcup_{i \neq m} M_i$. Hence there is k , $k < n$, such that $x^k y \in K_m$. Since $n \leq p$ implies $x^k \in K_m$, we have $y = x^{-k}(x^k y) \in K_m K_m$.

Corollary 4. Let G be a p-group such as in Proposition 3. If for each i, j , $i \neq j$, $\langle K_i \rangle \cap K_j \subset M_i$, where M_i is a maximal subgroup of K_i then G has the property W. It is not difficult to construct a irregular p-group which satisfy assumptions of corollary 4.

If G is of exponent p^2 we can prove something more.

Lemma 5. If G is of exponent p^2 then $K_1 K_1 = G$ or $K_2 K_2 = G$.

Proof. Suppose $K_1 K_1 \neq G$. Since $K_1 \subset K_1 K_1$, there exists y in K_2 such that $y \notin K_1 K_1$. Then $x K_1 \subset K_2$. Indeed, if for some $y \in K_1$ $xy \in K_1$, then $x = (xy)y^{-1} \in K_1 K_1$. Hence $K_1 \subset x^{-1} K_2 \subset K_2 K_2$ and by $G = K_1 \cup K_2 \cup \{1\}$, $K_2 \subset K_2 K_2$, we have $K_2 K_2 = G$.

Lemma 6. If G is of exponent p^n , then for each i , $1 \leq i \leq n$, $G = \bigcup_{j=1}^n K_j K_i \setminus (G = \bigcup_{j=1}^n K_i K_j)$.

Proof. If $x \notin K_i K_i$ then $x K_i \cap K_i = \emptyset$ i.e. for each $y \in K_i$ there is $z \in K_j$ ($i \neq j$) such that $xy = z$. Hence $x = zy^{-1} \in K_j K_i$.

Theorem 7. If G_1 and G_2 are p -groups of exponent less than p^3 and have the property W , then the direct product of these groups has the property W .

Proof. If G_1 or G_2 is of exponent p then the theorem is clear. Let us assume that G_1 and G_2 are of exponent p^2 . Let $X_i = G_1 \cap K_i$, $Y_i = G_2 \cap K_i$. Then by Lemma 1.6 $G_1 = X_2 X_2 \cup X_2 X_1$ and $G_2 = Y_2 Y_2 \cup Y_1 Y_2$. Now for $a \notin X_2 X_2$ and $b \notin Y_2 Y_2$ we have $a = x_2 x_1$ and $b = y_1 y_2$, where $x_1 \in X_1$, $y_1 \in Y_1$. Hence $ab = x_2 y_1 x_1 y_2$ and $x_2 y_1, x_1 y_2 \in K_2$. The other cases are evident. Therefore $K_2 K_2 = G$. It is obvious that $K_1 K_1 \leq G$.

As it is easy to see, we did not use the assumption that $(K_2 \cap G_i)(K_2 \cap G_i)$ is a subgroup of G_i . Thus the following corollary is true.

Corollary 8. The direct product of two groups G_1 and G_2 of exponent p^2 has the property W if and only if $(G_i \cap K_1)(G_i \cap K_1) \leq G_i$.

REFERENCES

- [1] E. Ambrosiewicz: O kwadratach zbiorów elementów jednakowego rzędu. Doctoral Thesis, Institute of Mathematics, Technical University of Warsaw, Warsaw 1978.

- [2] J. Ambrosiewicz : O pewnej własności grup, Zeszyty Nauk.-Dydakt. Filii UW, Białystok, Nauki Mat.-Przyr. t.II, z.7, 1974.
- [3] J. Ambrosiewicz : Grupy rzędu p^4 , Zeszyty Nauk.-Dydakt. Filii UW, Białystok (in print).
- [4] B. Huppert : Endliche Gruppen. Berlin 1967.
- [5] П. Лакатош : О структуре сплетения циклических групп простого порядка, Publ. Math. 22 (1975) 293-305.

INSTITUTE OF MATHEMATICS, UNIVERSITY OF WARSAW, BIAŁYSTOK BRANCH
Received June 22nd, 1979.

