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Striot oonvexity in normed spaces was introduced by Clark -
son in [1^. One of the characterizations of this concept sta-
tes that a normed space is strictly convex if and only if me-
tric betweenness in this space is equivalent to algebraic 
betweenness [6]. In this paper, strict convexity is studied 
in connection with the betweenness postulates given by Hun-
tington and Kline in [¿f] and [5]. As a consequence, several 
new characterizations of strict convexity are developed. 

Let X be a set and R be a relation on X*X*X. The no-
tation R^abc], or simply abc, indioates that the elements 
a, b, c of X satisfy the relation R in the stated order. 
In this work, the relation abc will bfe restricted to certain 
ways of defining b to be "between" a and c. The follow-
ing list of postulates for a betweenness relation abc was 
presented by Huntington and Kline in [4] and [5]. The first 
four are three-element postulates while the remaining nine are 
concerned with four elements. 
A. axb implies that bxa. 
B. For distinct a, b, c, at least one of the relations abc, 

acb, bac, bca, cab, or cba holds. 

^ ̂  Research of both authors was supported in part by a 
St. Bonaventure University Faculty Research Grant-in-Aid. 
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2 Ch.R.Diminnie, A.G.White 

C. For distinct a, x, 7 , both axy and ayx cannot be 
valid. 

D. abc implies that a, b, and c are distinot. 
For distinct elements a, b, x, y, c of X, 

1. xab and aby imply that xay. 
2. xab and ayb imply that xay. 
3. xab and ayb imply that xyb. 
4. axb and ayb imply that axy or ayx. 
5. axb and ayb imply that axy or yxb. 
6. xab and yab imply that xyb or yxb. 
7. xab and yab imply that xya or yxa. 
8. xab and yab imply that xya or yxb. 
9. abc implies that abx or xbc • 

For the remainder, we will aasume that (X, ||*||) i6 a 
normed linear apace. If a and c are distinct points of X, 
we will say that b is algebraically between a and c, de-
noted A [abc], if b = aa + (l-a)c for some ae(0,1). Also, 
for distinct a, b, ceX, b is metrically between a and c, 
denoted Mjabc], if ||c - a|| = ]| b - a j| + || c - b|j. It is easi-
ly shown that A [abc] implies l'l[abc] but the converse is fal-
se in general. Those spaces for which the converse i.s true 
form the main focus of our study. (X, |)«|) J is strictly con-
vex, or rotund. if the conditions || a + b|| = ||aj| + || b || and 
•i, b ̂  0 imply that a = ab for some a>0. The following 
characterizations of strict convexity will be useful in later 
work. The proofs may be found in [¿] and [7]. 

T h e o r e m 1. The following statements are equi-
valent. 
1. (X, ||* II) is strict|ly convex. 
2. For a, b, ceX, Lijabc] implies A[abc]. 
3. For a, beX, the conditions ||a|| = ||b|| = 1 imply 

that a = b. 
It is clear from the definitions of ¿[abc] and u [abc] 

that Postulates A, C, and D are always true for both concepts. 
Hence, none of these is sufficient for strict convexity. Cur 
first result shows that Postulates B and 9 impose such severe 
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Remarks on str ic t convexity 3 

restrict ions on X that they cannot characterize str ict con-
vexity. 

T h e o r e m 2. The following statements are equiva-
lent. 
1 . X is 1-dimensional. 
2. Postulate B or Postulate 9 holds for algebraic betweenness. 
3. Postulate B or Postulate 9 holds for metric betweenness. 

P r o o f . The proof that statement 1 implies state-
ments 2 and 3 is straightforward. Therefore, we w i l l show 
only that statements 2 and 3 each imply statement 1. 

ad 1. I f Postulate B holds fo r algebraic betweenness, le t 
a be a fixed non-zero element of X and let x be any other 
non-zero element of X. Then, since Postulate A is always 
true fo r algebraic betweenness, Postulate B implies that 
¿[fyfca], A|oax], or A[xOa]. In each case, x is dependent on 
a and hence, X must be 1-dimensional. 

I f Postulate 9 holds for algebraic betweenness, then for 
a fixed non-zero a £ X and any x distinct from -a, 0, 
or a, A[(-a)Oa] implies either A[(-a)Ox] or A[xOa]. Once 
again, x must be dependent on a and X is 1-dimensional* 

ad 2. Assume next that Postulate B holds fo r metric be-
tweenness. I f x and y are independent elements of X, 
le t u = ¡r^r and v = -¡T̂ - . Since Postulate A is always true 

llxII ll</|l 
f o r metric betweenness, Postulate B implies that either 

Ouv , M [OVU ] , or M[UOV ] . The conditions M[OUV] and 
Ovu each imply that u = v, which violates the indepen-

dence of x and y. Therefore, we may assume that li[uOv], 
Also, since x and ( - y ) must be independent, the same'argu-
ments show that M [ U O ( - V ) ] . AS a result of these, i t follows 
that || v - uj = 2 = || v + u||. Next, consider the distinct e l e -
ments 0, v - u, v + u. By Postulates A and B, either 
m [ o ( V - U ) ( V + U ) ] , m [ ( 0 ( V + U ) ( V - U ) ] o r M [ ( v + u ) 0 ( v - i i ) ] . A l l o f 

these are impossible since ||v-u|| = 2 = ||v+u|| and u and v 
are non-zero. Therefore, there cannot be independent elements 
x and y in X and X must be 1-dimensional. 
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4 Ch.R.Diminnle, A.G.White 

F i n a l l y , suppose t ha t Pos tu la te 9 holds and l e t u » p e l 
and v = I J - 2 J f o r independent elements x and y in X. 

Since u, u+v, and v are d i s t i n c t , Pos tu la te 9 implies 

t ha t M|U or M u ( ^ ) ( u + v ) J . The f i r s t condi t ion 

impl ies tha t 2||v|| = || u-vj| + |ju+v||, while the second y i e l d s 
||u+v|| + || u-v || = 2yup = 2||v||. Therefore , each implies tha t 
M[(u-v)0(u+vf j . Since (u -v ) , 0, u, and (u+v) are d i s t i n c t , 
Pos tu la te 9; implies tha t M [ ( U - V ) 0 U ] or M[UO(U+V)]. These 
condi t ions fo rce u = v or u = -v , both of which v i o l a t e 
the independence of x and y . As in the previous argument, 
i t fo l lows tha t X i s 1-dimensional . This completes the proof 
of Theorem 2. 

Theorem 3 w i l l give the connection between a lgebra ic be-
tweenness and the remaining p o s t u l a t e s . I t s proof i s s t r a i g h t -
forward and w i l l be omitted here . Al l subsequent theorems and 
examples w i l l be concerned with metric betweenness. 

T h e o r e m 3. For a lgebra ia betweenness, P o s t u l a -
t e s 1 through 8 are t rue i n any l i n e a r space. 

We fol low t h i s wi th a r e s u l t which shows tha t Pos tu l a t e s 
2 and 3 f a i l to cha rac t e r i ze s t r i c t convexi ty . 

T h e o r e m £ For metric betweenness, 
1. Pos tu l a t e s 2 and 3 are equ iva len t . 
2. Pos tu l a t e s 2 and 3 are t rue in any normed space. 

P r o o f . 1. Let a , b, x , and y be d i s t i n c t e l e -
ments of X. I t s u f f i c e s to show tha t under the condi t ions 
M [xab] and M[aybJ, M[xay] i f and only i f M [xyb]. From 
Mjxabj and M[aybj , we get the equat ions 

| | b - x | | = 1 | a - x | | + | | b - a | | 

and 

I f we assume M[xay], i . e . , ||y - x|| = ||a - x|| + ||y - a | | , then 
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| b - x | - | 6 - x | + | |b - a|| = || a - x | + || y - a|| + | b - 7 | -

Therefore, Ii[xay] implies tha t l l jxybj . 
On the other hand, i f Ll[xyb], i . e . , | b - x || = || y - x || + 

+ | | b - y | | , then 

||y - x || = || b - x|| - | | b - y|| - | a - x | + | y - a | | . 

Thus, l ifxybj implies tha t Ii[xay] and part 1 i s completed. 
2. I t s u f f i c e s to show tha t Postula te 2 i s t rue in any 

normed space. I f we assume Li[xab] and M[ayb], then 

||b - x || = || a - x || + || b - a | | 

and 

lib - a || = || y - a | | + | |b - y ||. 

Therefore , 

I» ~ x II + II ' - a | - | b - * | - || b - 7 | < 

< | 7 - x | < | a - x || + || y - a | . 

Henoe, Jy - x || = | a - x| | + || y - a || and Postula te 2 holds . 
The next sequence of theorems and examples concerns the 

r e l a t i o n s h i p between Postulate 1 and s t r i c t convexity. We 
show f i r s t tha t s t r i c t convexity implies Postulate 1 and theh, 
a f t e r reformulat ing Postula te 1, we give examples of a space 
which does not s a t i s f y Postula te 1 and of a non-str ic t l?- con-
vex space which does. 

T h e o r e m 5. I f (X, ||*||) i s s t r i c t l y convex, 
then Postula te 1 i s t rue f o r metric betweenjaess. 

P r o o f . Let a , b, x and y be d i s t i n c t elements 
of X and assume tha t M[xabJ and K[aby]. Then, Theorems 
1 and 3 imply tha t A[xayJ. Since A[xay] implies MfxayJ, 
the proof i s cumplete. 
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6 Ch.R.Diminnia, A.G.White 

L 9 m in a . For u, v, and w in X and non-negative 
a , p , and S , 
1. || u+v|| = ||u|| + || v|| implies that ||au||+|||Jv|| =o<||u|| +|3||v||. 
2 . || u+v+v/1| = || u || + ||v|| + || w || implies that || au + |5v + 6w|| = 

= a|| u || + |J|| v || + 5||w||. 
P r o o f . A proof f o r 1 . may be found in [ 3 ] . 
2 . Assume || u + v + w || = || u || + || v || + || w ||. By the symme-

try of u, v , and vv in statement 2 , we may assume that 
(3 > a . Also, since 

|u + v + w | « | u + v | + |w||<||a| + ||v|+|w|« |u + v +W||, 

i t follows that || u + v|| + || u|| + || v || and || u + v + w|| = 
= || u + v || + || w ||. Therefore, by part 1 , 

||au + ^v + 6w || = ||/J(u + v) + 5w - (p - a)u||^ 

> || (5( a + v) + 6w || - (|J - a ) ||u|| = |J||u + v|| + 8||w|| - (p-a)||u|| = 

- NMI + IMP + 6Ifw|| - (|5- a ) ||u|| = a|u|| + |S||v|| + 5«w||. 

The equality then follows direct ly from the tr iangle inequa-
l i t y . 

T h e o r e m b, Postulate 1 for metric betweenness 
is equivalent to the following statement: 
(1 ' ) The conditions ||u|| = ||v|| = fl ̂  || = and ||v| = ||w|| = 

= l l ^ l = 1 imply that | u + v + w || = 3. 
P r o o f . Postulate 1 s tates that for dist inct a ,b ,x , 

and y in X, the conditions ||b - xfl =||a - x|| + ||b - a || and 
¡7 - a|| = | b - a|| + |y - b J imply that || y - x || = ||a - x || + 
+ || y — a||. We f i r s t note that this i s equivalent to the f o l -
lowing statement: (*) For non-zero u, v, and w, i f || u + v|| = 
= |MMMI || v + wfl =||v|| +||w||, then ||u + v + w|| = 
= || u| + || v|| + || w||. To show th i s , substitute u s a - x , 
v = b - a , and w = y - b for one direct ion, and for the 
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Remarks on s t r i c t convexity 7 

converse, l e t x = 0, a = u, b = u + v, and y = u + v + w. 
Since (*) implies ( 1 ' ) , we need only show tha t (1 ' ) implies 
{*). I f u, v , and w are non-zero and s a t i s f y the condi t ions 
||u + v| | = H | + || v || and ||v + w || = | |v | | + ||w||, then the Lemma 
implies tha t f o r a ' = v ' = jj^-jj, and w' = j j j p 

l a l - h ' l - l ^ ' l - l 

and 

l |v ' | |=«w' | | = | | ^ ' | | = 1. 

Therefore , by ( 1 ; ) , || u'+ v '+ w ' |= 3 = flu'|| + || v' | | + || w f F i -
na l l y , since u = || u | u ' , v = | v | | v ' , and w = ||w|| w ' , 
the Lemma implies tha t ||u + v + w|| = ||u|| + | |v| | + || w||. Thus, 
( 1 ' ) and (*) are equivalent and the proof i s complete. 

E x a m p l e 1* Let X be 3-dimensional space and 
define | | (x, y , z || = ||x||+ Vy2 zK Then, f o r u = ( 1 , 0 , 0 ) , 
v = ( 0 , 1 , 0 ) , and w = ( 0 , 0 , 1 ) , || u || = || v || = 1 ^ 1 = 1 and 

IMI = ||w|| . j ^ 1 - 1 , but || a + v + w|| = 1 + V2 i 3. Hence, 
t h i s space does not s a t i s f y Postula te 1 f o r metric betweenness. 

E x a m p l e 2. Again l e t X be 3-dimensional space 

but t h i s time def ine | | (x ,y ,z ) | | = yj\?.2 - (x2+y2) | + 3 z 2 + x 2 + y 2 . 
To f a c i l i t a t e our work with || • ||, we w i l l of ten r e f e r to tne 
following s e t s : 

X1 = j ( x , y., z ) : z 2 ^ x 2 + y2j-

and 

X2 = | ( x , y , z ) : z 2 > x 2 + y 2 J . 

Note tha t i f (x, y-* i ) € X1, then ||(x, y, z)|| = V2 Vx2+y2+z2 

while i f (x, y , z) e X2, then ¡ (x , y, z) | | = 2 | z | . To show 
that || »¡I i s a norm, the only property which i s not immediate 
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8 Ch.R.Dlminnie, A.Q.White 

is the triangle inefauality. The proof of this inequality in-
volves a l l possible relationships between the vectors * u, v, 
and u + v and the sets X.| and Xg. Since the steps are 
straightforward, they wi l l be omitted here. 

Our work with this example wil l be divided into 3 steps: 
1. The non-striot convexity of (xfl*||), 
2. certain midpoint properties for the sets X̂  and Xg 
3. a proof that (Xf|[*||) satisfies Postulate 1 for metric 

betweenness. 
ad.l. To show that (X,||«||) is not strictly convex, let 

u = (0, 1/2, 1/21, and v = (1/2, 0, 1/2). Then ||u|| = ||v|| = 
— I ^ l - 1 but u ji v. By Theorem 1, (X,||»fl) fa i l s to be 
strictly convex. 

ad.2. Let u = (x1, y *, Zj ) and v = (x2, y2, z2 ) and 
assume that |[a|| = |[v|| = = 1. 

a) If u, v e X2, then ^ e Xg. 
P t* n a f RH nAA ii w « T on/1 II it II II TTII - 1 

wmcn unpjLigB mat —5- e . men, since u, v e a0 , 

= ( z^zg ) 2 , 

which implies that -̂ sp c X_. 

1 2 
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Remarks on strio& convexity 9 

b) Let u, v e X.,. 

I f ^ e X 1 , then u = v . 

I f ^ ^ e Xg» t h e n n, v £ Xg also» 

P r o o f . Since it, v e ^ and ||ug = ||v|| = 1 > 

+ y 2
 + z 2 „ 1 / 2 

and 

2 2 2 
+ ? ! + Z2 = 

I f ^ ^ X 1 , therf since | - 1, 

5 5 * 
(x.j+xg)* + (y1+y2^ + (z-j+zg)" » 

= = + y * + z^ + + y | + b|. 

By the s t r i c t convexity of the usual Euclidean norm on 3 - d i -

mensional space, there i s an a > 0 such that u = o v , Since 

||u|| = j| v || = 1, we must have oc = 1 and hence, u = v . 

On the other hand, i f ^ ^ e X 2 , then the condit ion 

l l ^ l l = 1 i m P l i e 8 t i i a t | Z 1 + Z 2| = 1* ' S i n o e u e X1 and 

I k l - 1 . 

1/2 = x\ + y f + af * 2z*, 

which implies that | z ^ ^ l / 2 . A s im i la r argument shows that 

||z2||<1/2. Therefore, z1 = z 2 = +1/2 and 

x* + y^ = 1/4 = a?, 

which shows that u c Xg. The sams argument applied to x 2 , 

y 2 , and z 2 sho?78 that v e Xg olso. 

* 217 -



10 Ch.R.Diminnie, A.G.White 

c) Let u e X^, and v e X^. 

I f G X 1 ( then u = v. 

I f ^ eX 2 , then a e X2 a lso. 

P r o o f . In this case, since ||u|| = ||v|| = 1, 
x!̂  + y2 + z2 = 1/2 while |z2| = 1/2. I f ^ e X , then 

o o o 
(x1+x2 ) + (y.,+y2) + ( z i+z 2 ) = 2. Therefore, sinoe v £ X2, 

V ? - V < * 1 + x 2 ) 2 + (y-i+y2)2 + V x i + 7 i + z i $ 

< yr/F + 

This implies that 

- ^ x 1 + x 2 ) 2 + (y.|+y2)2 + ( z ^ z g ) 2 =yx 2 +y 2 +z 2 +"^x|+y|+z 

and. the. same argument as used in part b) shows that u = v. 

I f cXg , then j z^ + z2| = 1. By the same arguments 

as used in part b ) , we obtain z^ = + 1/2 and hence, x2+y2 = 
o 

= 1/4 = z^. This shows that u € X2 and the proof i s comple-
te. 

ad.3. Now, we demonstrate that (X,||*||) s a t i s f i e s Postu-
late 1 f o r metric betweenness. 

Let u = (x-j.y-pZ.,), v = ( x 2 , y 2 , z 2 ) , and w = (x^.y^.z^) 
and assume that ||u|| = |v|| = ||wf = = || = 1. By 

Part 2, a l l possible relationships between u, v, ^ ^ , and 
v+w 

and the sets X̂  and X2 lead to 2 major cases: 
either u, v, w e X2 or at least 2 of these points are equal. 
I f any 2 of these points are equal, then ||u+v+w|| = 3 by the 
lemma. Therefore, we need only consider the case where 
u,v,w € X2 and a l l 3 are dist inct . By Part 2 a ) , ^ and 
v+w —2~ are in X2 a lso. Since ||u|| = ||v|| = || v+y; 

2 = 1, 
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it follows that |z.,| = |z2| = |z^| = 1/2 and jz1+z21 = 
= |z2+z^| = 1 and hence, z1 = z2 = z^ = +1/2. Further, sin-
ce u, v, w e x2, 

p p (x-j+xg+x^) + (y-j+yg+y^) £ 

$(vK+yf +Vxi+y| +Vx3+73)2 ^ ( | Z l l + lZ2|+ | z3| j 2 = 

p 

= (z1 + z2 + z^} , 

which implies that u + v + w e X2 also» Finally, 

|| a + v + w || = 2 |z1 + z2 + z3 | = 2(3/2) = 3. 

Therefore, Theorem 6 implieB that (X,IM|) satisfies Postu-
late 1 for metric betweenness. 

We conclude this paper with the main result, which states 
that each remaining postulate characterizes strict convexity. 

T h e o r e m 7. Strict convexity of (X,||*||) is equi-
valent to each of Postulates 4 through 8 for metric between-
ness. 

P r o o f . Since Postulates A, C, 2 and 3 are true in 
any normed space, the equivalence of Postulates 4 and 5 and 
of Postulates 6, 7, and 8 can be deduced from the results in* 
[ 5 ] . Further, it is shown in [2] that strict convexity implies 
Postulate 4. Therefore, it suffices to show that Postulate 5 
implies strict convexity and that Postulate 6 is equivalent 
to strict convexity. 

1. Assume Postulate 5 and let ||x| = |y| = Jig21 = 1. 
Then, since this implies that M[Ox(x+y)] and M[Oy(x+y)], 
it follows by Postulate 5 that M[Oxy] or M[yx(x+y)]. Sin-
ce || x || = || yfl, each possibility implies that x = y and hen-
ce, (X|»||) is strictly convex. 

2. The proof that the strict convexity of (X,||»||) implies 
Postulate 6 is the same as the proof of Theorem 5. For the 
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12 Ch.R.Diminnie, A.G.White 

converse, assume that Postulate 6 holds and let ||x|| = || y |] s 
= = 1. Since these conditions imply that M[(-y)0x] 
and since M[(-x)0x] is always true, Postulate 6 implies 
either Li[(-x)(-y )x] or M[(-y )(-x)x]. Because fl x+y | = 2flx||t 
each of these implies that x = y. Therefore, (Z,||*||) is 
strictly convex and the proof is complete. 
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