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Striot convexity in normed spaces was introduced by Clark-
son in [1]. One of the characterizations of this concept sta=-
tes that a normed space is strictly convex if and only if me-
tric betwesenness in this space is equivalent to algebraic
betweenness [6]. In this paper, strict convexity is studied
in connection with the betweenness postulates given by Hun-
tington and Kline in [4] and [5]. As a conseguence, several
new characterizations of strict convexity are developed.

Let X be a gset and R be a relation on ZXxXxX, The no-
tation R[abc], or simply abe, indicates that the elements
a, b, ¢ of X wpatisfy the relation R in the stated order.
In this work, the relation abc will bé restricted to certain
ways of defining b to be "between" a and c¢. The follow~-
ing list of postulates for a betweenness relation abc was
presented by Huntington and Kline in [4] and [5]. The first
four are three-element postulates while the remaining nine are
concerned with four elements,

A. axb 1implies that bxa.
B, For distinct a, b, ¢, at least one of the relations abc,
acb, bac, bca, cab, or cba holds,

1) Research of both authors was supported in part by a
St. Bonaventure University Faculty Research Grant-in-Aid,
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2 Ch.Re.Diminnis, A.G,White

C. For distinet a, x, y, both axy end ayx cannot be
valid,
D, abec implies that a, b, and ¢ are distinct.

For distinet elements a, b, x, 3, ¢ of X,
1. xab and aby imply that xay.

2. xab and ayb imply that xay.
3. xab and ayb imply that xyb.
4, axb and ayb imply that axy or ayx.
5, axb and ayb imply that axy or yxb.
6. xab and yab imply that xyb or yxb,
7. xab and yab imply that xya or yxa,
8, xab and ysb imply that xya or yxb.
9, abc 1impliss that abx or xbhc,

For the remainder, we will asmsume that (X, “'") i8 a
normed linear space., If a and ¢ are distinct points of X,
we will say that b 1s algebraically between a and c¢, de~
noted A[abc], if b =aa + (1=-a)e for some o £{0,1). 4lsO,
for distinct a, b, ceX, b is metrically between a and ¢,
denoted M[abe], if |c -af =[b - af+ Jc - vf. It is easi-
ly shown that AEébc] implies M[}bc] but the converse ig fal-
se in general., Those spaces for which ths converss is true
form the main rocus of our study. (X, [«})} is strictly con~-
vex, or rotund, if the conditions ||a + b = Jle] + [[oll and
2, b # 0 1imply that a = ab for some o> 0. The following
characterizations of strict convexity will be useful in later
work. The proofs may be found in [é] and [7].

“"heorem 1. The following statements are equi-

valent.
1. (x, l<ll) is strictly convex.
2. Por a, b, ceX, M[abc] implies A[abc].
3. For a, beX, the conditions ||al| = bl =||3%D" =1 imply
that a = b,
It is clear trom the definitions of A[abc] and 1..[abc]
that rostulates A, G, and D are always true for both concepts,.
Hence, none of these is sufficient for strict convexity. Cur

first result shows that Postulates B and 9 impose such severe
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Remarks on strict convexity 3

restrictions on X that they cannot characterize strict con-
vexity.

Theorem 2, The following statements are equiva-
lent.
1 ¥ is 1-dimensional.
2. Postulate B or Postulate 9 holds for algebraic betweenness,
3, Postulate B or Postulate 9 holds for metric betweenness,

rroof, The proof that statement 1 implies state~
ments 2 and 3 is straightforward. Therefore, we will show
only that statements 2 and 3 each imply statement 1.

ad 1., If Postulate B holds for algebraic betweenness, let
a be a fixed non-zero element of X and let x be any other
non~zero element of X, Then, since Fostulate A is always
true for algebraic betweenness, Postulate B implies that
A[b#a], AEOax], or A[an]. In each case, x is dependent on
a and hence, X must be 1-dimensional,

If Postulate 9 holds for algebraic betweenness, then for
g fixed non-zero a € X and any x distinct from -a, O,
or a, A[(-a)Oa] implies either A[(-a)Ox] or A[an]. Once
again, x must be dependent on a and X is 1-dimensional.

ad 2. Assume next that Postulate B holds for metric be~
tweenness, If x and y are independent elements of X,
lJet u = Wii and Vv = W%W o« Since Postulate A is always true
for metric betweenness, Postulate B implies thatl either
M[Ouv], M[Ovu], or M [uOv]. The conditions M[Ouv] and
M[pvu] each imply that u = v, which violates the indepen~-
dence of x and Y. Therefore, we may assume that M[uOv].
Also, since x and (-y) must be independent, the same: argu-
ments show that ~M[u0(-v)]. As a result of these, it follows
that ||v - u] = 2 =||v + uf} Next, consider the distinct ele-
ments O, v - u, v + u. By Postulates A and B, either
M[O(v-u)(v+u)], M[(O(v+u)(v-u)], or M[(v+u)0(v-l'1)]. All of
these are impossible since ||v-ull =2 = |v+u|| and u and v
are non-zero, Therefore, there cannot be independent elements
x and y in X and X must be 1-dimensional.
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4 Ch.R.Diminnie, 4.G.White

Finally, suppose that Postulate 9 holds and let u = W§W

and v =~W%n for independent elements x and y in X,
u+v

Since u, —5—, u+v, and v are distinct, Postulate 9 implies
that M[} (9%!)v or M|u 9%! (u+v){. The first condition
implies that 2|v| = |u~v]] + [u+v|, while the second yields

"u+v" + "u-v" = 2ﬂul = 2"v|. Therefore, each implies that
M[(u-v)o(u+v)]. Since (u-v), 0, u, and (u+v) are distinct,
Postulate 9:implies that M[(u-v)Ou] or M[}O(u+vﬂ. These
conditions force u =v or u= -v, both of which violate
the independence of x and y. 4s in the previous argument,
it follows that X 1is 1-dimensional. This completes the proof
of Theorem 2.

Theorem 3 will give the connection between algebraic be-
tweenness and the remaining postulates, Its proof is straight-
forward and will be omitted here. All subsequent theorems and
examples will be concerned with meiric betweenness,

Theorem 3, For algebraic begtweenness, Postula~
tes 1 through 8 are true in any linear space.

We follow this with a rssult which shows that Postulates
2 and 3 fail to characterize strict convexify.

Theorem 2 For metric betweenness,

1. Postulates 2 and 3 are equivalent,
2. Postulates 2 and 3 are true in any normed space,

Proof. 1. Let a, b, x, and y be distinct ele~-
ments of X. It suffices to show that under the conditions
M[xab] and M[ayb], M[xay] if and only if M[x;yb]. From
M[xab] and M[ayb], we get the equations

o - x| =fa - x] + [o - af
and

Io -al =y - af + v -3l

If we assume M[?ay], leeey |7 = x| = fla - x| + ]y - al]l, then
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Jo -x] =]e -x|+]b-al =a -x]| +]y -af+0v -3l =
=fy - =} +§o - 7.

Therefore, M[xay] implies that M [xyb].
On the other hand, if u[xyb], i.e.,fb -x[=]y - x|+
+] b - 3], then

9 - xh=4v - =l = - 5f =la - x| +} v - s.

Thus, M[x',yb] implies that M[xay] and part 1 is completed.
2. It suffices to show that Postulate 2 is true in any
normed space. If we assume M[xab] and M [ayb], then

lo -xf=lla -=xl+]v -2l

and

o -aff=lly -ell+lv - 3]

Therefore,
la - x|+l -al=]b-xf-Ib-7]s
<l -=xli<fe -x]+l7 - ak

Hence, |7 - x||=]a - x[| +|y - a| and Postulate 2 holds.

The next sequence of theorems and examples concerns the
relationship between Postulate 1 and strict convexity. We
show first that strict convexity implies Postulate 1 and then,
after reformulating Postulate 1, we give examples of a space
which does not satisfy Postulate 1 and of a non-strictlr con=-
vex space which does,

Theorem 5. If (X, “'“) is strictly convex,
then Postulate 1 is true for metric betweenmess.

Proof. Iet a, b, x and y be distinc{ elements
of X and assume that M[xab] and M[aby]. Then, Theorems
1 and 3 imply that A[xay]. Since A[xa;y] implies M[xay].
the proof is cumplete.
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6 Ch.R.Diminnie, A.G.White

Lemma. For u, v, and w in X and non-negative

o, P, and b,
10 Jarv] = fful] + f vl implies that feulj+pvll = o ull + gl vll.
2. Jusrvew] = Jull+ vl + fwl} implies that Jjau + fv + dw| =

=alul +plv| + slwll

Proof. 4 proof for 1. may be found in [3].

2. assume Jju+ v+ wl]=Jufl+v]+llwll. By the symme-
try of u, v, and w in statement 2, we may assume that
p>o . &also, since

lu+v+w]esla+ v+lvlgllal+lvl+lwl=0u+v+wl,

it follows that Ju + vl + Ju|+|v] and lu+ v + w] =
=Jlu+ v| +||wll. Therefore, by part 1,

floow + pv + Bw| = || plu + v) + 6w - (P - alull>

[ pla+v) +&wl- (p-o)llu=pla+vi+Elwl- (p-cdfull=
= Plfall + vl + 8wl - (B - o full = afull + plhvl + Slwl.

The equality then follows directly from the triangle inequa-
lity.

Theorem &, rostulate 1 for metric beiweenness
is equivalent to the following statement:

(1') The conditions |lul]l = || v|| ="-'—1¥"= 1 and ||v] = |w]| =
="%“ =1 imply that fJu+ v + w|= 3.

Proof., Postulate 1 states that for distinct a,b,x,
and y in X, the conditions |b - x] =|la - x| +:[b - a|| and
Iy ~a] =)b-af +[]y - b] imply that |y - x|} = [la - x| +
+||y -~ afle We first note that this is equivalent to the fol-
lowing statement: (%) For non-zero u, v, and w, if[Ju + v| =
SHull + vl ama v+ wl=lvl+ful, thonfu+v+wl-
=||ul + v} +]|wl]s+ To show this, substitute u = a - x,
V=Db-a, and w=y -b for one direction, and for the
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Remmarks on strict convexity 7

converse, let x =0, a=un, b=u+v,a8nd ¥y =u+7V+ W,
Since (%) implies {1’), we need only show that (1) implies

{#). If u, v, and w are non-zero and satisfy the conditions
flu+- vl = Juf+fv]] and |lv+w]={v|+]|w], then the Lemma

implies that for u’ = w2—, v/ = =v—_ and w’ = 9=
P ° g * Ve’ wi*

Jul= vl 252 - 1
and

Lvell=Had= 252 - o
Therefore, by (1'), [u’+ v/+ w'ﬂ= 3= ||u'||+||v’||+"w'||, Fi-
nally, since u =fufu’, v =]v[v/, and w =|w| w’,

the Lemma implies that [lu+ v + w] = lul + |v]| +||w|. Thus,

(1/) and (%) are equivalent and the proof is complete,
Example 1, Let X be 3-dimensional space and

define | (x, vy, 2| = | x|}+ V32 25 Then, for u = (1,0,0),

v = (0,1,0), and w = (0,0,1), fJufl =l v] = | %%] = 1 and

vl = [ wli ="_y_-é_-v_v_" =1, but flu+ v+ wl=1+V2# 3. Hence,

this space does not satisfy Postulate 1 for meftric betweenness.
Example 2. Again let X be 3-dimensional space

but this time define [(x,y,z)| = '\/Izz- (x2+y2)| + 3224 x%4 5%,
To facilitate our work with [l «]], we will often refer to tne
following sets:

Xy ={(x-, ¥s 2)t 22 x° + y2}
and
X, = {(X, ¥, 2): 2°3 x° + yz}.

Note that if (x, y, 2) € X;, then H(x, v, 2} = \ré'\/x2+y2+z2
waile if (x, y, z) € X,, then t(x, v, 2} = 2|z]. To show
that [| « || is & norm, the only property which is not immediate
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is the triangle insanality. The proof of this inequality in-

volves all possible relationships between the vectors®
and u + v and the sets x1 and X2.

stralghtforward, they will be omitted here.
OQur work with this example will be divided into 3 steps:
1. The non-striet convexity of (Xf+l),

2. certain midpoint properties for the sets X,

and X

u’ v’
Since the steps are

2’

3. a proof that (X,[+]|) satisfies Postulate 1 for metric

betweenness,

ad.l. To show that (x,“-") is not strictly convex, let
= (0, 1/2, 1/2), and v = (1/2, 0, 1/2). Then “u“ =||v“ =

. ml
- 2
strictly convex.

ad.2, Let u = (x s ¥
assums that Ju| = “vn = i“*vi

ut+v

a) If u, ve X, then 55— eX,.

Proof. Since u, veX, and ﬂu||=xﬂz£ = ;'+y
1772 1°92

| 2] = |2
which implies that %‘Z € X,.

1/2. 1Ir 2y = ~Z5,

|= 1 but u # v. By Theorem 1, (X,|l+]) fails to be

and v = (x5, 3,5, 2,) and
= 1.

u+v :
then T=<—z“—- z

Then, since u, v € X,,
E™

“u-o-v" -—-Vx +X, ? (y1+y2) (—\[ +y1 + Vx yg <

1 1
<-125(|z1| + |25 V5"

This is imposeible since ||5§1" =

and

1. Therefore, Z4 = 2,

(x1+x2 + (y1+32) ‘(Vx1+y1
_ 2
= (z1+22) .

which implies that 5 ¢ X,

- 216 =~
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b) et wu, v € X,.

Ir %ex“ then u = v,

if 551 € X

Proof. Since u, veZX, and [uf=|v]-=1,

2 then u, v e 12 also.

x? + y$ + z$ = 1/2
and
2 2 2 _
X5+ Jp + 25 = 1/2.

If %!ay,tMHﬁmeﬂ%W=1,

-
'\/(x,1+x2)2 + (31+32)2 + ('z1+z2)" =

=VE=\&$+y$+z$+\h§+y§+zg

By the strict convexity of the usual Buclidean norm on 3-di-
mensional space, there is an &> 0 such that u =«v, Since
Jufl =]v])=1, we must have «=1 and hence, u =v,

On the other hand, if -u—;! € X2, then the condition

arvil _ | _
II ) II 1 implies that |z1+22| =1, .5ince u e X, and

al =1,

1/2 = x$ + yf + z?; 22?,

which implies that |z1|s1/2. A aimilar argument shows that
"22"<1/2. Therefore, 2z, = 2, = +1/2 and

2 2 _ _ .2
X7 + 3y = 1/4 = 23,

which shows that u e Xe. The same argument epplied to X5
Tor and Z5 shows that v e X2 also,

w 217 =



10 Ch.R.Diminnie, A.G.White

c) let ‘ueX, and ve X,

If 9%! € X1, then u = v,

+V
1r &% €X,,

Pro o f . In this case, since " || " "
x? + y$ + z1 1/2 while [2o0] = /2. If 3%! eX

then u e X2 also.

1° then

(x1+x2 + (y1+y2 + (z1+z2)2 = 2. Therefore, since v ¢ X,

V?=‘ﬂx1+x2)2-+(y1+yz)2-+(z1+z2)2s x$+y$+z$ ng+y2+z2

<yi7z +V2z§ = V2.

This implies that

lk;;+x2)2+ (y1+32)2 + (z1+z \/x1+y1+z1 g+yg+zg

and. the same argument as used in part b) shows that u = v,

If E%! €X,, then Iz + 22| = 1. By the same arguments
as used in part b), we obtain z24 = % 1/2 and hence, x1+y$ =
= 1/4 = z?. This shows that u € X2 and the proof is comple-

te.
ad.3. Now, we demonstrate that (X,]+]]) satisfies Postu-
late 1 for metric betweenness.

let u = (x1,y1,z1), v = (xz,yz,z2 and w = (x3,y3,23)
and assume that "u“ = "v“ =||wﬂ = "u+v" HXEE“ = 1. By

Part 2, all possible relationships between u, v, 5%! s @and

X%E and the sets X1 and X2 lead to 2 major cases:

either u, v, w € X2 or at least 2 of these points are equal,
If any 2 of these points are egual, then "u+v+w“ = 3 by the
lemma, Therefore, we need only consider the case where
u,v,w € X, and all 3 are distinct. By Part 2 a), u+v

W ame in X, also. Since Juf = v = [4] -] %" =

and

=1,
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it follows that |z1| | 2' = l 3| = 1/2 and |z,+2,| =
= |22+23| = 1 and hence, 2z, = 2y = 25 = +1/2. Further, sin-
ce u, v, w € X2’

(x1+x2+x3)2 + (y.,+32+y3)24

(v&1+y1 x2+y2 §+y§)2 < (|z1‘+ |22|+ |23|)2 =
2,

=(Z1+22+Z

which implies that u+ v +w e X2 also. Finally,

"u +V+ wll: 2|2.1 + 2, + 23| = 2(3/2) = 3.

Therefore, Theorem 6 implies that (X,"‘“) satiefies Postu-
late 1 for metric betweenness.

We conclude this paper with the main result, which states
that each remaining postulate characterizes strict convexity.

Theorem 7. Strict convexity of (X,"'“) is equi-
valent to each of Postulates 4 through B for metric between-
ness,

Proof. Since Postulates A, C, 2 and 3 are true in
any normed space, the squivalence of Postulates 4 and 5 and
of Postulates 6, 7, and 8 can be deduced from the results in'
[5]. Further, it is shown in [2] that gtrict convexity implies
Postulate 4, Therefore, it suffices to show that Postulate 5
implies strict convexity and that Postulate 6 is equivalent
to strict convexity.

1. Assume Postulate 5 and let len = “y" “—22"

Then, since this implies that M[0x(x+y)] and k[py(x+y)]

it follows by Postulate 5 that M[0xy] or M[yx(x+y)]. Sin-
ce| x|l =] 3], eech possibility implies that x =y and hen-
ce, (X}+f]) is strictly convex.

2, The proof that the strict convexity of (X,]|+||) implies
Postulate 6 is the same as the proof of Theorem 5. For the
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12 Ch.R.,Diminnie, A.G.White

converse, assume that Postulate 6 holds and let [x| =]y =
=|l§§1" = 1, Since these conditions imply that M[{-y)ox]

and since M[(-x)0x] is always true, Postulate 6 implies
either M[(-x)(-y)x] or M[(-y)(-x)x]. Because | x+y| = 2],
each of these implies that x = y. Therefore, (X,n°") is
gtrictly convex and the proof is complete.
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