

Wiesław A. Dudek

ON THE DIVISIBILITY THEORY IN (m, n) -RINGS1. Introduction

In some papers several authors generalize the study of ordinary rings to the case where the ring operations are respectively m -ary and n -ary. The existence of such theories has motivated us to extend the divisibility theory in ordinary rings to the case (m, n) -rings.

For self-containment we give some definitions and results which will be used in the sequel. A detailed investigation may be found in the papers mentioned in the references. We shall use terminology and notations of [8], [9] and [5].

A non-empty set R is called an (m, n) -ring if the following conditions are satisfied:

- (i) There exists an m -ary operation g , called the addition, such that $\langle R, g \rangle$ is a commutative m -group.
- (ii) There exists an n -ary operation f , called the multiplication, such that $\langle R, f \rangle$ is an n -semigroup.
- (iii) The operation f is distributive with respect to g , i.e.

$$(1) \quad f\left(x_1^{i-1}, g\left(y_1^m\right), x_{i+1}^n\right) = g\left(\left\{f\left(x_1^{i-1}, y_j, x_{i+1}^n\right)\right\}_{j=1}^m\right)$$

for all $i=1, 2, \dots, n$ and $x_1, \dots, x_n, y_1, \dots, y_m \in R$.

This paper and [9] make basic part of the paper which was awarded the prize in J. Marcinkiewicz competition for the best student's work in the academic year 1976/77.

An ordinary ring is a special case of an (m,n) -ring, namely for $m=n=2$.

The concept of (m,n) -rings was introduced by Čupona [7] and, in a special case, by Boccioni [1]. The more general concept is introduced by Celakoski in [3]. In [6] is generalized the method of constructing quotientrings to the case of (m,n) -rings. The paper [5] is concerned with homomorphism theorems and some idealtheoretic aspects. I described (see [10]) a special class of n -groups $\langle G, f \rangle$ which are (n,n) -rings over itself i.e. $\langle G, f, f \rangle$ are (n,n) -rings. For $n=2$ this class is trivial.

A zero of \mathcal{R} (if it exists) is an element $z \in R$, such that $f(z, x_2^n) = f(x_2, z, x_3^n) = \dots = f(x_2^n, z) = z$. If a zero exists, it is unique and it is denoted by 0 . R^* denotes the set $R \setminus \{0\}$ if 0 exists and R otherwise. A neutral element of $\langle R, f \rangle$ is called an identity of \mathcal{R} and it is denoted by e . For $n > 2$ there exists a commutative (n,n) -ring which every element is an identity in this (n,n) -ring [10]. Moreover, there exists an (m,n) -ring without any zero and any identity. For example: a two-elements non-idempotent 3-group considered as a $(3,3)$ -ring has not a zero and an identity (see also §2.3 in [5]).

An element $x \in R$ is called an additive or multiplicative idempotent, if x is an idempotent in $\langle R, g \rangle$ or $\langle R, f \rangle$ respectively. Since the addition is commutative, an additive idempotent is a neutral element for this operation. It is easily verified that if $a_1, \dots, a_m, b \in R$ are additive idempotents, then $g(a_1^m)$ and $f(x_1^{i-1}, b, x_{i+1}^n)$ are additive idempotents for all $x_1, \dots, x_n \in R$ and $i=1, 2, \dots, n$. Hence, if \mathcal{R} has only one additive idempotent, this idempotent is a zero of \mathcal{R} .

A non-empty subset G of an m -group $\langle R, g \rangle$ is called an m -subgroup of $\langle R, g \rangle$, if it is closed under the operation g and if $x \in G$, then also $\bar{x} \in G$. An m -subgroup $\langle G, g \rangle$ of $\langle R, g \rangle$ is called an ideal of $\langle R, g, f \rangle$, if $f(x_1^{i-1}, a, x_{i+1}^n) \in G$ for all $a \in G$, $x_1, \dots, x_n \in R$ and $i=1, 2, \dots, n$.

In the sequel by $g(A_1, \dots, A_m)$, where A_1, \dots, A_m are ideals of \mathcal{R} , we mean the set $\{g(a_1^m) : a_i \in A_i\}$. The symbol $f(B_1, \dots, B_n)$, where B_1, \dots, B_n are non-empty subsets of \mathcal{R} , will denote the set

$$(2) \quad \left\{ g_{(k)} \left(\left\{ f(a_{i1}^{in}) \right\}_{i=1}^{k(m-1)+1} \right) : a_{ij} \in B_j \right\}.$$

The next proposition is very usefull for us in the sequel

Proposition 1.1. (see [5]). Let \mathcal{R} be an (m, n) -ring.

- (i) $\overline{f(x_1^n)} = f(x_1^{i-1}, \bar{x}_i, x_{i+1}^n)$ for all $x_1, \dots, x_n \in \mathcal{R}$ and $i=1, 2, \dots, n$.
- (ii) The intersection an arbitrary number of ideals of \mathcal{R} is also an ideal of \mathcal{R} ,
- (iii) $g(A_1, \dots, A_m)$ is an ideal of \mathcal{R} , if A_1, \dots, A_m are ideals of \mathcal{R} .
- (iv) If \mathcal{R} is commutative and some B_i is an ideal of \mathcal{R} , then $f(B_1, \dots, B_n)$ is an ideal, too.

For a non-empty subset A of an (m, n) -ring \mathcal{R} , we define:

$$\bar{A} = \{\bar{x} \in \mathcal{R} : x \in A\},$$

$$\tilde{A} = \{x \in \mathcal{R} : \bar{x} \in \bar{A}\}.$$

The following proposition is very easy and we omit the proof.

Proposition 1.2. Let \mathcal{R} be an (m, n) -ring.

- (i) If A is a m -subgroup of $\langle \mathcal{R}, g \rangle$, then $\bar{A} \subset A$.
- (ii) If there exists a natural number k such that $\bar{x} = \bar{x}^k$ for all elements of an m -subgroup \bar{A} , then $\bar{A} = A$.
- (iii) A is an ideal of \mathcal{R} if and only if, \bar{A} is an ideal.
- (iv) If A is an ideal, then \tilde{A} is an ideal, too.

Direct computation show that

Proposition 1.3. If \bar{A} is a 3-subgroup of a 3-group, then $\bar{A} = A$.

By an i -center of \mathcal{R} we mean the set

$$(3) \quad C_i(\mathcal{R}) = \left\{ a \in R : f(a, x_2^n) = f(x_2^i, a, x_{i+1}^n) \text{ for } x_2, \dots, x_n \in R \right\}.$$

The set $C(\mathcal{R}) = \bigcap_{i=1}^n C_i(\mathcal{R})$ is called the center of an (m, n) -ring \mathcal{R} . Obviously $C_1(\mathcal{R}) = R$ for all (m, n) -rings. Moreover, there exists (m, n) -rings such that an i -center is empty for some $i=2, 3, \dots, n$. Indeed, it is easily verified that if $\langle R, g \rangle$ is an idempotent commutative m -group ($m > 2$) and e_k is an n -ary projection (i.e. $e_k(x_1^n) = x_k$), then $\mathcal{R}_k = \langle R, g, e_k \rangle$ is an (m, n) -ring for $k=1$ and $k=n$. Obviously, the set $C_i(\mathcal{R}_k)$ is empty for all $i=k$.

Proposition 1.4. If $C_i(\mathcal{R})$ is non-empty, then it is an (m, n) -subring of \mathcal{R} .

Proof. Let $a_1, \dots, a_m \in C_i(\mathcal{R})$, then for all $x_2, \dots, x_n \in R$, we have $f(x_2^i, g(a_1^m), x_{i+1}^n) = g(f(x_2^i, a_j, x_{i+1}^n)_{j=1}^m) = g(f(a_j, x_2^n)_{j=1}^m) = f(g(a_1^m), x_2^n)$ by distributivity. This implies that $g(a_1^m) \in C_i(\mathcal{R})$.

Now, if $a \in C_i(\mathcal{R})$, then $f(x_2^i, \bar{a}, x_{i+1}^n) = f(\bar{x}_2, x_3^i, a, x_{i+1}^n) = f(a, \bar{x}_2, x_3^n) = f(\bar{a}, x_2^n)$ by Prop. 1.1. Hence $a \in C_i(\mathcal{R})$, i.e. $C_i(\mathcal{R})$ is an m -subgroup of $\langle R, g \rangle$.

If $a_1, \dots, a_n \in C_i(\mathcal{R})$, then we obtain

$$\begin{aligned} f(x_2^i, f(a_1^n), x_{i+1}^n) &= f(f(x_2^i, a_1^{n-i+1}), a_{n-i+2}^n, x_{i+1}^n) = \\ &= f(f(a_1, x_2^i, a_2^{n-i+1}), a_{n-i+2}^n, x_{i+1}^n) = f(a_1, f(x_2^i, a_2^{n-i+2}), a_{n-i+3}^n, x_{i+1}^n) = \\ &= f(a_1, f(a_2, x_2^i, a_3^{n-i+2}), a_{n-i+3}^n, x_{i+1}^n) = f(a_1^2, f(x_2^i, a_3^{n-i+3}), a_{n-i+4}^n, x_{i+1}^n) = \\ &= \dots = f(f(a_1^n), x_2^n) \end{aligned}$$

for all $x_2, \dots, x_n \in R$. Hence $f(a_1^n) \in C_i(R)$, which completes the proof.

Proposition 1.5. If $C(R)$ is non-empty, then it is a maximal commutative (m, n) -subring of R .

Corollary 1.6. An (m, n) -ring R is commutative if and only if, $C(R) = R$.

It is well known that the group S_n is generated by cycles $(1, 2)$ and $(1, 2, \dots, n)$. Hence

Corollary 1.7. An (m, n) -ring R is commutative if and only if, $C_2(R) = C_n(R) = R$.

Proposition 1.8. An (m, n) -sfield R is commutative if and only if, $C_i(R) = R$ for some $i=2, \dots, n$.

Proof. An (m, n) -ring R is an (m, n) -sfield, if $\langle R, f \rangle$ is an n -group. Let \hat{x} be a skew element (under f) to x . Since $C_i(R) = R$, we have $a = f(a, \hat{x}, x^{(n-2)}) = f(x, a, \hat{x}, x^{(n-3)})$ for all $a, x \in R$. Applying Corollary 9 in [8], we infer that R is commutative.

Observe that the standard i -center of an n -semigroup $\langle R, f \rangle$, i.e. the set

$$(4) \quad Z_i(R) = \left\{ a \in R : f(a, x_2^n) = f(x_i, x_2^{i-1}, a, x_{i+1}^n) \text{ for } x_2, \dots, x_n \in R \right\}$$

is an m -subgroup of $\langle R, g \rangle$. In general, it is not an (m, n) -subring of R . Indeed, if R is a non-commutative $(m, 4)$ -ring, then we have $f(x_1^2, f(a_1^4), x_4) = f(f(a_1^4), x_1^2, x_4)$ for all $a_1, \dots, a_4 \in Z_3(R)$ and $x_1, x_2, x_4 \in R$. Hence, in general, it is not true that $f(a_1^4) \in Z_3(R)$.

An (m, n) -ring R is called cancellative, if an n -semigroup $\langle R, f \rangle$ is cancellative [9]. A cancellative (m, n) -ring has not zero-divisors [6]. I proved in [10] that a cancellative (m, n) -ring R has not additive idempotents, or only zero (if it exists) is an additive idempotent, or $\langle R, g \rangle$ is an idempotent m -group.

2. (m,n) -domains

A commutative and cancellative (m,n) -ring \mathfrak{R} is called an (m,n) -domain, if for all $y \in \mathfrak{R}$ there exist $x_2, \dots, x_n \in \mathfrak{R}$ such that $y = f(y, x_2^n)$. In other words, an (m,n) -ring \mathfrak{R} is an (m,n) -domain, if $\langle \mathfrak{R}, f \rangle$ is an n -domain [9].

Let x and y be elements of \mathfrak{R} . We say that x divides y if and only if, x divides y in $\langle \mathfrak{R}, f \rangle$, i.e. if there exist $x_2, \dots, x_n \in \mathfrak{R}$ such that $y = f(x, x_2^n)$.

Proposition 2.1. Let \mathfrak{R} be an (m,n) -domain and let $a, b \in \mathfrak{R}$.

- (i) $a \mid \bar{a}^k$ for all natural k .
- (ii) If $\bar{a} \mid b$, then $a \mid b$.
- (iii) If $a \mid b$, then $\bar{a} \mid \bar{b}$.
- (iv) If $\bar{a} \mid \bar{b}$, then $a \mid b$.
- (v) If $a \mid b_i$ for $i=1, \dots, m$, then $a \mid g(b_1^m)$.

Proof. From Proposition 1.1 immediately follows (i)-(iv). The condition (i) implies (v).

Notice that the inverse implications are not true. For example: if \mathfrak{R} is an $(5,3)$ -ring derived from Galois field $GF(3)$, then we put $a = \bar{a} = \bar{b} = \bar{c}$, where a is a zero of $GF(3)$. It is easily verified that $a \mid \bar{b}$ but $\bar{a} \nmid b$, $\bar{a} \mid \bar{b}$ but $a \nmid b$, etc.

As in the binary case, we can prove

Proposition 2.2. Let \mathfrak{R} be an $(2,n)$ -domain. If there exist $\text{GCD}\{a, b\}$ and $\text{GCD}\{a, a+b\}$, then they are equal.

Observe that if \mathfrak{R} is an $(m+1,n)$ -ring of integers numbers, then $\text{GCD}\left\{\underbrace{m, 1, \dots, 1}_m\right\} = [1]$ but $\text{GCD}\left\{\underbrace{m, m+1, \dots, m+1}_m\right\} = \text{GCD}\{m, 2m\} = [m]$. Hence, in general, it is not true that $\text{GCD}\{a_1, \dots, a_m\} = \text{GCD}\{a_1, g(a_1^m)\}$ for $m \geq 2$.

From Proposition 2.1 and Proposition 1.2, we obtain

Proposition 2.3. The set $A = \{x \in \mathfrak{R}: a \mid x\}$ is an ideal of an (m,n) -domain \mathfrak{R} for every $a \in \mathfrak{R}$. Moreover, $\bar{A} = \{\bar{x} \in \mathfrak{R}: a \mid x\}$ and $\tilde{A} = \{x \in \mathfrak{R}: a \mid \bar{x}\}$ are ideals, too.

The ideal generated by an element $a \in R$ is called a principal ideal and is denoted by $\langle a \rangle$. Observe that an ideal B is a principal ideal generated by b if and only if $B = \{x \in R: b|x\}$. Obviously $\langle b \rangle = R$ if and only if $b \in D_R$.

Proposition 2.4. If $a, b \in R$, where R is an (m, n) -domain, then

- (i) $a|b$ if and only if $\langle b \rangle \subset \langle a \rangle$.
- (ii) $a \sim b$ if and only if $\langle b \rangle = \langle a \rangle$.
- (iii) $\overline{\langle a \rangle} = \langle \bar{a} \rangle \subset \langle a \rangle$.
- (iv) If $a = g(a_1^m)$, then $\langle a \rangle \subset g(\langle a_1 \rangle, \dots, \langle a_m \rangle)$.
- (v) If b is an additive idempotent, then $\langle b \rangle$ is an additive idempotent ideal.
- (vi) $f(\langle a_1 \rangle, \dots, \langle a_n \rangle) = \langle f(a_1^n) \rangle$.

Proof. If $b \in \langle a \rangle = \langle g(a_1^m) \rangle$, then $b = f(g(a_1^m), x_2^n) = g(\{f(a_i, x_2^n)\}_{i=1}^m)$. Hence (iv). On the other hand, if $b \in g(\langle a \rangle, \dots, \langle a \rangle)$ and a is an idempotent, then $b = g(\{f(a, x_{i2}^m)\}_{i=1}^m) = g(\{f(a, t_2^{n-1}, z_i)\}_{i=1}^m) = f(a, t_2^{n-1}, g(z_1^m)) \in \langle a \rangle$, where $t_i \in E_a$ and $z_i = f(t_n, x_{i2}^m)$. This implies (v). The condition (vi) follows from (1) and Proposition 1.1.

Corollary 2.5. If R is an (m, n) -domain such that $a = \bar{a}^k$ for all $a \in R$ and some fixed k (in particular, if R is a $(3, n)$ -domain), then $\langle a \rangle = \langle \bar{a} \rangle$.

An ideal B is called prime, if $f(a_1^n) \in B$ implies that $a_i \in B$ for some $i=1, 2, \dots, n$. A principal ideal of R is called a maximal principal ideal, if it is maximal (with respect to inclusion) in the set of proper principal ideals of R .

Proposition 2.6. Let R be an (m, n) -domain and let $b \in R^*$.

- (i) b is an invertible element of R if and only if $\langle b \rangle = R$.

(ii) b is irreducible if and only if $\langle b \rangle$ is a maximal principal ideal.

(iii) b is prime if and only if the proper ideal $\langle b \rangle$ is prime.

Proof. As an example we prove (iii). If b is prime and $f(a_1^n) \in \langle b \rangle$, then $b|f(a_1^n)$. Since b is prime, $b|a_i$ for some i . Hence $a_i \in \langle b \rangle$, i.e. $\langle b \rangle$ is a prime ideal of \mathcal{R} .

Now, let $\langle b \rangle$ be a prime ideal and let $b|f(a_1^n)$. Then $f(a_1^n) \in \langle b \rangle$. This means that $a_i \in \langle b \rangle$ for some i . Therefore $b|a_i$ and b is prime.

Proposition 2.7. Let \mathcal{R} be an (m, n) -domain. If $a_1, \dots, a_p \in R^*$ and $g_{(k)}(\langle a_1 \rangle, \dots, \langle a_p \rangle) = \langle d \rangle$, where $p = k(m-1)+1$, then $\text{GCD}\{a_1, \dots, a_p\}_p = [d]$.

Proof. From Proposition 1.1, $\bigcap_{i=1}^p \langle a_i \rangle$ is an ideal of \mathcal{R} . If $c \in \bigcap_{i=1}^p \langle a_i \rangle$, then \bar{c} , too. Hence, by commutativity, we have

$$a_j = g_{(k)}\left(\bar{c}, \underset{c}{\overset{(j-2)}{\dots}}, a_j, \underset{c}{\overset{(n-j)}{\dots}}, \bar{c}, \underset{c}{\overset{(n-2)}{\dots}}, \bar{c}, \underset{c}{\overset{(n-2)}{\dots}}, \bar{c}, \underset{c}{\overset{(n-2)}{\dots}}\right),$$

i.e. $a_j \in g_{(k)}(\langle a_1 \rangle, \dots, \langle a_p \rangle)$ for all $j=1, 2, \dots, p$. Therefore $d|a_j$ for every a_j . If there exists $b \in R$ such that $b|a_i$, then $a_i = f(b, z_{i2}^{in})$ and $d = g_{(k)}(\{f_{(2)}(b, z_{i2}^{in}, x_{i2}^{in})\}_{i=1}^p) = g_{(k)}(\{f(b, t_2^{n-1}, u_i)\}_{i=1}^p) = f(b, t_2^{n-1}, g_{(k)}(u_i^p))$, where $t_i \in E_a$, $u_i = f_{(2)}(t_n, z_{i2}^{in}, x_{i2}^{in})$. This implies that $\text{GCD}\{a_1, \dots, a_p\}_p = [d]$.

Proposition 2.8. Let \mathcal{R} be an (m, n) -domain. If $a_1, \dots, a_p \in R^*$, then $\text{LCM}\{a_1, \dots, a_p\}_p = [d]$ if and only if $\bigcap_{i=1}^p \langle a_i \rangle = \langle d \rangle$.

Proof. If $[d] = \text{LCM}\{a_1, \dots, a_p\}_p$, then $d \in \bigcap_{i=1}^p \langle a_i \rangle$. Hence $\langle d \rangle \subset \bigcap_{i=1}^p \langle a_i \rangle$. On the other hand, any element

$c \in \bigcap_{i=1}^p \langle a_i \rangle$ is a common multiple of each of the a_i . But $[d] = \text{LCM}\{a_1, \dots, a_p\}$, so that $d|c$. This means that $c \in \langle d \rangle$, i.e. $\bigcap_{i=1}^p \langle a_i \rangle \subset \langle d \rangle$. Therefore $\bigcap_{i=1}^p \langle a_i \rangle = \langle d \rangle$.

Conversely, if $\langle d \rangle = \bigcap_{i=1}^p \langle a_i \rangle$, then for all $i=1, 2, \dots, p$ we have $c = f(a_i, x_{i2}^{\text{in}})$. If there exists $b \in R$ such that $a_i|b$ for every i , then $b \in \bigcap_{i=1}^p \langle a_i \rangle = \langle d \rangle$ i.e. $[d] = \text{LCM}\{a_1, \dots, a_p\}$.

An (m, n) -domain R is called a principal ideal (m, n) -domain, if every ideal of R is a principal ideal.

Proposition 2.9. Let R be a principal ideal (m, n) -domain and let $a_1, \dots, a_p \in R^*$, where $p = k(m-1)+1$. Then $\text{GCD}\{a_1, \dots, a_p\} = [d]$ if and only if, $g_{(k)}(\langle a_1 \rangle, \langle a_2 \rangle, \dots, \langle a_p \rangle) = \langle d \rangle$.

Proof. If $\langle b \rangle = g_{(k)}(\langle a_1 \rangle, \langle a_2 \rangle, \dots, \langle a_p \rangle)$, then $[b] = \text{GCD}\{a_1, \dots, a_p\}$, from Proposition 2.7. Hence $b \sim d$ and $\langle b \rangle = \langle d \rangle$.

As in the binary case (see e.g. [2] Theorem 6-9), we prove:

Proposition 2.10. If $B_1 \subset B_2 \subset B_3 \subset \dots$ is any infinite sequence of ideals of a principal ideal (m, n) -domain R , then there exists an integer p such that $B_p = B_s$ for all $s \geq p$.

Corollary 2.11. If a_1, a_2, a_3, \dots is any infinite sequence of elements of a principal ideal (m, n) -domain and $a_{i+1}|a_i$ for all i , then $a_p \sim a_s$ for some p and all $s \geq p$.

An (m, n) -domain R is a factorization (unique factorization) (m, n) -domain, if $\langle R, f \rangle$ is a factorization (unique factorization) n -domain. Therefore Proposition 4.8 from [9] implies that an (m, n) -domain is a unique factorization (m, n) -domain if and only if, R is a factorization (m, n) -domain and each irreducible element is prime.

Proposition 2.12. Each principal ideal (m,n) -domain is a unique factorization (m,n) -domain.

Proof. First we prove that a principal ideal (m,n) -domain R is a factorization (m,n) -domain. Observe that for every $a \in R^* \setminus D_R$ there exists $d \in R$ such that $d|a$ and d is an irreducible element. Indeed, if a is irreducible, then $d = a$. On the other hand, if a has a factorization

$$(5) \quad a = f_{(t)}(a_1, \dots, a_k, b_{k+1}, \dots, b_{t(n-1)+1}),$$

where $k \geq 2$, $b_i \in D_R$ and $a_j \in R^* \setminus D_R$, then some a_j is irreducible. If any a_j is not irreducible, then every a_j has a factorization. Let a_1 has a factorization

$$a_1 = f_{(t_1)}(a_1^{(1)}, \dots, a_{k_1}^{(1)}, b_{k_1+1}^{(1)}, \dots, b_{t_1(n-1)+1}^{(1)}),$$

where $a_i^{(1)} \in R^* \setminus D_R$, $b_j^{(1)} \in D_R$ and $k_j \geq 2$. If any $a_i^{(1)}$ is not irreducible, then we have

$$a_1^{(1)} = f_{(t_1')}(a_1^{(2)}, \dots, a_{k_2}^{(2)}, b_{k_2+1}^{(2)}, \dots, b_{t_1(n-1)+1}^{(2)}).$$

Continuing this argument, we arrive (after p steps) at some $a_1^{(p)}$. Indeed, if all $a_i^{(p)}$ can be factored into a finite product of irreducible elements, then we have an infinite sequence of elements $a_1^{(0)} = a_1, a_1^{(1)}, a_1^{(2)}, \dots$ such that $a_1^{(s)} \mid a_1^{(s-1)}$ for all natural s . Corollary 2.11 shows that there exists an integer k such that $a_1^{(k)} \sim a_1^{(p)}$ for all $p \geq k$. Hence $a_1^{(k)} = f(a_1^{(k+1)}, x_2, \dots, x_n)$ for some $x_2, \dots, x_n \in D_R$ (see Proposition 2.7 in [9]). Therefore

$$\begin{aligned}
 a_1^{(k)} &= f(a_1^{(k+1)}, x_2, \dots, x_2, z) = \\
 &= f(p)(a_1^{(k+1)}, \dots, a_s^{(k+1)}, b_{s+1}^{(k+1)}, \dots, b_{p(n-1)+1}^{(k+1)}) = \\
 &= f(a_1^{(k+1)}, x_2, \dots, x_2, u),
 \end{aligned}$$

where $a_i^{(k+1)} \in R^* \setminus D_R$, $z, u, x_i, b_j^{(k+1)} \in D_R$ and

$$u = f(p)(a_2^{(k+1)}, a_3^{(k+1)}, \dots, a_s^{(k+1)}, b_{s+1}^{(k+1)}, \dots, b_{p(n-1)+1}^{(k+1)}, y).$$

The cancellative law implies that $u = z$, i.e. $a_2^{(k+1)}, \dots, a_s^{(k+1)} \in D_R$, which is impossible. Hence every $a \in R^* \setminus D_R$ has an irreducible divisor.

In the same manner we prove that every a_i from (5) has an irreducible divisor c_i , i.e. $a_i = f(c_i, x_2^{(i)}, x_3^{(i)}, \dots, x_n^{(i)})$. Therefore

$$(6) \quad a = f(t)(c_1, c_2, \dots, c_k, z, b_{k+1}, b_{k+2}, \dots, b_{t(n-1)}),$$

where

$$(7) \quad z = f(k)(x_2^{(1)}, x_3^{(1)}, \dots, x_n^{(1)}, \dots, x_2^{(k)}, \dots, x_n^{(k)}, b_{t(n-1)+1}).$$

If $z \in D_R$, then a has a factorization (6). If $z \notin D_R$, then using above procedure we may prove that z has a factorization into a finite product of irreducible elements. Hence every $a \in R^* \setminus D_R$ has a factorization, i.e. R is a factorization (m, n) -domain.

Now, we prove that every irreducible element $'d'$ is prime. Let $d \mid f(a_1^n)$. In view of commutativity, there is no loss of generality, if we assume that $d \mid a_i$ for $i=2, 3, \dots, n$. Hence $\text{GCD}\{d, a_i\} = D_R$ for all $i=2, 3, \dots, n$. Since R is a (m, n) -do-

main, then $a_1 = f(a_1, t_2^n)$ for some $t_2, t_3, \dots, t_n \in D_R$. On the other hand (see Proposition 2.9), there exists $x_{jk}^{(i)} \in R$ such that

$$t_i = g(f(a_i, x_{12}^{(i)}, \dots, x_{1n}^{(i)}), \\ f(d, x_{22}^{(i)}, \dots, x_{2n}^{(i)}), \dots, f(d, x_{m2}^{(i)}, \dots, x_{mn}^{(i)})) .$$

The distributive law and direct computation show that

$$a_1 = f(a_1, t_2, t_3, \dots, t_n) = \\ = f(a_1, g(f(a_2, x_{12}^{(2)}, \dots, x_{1n}^{(2)}), f(d, x_{22}^{(2)}, \dots, x_{2n}^{(2)}), \dots, f(d, x_{m2}^{(2)}, \dots, x_{mn}^{(2)}))), \\ = g(f(f(a_3, x_{12}^{(3)}, \dots, x_{1n}^{(3)}), f(d, x_{22}^{(3)}, \dots, x_{2n}^{(3)}), \dots, f(d, x_{m2}^{(3)}, \dots, x_{mn}^{(3)}))), \\ \dots \dots \dots \\ = g(f(f(a_n, x_{12}^{(n)}, \dots, x_{1n}^{(n)}), f(d, x_{22}^{(n)}, \dots, x_{2n}^{(n)}), \dots, f(d, x_{m2}^{(n)}, \dots, x_{mn}^{(n)}))) = \\ = g(f(f(a_1^n), z_{12}^{1n}), f(d, z_{22}^{2n}), \dots, f(d, z_{m2}^{mn}))$$

for some $z_{ij} \in R^*$.

Since $d \nmid f(a_1^n)$ and $d \mid f(d, z_{12}^{1n})$, we have $d \mid a_1$. Hence d is prime, which completes our proof.

3. Final remarks

An (m, n) -domain R_0 with θ is called Euclidean, if there exists a function δ (the Euclidean valuation) such that the following conditions are satisfied:

- (i) $\delta(x)$ is a positive integral number for every $x \in R_0$,
- (ii) $\delta(x) = 0$ if and only if $x = \theta$,
- (iii) $\delta(f(x_1^n)) = \delta(x_1) \cdot \delta(x_2) \cdot \dots \cdot \delta(x_n)$ for all x_1, x_2, \dots, x_n , $y \in R_0$ such that $a = g(f(b, x_2^n), y, \theta, \dots, \theta)$, where either $y = \theta$ or $\delta(y) < \delta(b)$.

It is clear that $\delta(x) = 1$ if and only if, $x \in D_{R_0}$.

Moreover, if two elements $a, b \in R_0$ are associates, then $\delta(a) = \delta(b)$.

Proposition 3.1. Every Euclidean (m, n) -domain is a principal ideal (m, n) -domain. Moreover, it is a unique factorization (m, n) -domain.

The proof is standard.

Let R_0 be a Euclidean (m, n) -domain with valuation δ . From (iv) for any $a \in R_0$ and $b \in R_0^*$ we have $a = g(f(b, x_2^n), y, \theta, \dots, \theta)$ for some $x_2, \dots, x_n, y \in R_0$. If $y = \theta$, then $b|a$. If $y \neq \theta$, then $\delta(y) < \delta(b)$ and there exists $z_2, z_3, \dots, z_n, y_1 \in R_0$ such that $b = g(f(y, z_2^n), y_1, \theta, \dots, \theta)$. As in a binary case we can prove that the final nonzero remainder of this n -ary Division Algorithm is a greatest common divisor of a and b .

A very important role in the theory of (m, n) -rings is played by $(m, 2)$ -rings. We give several particular interesting properties of $(m, 2)$ -rings. In general, these properties are not true for (m, n) -rings, if $n > 2$.

Proposition 3.2. Let $a_1, \dots, a_p, b_p \in R^*$, where R is an $(m, 2)$ -domain and $a_1 b_1 = a_2 b_2 = \dots = a_p b_p = d$.

- (i) If $\text{LCM}\{a_1, \dots, a_p\}$ exists, then $\text{GCD}\{b_1, \dots, b_p\}$ also exists and $\text{LCM}\{a_1, \dots, a_p\} \cdot \text{GCD}\{b_1, \dots, b_p\} = [d]$.
- (ii) If $\text{GCD}\{ra_1, \dots, ra_p\}$ exists for all $r \in R^*$, then $\text{LCM}\{b_1, \dots, b_p\}$ also exists and we have $\text{GCD}\{a_1, \dots, a_p\} \cdot \text{LCM}\{b_1, \dots, b_p\} = [d]$.
- (iii) $\text{LCM}\{a_1, \dots, a_p\}$ exists if and only if $\text{GCD}\{a_1, \dots, a_p\}$ exists.
- (iv) If R is a principal ideal $(m, 2)$ -domain, then every nontrivial ideal of R is the product of a finite number of prime ideals.

The proof is analogous to the case of ordinary rings (see [2] p.96-101).

The author wishes to express his sincere thanks to Doctor E. Głązak, who examined the manuscript and suggested many improvements.

REFERENCES

- [1] D. Boccioni : Caratterizzazioni di una classe di anelli generalizzati, *Rend. Sem. Mat. Univ. Padova* 35 (1965) 116-127.
- [2] D.M. Burton : A first course in rings and ideals. Reading, Mass. 1970.
- [3] N. Celakoski : On (F,G) -rings. *God. Sb. Mat. Fak.* Skopje 28 (1977) 5-15.
- [4] G. Crombez : On partially ordered n -groups, *Abh. Math. Sem. Univ. Hamburg* 38 (1972) 141-146.
- [5] G. Crombez : On (n,m) -rings, *Abh. Math. Sem. Univ. Hamburg* 37 (1972) 180-199.
- [6] G. Crombez, J. Timm : On (n,m) -quotient rings, *Abh. Math. Sem. Univ. Hamburg* 37 (1972) 200-203.
- [7] Г. Чупона : За $[m,n]$ -прстените, *Билтен МФ на СФМ* 16 (1965) 5-10.
- [8] W.A. Dudek : Remarks on n -groups, *Demonstratio Math.* 13 (1980) 165-181.
- [9] W.A. Dudek : On divisibility in n -semigroups, *Demonstratio Math.* 13 (1980) 355-367.
- [10] W.A. Dudek : Autodistributive n -groups, *Comm. Math., Prace Matematyczne*, to appear.
- [11] W.A. Dudek, K. Głązak, B. Gleichgewicht : A note on the axioms of n -groups, *Colloq. Math. Soc. J. Bolyai*, (Proceedings of the Conference on Universal Algebra, Esztergom 1977, Hungary).
- [12] K. Głązak, B. Gleichgewicht : Abelian n -groups, *Colloq. Math. Soc. J. Bolyai*, Esztergom 1977.

INSTITUTE OF MATHEMATICS, PEDAGOGICAL UNIVERSITY, CZĘSTOCHOWA
Received April 12, 1978.