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1. Introduction 
In some papers several authors generalize the study of 

ordinary rings to the case where the ring operations are res-
pectively m-ary and n-ary. The existence of such theories has 
motivated us to extend the divisibility theory in ordinary 
rings to the case (m,n)-rings. 

I'or self-containment we give some definitions and results 
which will be used in the sequel. A detailed investigation may 
be found in the papers mentioned in the references. We shall 
use terminology and notations of [ V ], [9] and [ 5 ] . 

A non-empty set R is called an (m,n)-ring if the follow-
ing conditions are satisfied: 

(i) There exists an m-ary operation g, called the addi-
tion, such that < R , g > is a commutative m-group. 

(ii) There exists an n-ary operation f, called the multi-
plication, such that < R , f > is an n-semigroup. 

(iii) The operation f is distributive with respect to g, 
i.e. 

i=1,2 n and x1 xn,y1,... ,ym e R. 

This paper and [ 9 ] make basic part of the paper which was 
awarded^the prize in J.Marcinkiewicz competition for the best 
student's work in the academic year 1976/77. 

( 1 ) 

for all 
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2 W.A.Dudek 

An ordinary ring is a special case of an (m,n)-ring, na-
mely for m=n=2. t 

The concept of (m,nj-rings was introduced by Cupona [ 7 ] 
and, in a special case, by Boccioni [ij. The more general con-
cept is introduced by Celakoski in [3]. In [6] is generalized 
the method of constructing quotientrings to the case of (m,n)~ 
-rings. The paper [5] is concerned with homomorphism theorems 
and some idealtheoretic aspects. I described (see [10J ) a spe-
cial class of n-groups <G,f> which are (n,n)-rings over it-
self i.e. <G,f,f> are (n,n}-rings. For n=2 this class is 
trivial. 

A zero of 31 (if it exists) is an element z e R, such 
that f^z.x") = f(x2,z,x") = ... = f(*2»z) = z' I f a z e r o 

exists, it is unique and it is denoted by 9 . R* denotes the 
set if 0 exists and R otherwise. A neutral ele-
ment of <R,f> is called an identity of & and it is denoted 
by e. For n > 2 there exists a commutative (n,n)-ring which 
every element is an identity in this (n,n)-ring [10] . Moreover, 
there exists an (m,n)-ring without any zero and any identity. 
For example: a two-elements non-idempotent 3-group considered 
as a (3,3)-ring has not a zero and an identity (see also §2.3 
in [5]). 

An element x e R is called an additive or multiplicative, 
idempotent, if x is an idempotent in <R,g> or <R,f> res-
pectively. Since the addition is commutative, an additive idem-
potent is a neutral element for this operation. It is easily 
verified that if a^,...,a , b e R are additive idempotents, 
then g(a™) a^d f a r e additive idempotents 
for all e R and i=1,2,...,n. Hence, if 31 has 
only one additive idempotent, this idempotent is a zero of Jl . 

A non-empty subset G of an m-group <R,g> is called an 
m-subgroup of <R,g> , if it is closed under the operation g 
and if x e G, then also x e G. An m-subgroup <G,g> of 
<R,g> is called an ideal of <R,g,f> , if f^x^"1 e G 
for all a e G, x1 ,... ,x e R and i=1 ,2,... ,n. 
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On the d i v i s i b i l i t y theory 3 

In the sequel by g (A^ , . . . ,A ), where A 1 , . . . , A m are 
L ' T' ' m 

: BL± e A . L The sym-idea l s of 31 , we mean the set 
bol f (B.j . . ,B C ) , where are non-empty subsets 
of R, vrill denote the set 

s i j e B j 

The next proposition i s very useful l for us in the sequel 
P r o p o s i t i o n 1.1. (see [ 5 ] ) . Let 31 be an 

(m,n)-ring. 

( i ) f ( x ? ) = for a l l x 1 f . . . , x n e R and 
i = 1 , 2 , . . . , n . 

( i i ) The intersect ion an arbitrary number of idea l s of 31 
i s a l so an ideal of (R, , 

( i i i ) g (A^ , . . . ,A m ) i s an ideal of 51 , i f A 1 , . . . , A m are 
idea l s of ft . 

( iv) I f R i s commutative and some B^ i s an ideal of iR, t 

then f ( B 1 , . . . ,Bn') i s an idea l , too. 
For a non-empty subset A of an (m,n)-ring 5L , we define': 

A .= | x e R : x £ a | , 

A = j x e R : x e a } . 

The following proposition i s very easy and we omit the 
proof. 

P r o p o s i t . i o n 1 .2 . Let £ be an (m,n)-ring. 
( i ) I f A i s a mf-subgroup of < R , g > , then A c A. 

( i i ) I f there e x i s t s a natural number k such that 
I } * 

x = x for a l l elements of an m-^subgroup A, then 
A = A. 

( i i i ) A i s an ideal of !R i f and only i f , A i s an idea l , 
( iv) I f A i s an i d e a l , then A i s an i d e a l , too. 
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4 W.A.Dudek 

D i r e c t c o m p u t a t i o n show t h a t 

P r o p o s i t i o n 1 . 3 . I f A i s a 3 - s u b g r o u p o f 

a 3 - g r o u p , t h e n A = A . 

By an i - c e n t e r o f iR, we mean the s e t 

(3 J C i ( 3 l ) = { a e R : f ( a , x £ ) = f ( x 2 , a , x ? + 1 ) f o r x 2 , . . . t x f l e r J . 

n 
The s e t C(5l) = O C.(!H) i s c a l l e d the c e n t e r o f a n ( m , n ) -

i=1 

- r i n g 31 . O b v i o u s l y Ĉ  (¡R,J = R for a l l ( m , n ) - r i n g s . M o r e -

o v e r , t h e r e e x i s t s ( m , n ) - r i n g s s u c h t h a t an i - c e n t e r i s etopty 

f o r some i = 2 , 3 , . * . , n . I n d e e d , i t i s e a s i l y v e r i f i e d t h a t i f 

< R , g ] > i s an i d empo t en t c ommuta t i v e m-g roup ( m > 2 ) and e^ 

i s an n - a r y p r o j e c t i o n ( i . e . e^x i j 1 ) = x ^ ) , t h e n iR^ = 

= < R , g , e k > i s an ( m , n ) - r i n g f o r k=1 and k=n. O b v i o u s l y , 

t he s e t ^(J l j^) i s empty f o r a l l i = k . 

P r o p o s i t i o n 1 . 4 . I f i s n o n - e m p t y , 

t h e n i t i s an ( m , n ) - s u b r i n g o f !R . 

P r o o f . L e t a 1 t . . . t a c C i ( ( R ) , t h e n f o r a l l 

x 2 , . . . , x n e R , we have f ( a? ) , x £ + 1 ) = g ( j f ( x £ , a . = 

= S d f ( a d ' X 2 ) = f ( S W ) ' X 2 ) b y d i s ^ i b u t i v i t y . T h i s i m -

p l i e s t h a t g (a^) e 0^(311. 

Now, i f a £ C i ( 3 i ) , t h e n f ( x 2 , a , x £ + 1 ) = f ( 5 c 2 , x ^ , a , x £ + 1 ) = 

= f ( a , x 2 , x ^ .= f ^ a . x ^ by P r o p . 1 . 1 . Hence a e C±{!R), i . e . 

0.^(51) i s an m-subg roup o f < R , g > . 
I f f • • • t^^ e C^(!R), t h e n we o b t a i n 

J J i n - i+1) n n J - f i n - i+2 l n n ) 
y \ 1 , X 2 , a 2 / , a n - i + 2 , X i + i y = \ 2 , a 2 > a n - i + 3 ' X i + V = 

= f ( v f Q ' V a r i + 2 ) ' a n - i + 3 ' X i + l ) = f ( X 2 ' a 3 _ i + 3 ) ' a n - i + V x i + l ) = 

= . . . = f ( f 
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Or the d i v i s i b i l i t y theory 5 

f o r a l l x 2 , . . . , x n e R. Hence i ^ 8 ^ ) £ C^(Jt), which comple-
t e s the p roof . 

P r o p o s i t i o n 1 .5 . I f C(3U i s non-empty, 
then i t i s a maximal commutative (m,n)-subr ing of {R. . 

C o r o l l a r y 1 .6 . An (m,n i - r ing 9, i s commuta-
t i v e i f and only i f , C(ft) = R. 

I t i s we l l knowr t h a t the group Sn i s generated by cy-
c l e s (1 ,2 ) and ( l , 2 , . . . , n ) , Hence 

C o r o l l a r y 1 .7 . An (m,n) - r ing ft i s commuta-
t i v e i f and only i f , C2(ft) = c

n & ) = R-
P r o p o s i t i o n 1 .8 . An ( m , n ) - s f i e l d ft i s com-

mutat ive i f and' only i f , C., (51) = R f o r some i = 2 , . . . , n . 
P r o o f . Ar (m,n) - r ing 31 i s an ( m , n ) - s f i e l d , i f 

< R , f > i s an n-group„ Let x be a skew element (under f ) 
( A ( n ~ 2 ) S 

to x . Since C. (!R) = R,, we have a = f \ a , x , x J = 
f * 

= f u c , a , x , x J f o r a l l a , x e R. Applying Corol la ry 9 in 
[ 8 ] , we i n f e r t h a t i s commutative. 

Observe tha t the s tandard i - c e n t e r of an n-semigroup 
< R , f > , i . e . the se t 
(4) Z±(!R) = j a e R : f ( a , x ^ ; = f ( ^ . x j - 1 , a , x ? + 1 ) f o r 

x 2 ' • * * , x n e 

i s an m-subgroup of < R , g > . I n g e n e r a l , i t i s not an 
(m,n) -subr ing of 3R, . Indeed, i f !R i s a non-commutative 
( m , 4 ) - r i n g , then we have f ( a j ) = f (f 
f o r a l l Z^(!R) and x ^ , x 2 , x ^ e R. Hence, i n ge-
n e r a l , i t i s not t rue t h a t f ^ a ^ e Z ^ ( i R ) . 

An (m,n)~ring 31 i s c a l l ed c a n c e l l a t i v e , i f an n-semi-
group < R , f > i s c a n c e l l a t i v e [ 9 ] . A c a n c e l l a t i v e (m,ri)-r ing 
has not z e r o - d i v i s o r s [ 6 ] , I proved i n [l0^] t h a t a c a n c e l l a t i -
ve (m,n ) - r ing R has not a d d i t i v e idempotents , or only zero 
( i f i t e x i s t s ) i s an a d d i t i v e idempotent , or < R , g > i s an 
idempotent m-group. 
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6 U.A.Dudek 

2 . (m,n)-domains 
A commutative and c a n c e l l a t i v e l m , n ) - r i n g !R i s c a l l e d an 

lm,n) -domain , i f f o r a l l y e R t h e r e e x i s t x 0 , . . . , x e R 
/ n \ 

such t h a t y = f i y . X g J . I n o ther w o r d s , an Um,ni-r ing !R i s 
an (m,n)-domain , i f < R , f > i s an n-domain [ 9 J . 

Le t x and y be e l e m e n t s of 31 . He say t h a t x d i v i d e s 
y i f and only i f , x d i v i d e s y i n < R , f > , i . e . i f t h e r e 
e x i s t X 2 , . . . , x Q e R such t h a t y = f ^ X j X ^ . 

P r o p o s i t i o n 2 . 1 . Let 31 be an (m,n)-domain 
and l e t a , b e R. 

I } k 
( i ) a | a J f o r a l l n a t u r a l k . 

( i i ) I f a | b , then a | b . 
( i i i ) I f a | b , then I | b . 

( i v ) I f a |b , then a | b . 
(v ) I f a ^ f o r i=1 , . . . ,m,. then a | g ( b ! ^ . 

P r o o f . Prom P r o p o s i t i o n 1 .1 immediate ly f o l l o w s 
( i ) - ( i v ) . The c o n d i t i o n ( 1 ) i m p l i e s ( v ) . 

N o t i c e t h a t the i n v e r s e i m p l i c a t i o n s a r e not t r u e . For 
example : i f JR, i s an ( 5 , 3 ) - r i n g d e r i v e d from G a l o i s f i e l d 
G F ( 3 ) , than we put a = I = b = c , where a i s a z e r o of 
G F ( 3 ) . I t i s e a s i l y v e r i f i e d t h a t a | b but i/ft), a | b but 
aJfb, e t c . 

As i n the b i n a r y c a s e , we can prove 
P r o p o s i t i o n 2 . 2 . Let (R, be an ( 2 , n ) - d o m a i n . 

I f t h e r e e x i s t GCDja .b j and GCD{a , a+b J , then they a r e 
e q u a l . 

Observe t h a t i f !R, i s an ( m + 1 , n ) - r i n g of i n t e g e r s num-
b e r s , then G C D ( m , 1 , . . . , 1 1 = [ l ] but GCD.fm,m+1+... + l l = 

r i ' r S I- B J = GCDim,2ml = I ml. Hence, i n g e n e r a l , i t i s not t r u e t h a t 
GCD|a1 , . . . , a m j = G C D , g f o r m £ 2 . 

From P r o p o s i t i o n 2 . 1 and P r o p o s i t i o n 1 . 2 , we o b t a i n 
P r o p o s i t i o n 2 . 3 . The s e t . A = j x e R: a | x } 

i s an i d e a l o f an (m,n)-domain 3£ f o r every a e R. Iiforeover, 
A = j u H : a| x j and A = { x e R : a | x ] a r e i d e a l s , t o o . 
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The idea l generated by an element a e R i s cal led a 
principal idea l and i s denoted by <a> . Observe that an 
idea l B i s a principal idea l generated by b i f and only 
i f B = j x e f i : b|'xj. Obviously <b> = R i f and only i f 
b e Dfi. 

P r o p o s i t i o n 2 .4 . If a,b e R, where ft i s 
an (m,n)-domain, then 

( i ) a |b i f and only i f <b> c <a> . 
( i i ) a*<b if and only i f <b> = <a> . 

( i i i ) <a> = <a> c <a> . 
( i v ) If a = g (a" ) , then <a> c g ^ a ^ <am>) • 

(v) If b i s an addit ive idempotent, then <b> i s an ad-
d i t ive idempotent idea l , 

( v i ) f (<a. ,> <an>) = < f ( a * ) > . 

P r o o f . If b e <a> = <g(aij1)> , then b = 

= = s({ f ( a i ' x 2)} i=l)* K e n c e ( i v ) * 0 n t h e o t h e r 

hand, i f b e g (<a> , . . . , <a>) and a i s an idempotent, 
then b = g ( J f ( a , * £ ) } ? ; ) = g({f (a , z ± ) } Q = 

= f ( a . t g - 1 ,g(z®)) e <a> , w|here tj_ e 3 a and z i = f ( t ^ x ^ ) . 
This implies (v ) . The c-ondition (v i ) follows from (1) and 
Proposition 1.1. 

C o r o l l a r y 2 .5 . If 51 i s an (m,n)-domain such 
7}k 

that, a = a for a l l a e R and some fixed k ( in pa r t i -
cu lar , i f 31 i s a (3,n)-domain), then <a> = <a > . 

Jin idea l B i s cal led prime, i f implies that 
a^ e B for some i = 1 , 2 , . . . , n . h principal idea l of 32 i s 
cal led a maximal pr incipal idea l , i f i t i s maximal (with r e s -
pect to inclusion) in the set of proper principal idea l s 
of IR, . 

P r o p o s i t i o n 2.6. Let !R be an (m.n)-domain 
and l e t b e R*. 

( i j b i s an inver t ib le element of ¡R i f and only i f 
< b> = R. 
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( i i ) b i s i r r & d u c i b l e i f and only i f < b > i s a maximal 
p r i n c i p a l i d e a l , 

( i i i ) b i s prime i f and only i f the proper i d e a l < b > i s 
pr ime. 

P r o o f . As an example ws prove ( i i i ) . I f b i s p r i -
me and £ <b> > then b | f ^ a ^ ) . S ince b i s pr ime, 
b|a^ f o r some i . Hence a^ e < b > , i . e . < b> i s a prime 
i d e a l of 31 . 

Now, l e t < b > be a prime i d e a l and l e t b | f ( a ^ ) . Then 
f ( a " ) e < b > . T h i s means that a,̂  e < b > f o r some i . T h e r e -
fo re b|a-j_ a n d b i s p^ime. 

P r o p o s i t i o n 2 .7 . Let £ be an (m,n) -domain. 

I f a^ , . . . , a p e R* and S ( k ) ( < a i > » • • • » < a p > ) = < d > » 

where p = k(m-1)+1, then G C D j a ^ , . . . , a p j = [d] , 

P r o o f . Prom P r o p o s i t i o n 1 . 1 , f S < a . > i s an 

i d e a l o f lit , I f c e ^ < a / > , then c , t o o . Hence, by 

commutat i v i t y , we have 

/ ( j - 2 ) ( n - j ) _ ( n - 2 ) _ ( n - 2 ) (n -2 )\ 
a j = ® ( k ) \ ' c c , c ' c , c ' c »• • • » c » G J> 

i . e . a.. e (<&.,> < a p > ) f o r a 1 1 D = 1 » 2 , . . . , p . T h e -

r e f o r e d | a j every a.. . I f there, e x i s t s b e. R such that 

b | a i t then a , = f ( b , z ^ ) and d = g ( k , ( { f ( J J , ( b ^ g . x ^ } = 

= « ( k ) ( { f C 1 3 ^ ! " 1 - O l i - l ) = f C b » t r 1 ' « ( k ) ( u f ) ) ' w h e r e ^ i e E a ' 

u j = f (2) ( V z i 2 ' x i 2 ) * ™ S i m P l i e s t h a t GCDja^ a p | = [d ] . 

P r o p o s i t i o n 2 . 8 . Let R be an (m,n) -domain. 

I f a , j , . . . , a p e R*, then LCIvl|a1 , . . . , a p | = [ d ] i f and only i f 

O <&.> = < d > . 
1 = 1 P 

P r o o f . I f [ d ] - LCI.I j a 1 , . . . , a p | , then d€ O . 

P 
Hence <•-]> c < a . > . On the o ther hand, any element 

i=1 1 
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P 
c e O j > i s a common m u l t i p l e of each of t h e ' . But 

i=1 

[d ] = LCIilja.j , . . . »3 no t h a t d j c . T h i s means t h a t c e < d > , 

i . e . < a , > c < d > . T h e r e f o r e < a . > = < d > . i=1 - i=1 
P " 

C o n v e r s e l y , I f < d > = P | < a . > , then f o r a l l i = 1 , 2 , . . . , o 
i=1 

we have c = i f t h e r e e x i s t s b e R such t h a t 
P r 1 

e . l i j f o r -2very i , then b e O < a . > = < d > i . e . d = 
11 i=1 1 L J 

= LCIvI(a 1 . . . . , a ] . 
I ' PJ 

An (m,n)-domain !R, i s c a l l e d a p r i n c i p a l i d e a l (m,n')-do-
¡nain, i f every i d e a l of iR, i s a p r i n c i p a l i d e a l . 

P r o p o s i t i o n 2 . 9 . Let R be a p r i n c i p a l i d e a l 
(m,n)-domain and l e t a 1 , . . . , a e R * , where p = k ( m - 1 ) + 1 . P 
Then GCDja^ , . . . , a o j. = [d ] i f and only i f , g ^ j ^ < a 1 > , < a 2 > , . . . 
. . . , < a p > ) = < d > / 

P r o o f . I f < b > = &(k) v 3 ^ ' < * a 2 ' > ' * p v ' t h e n 

[b ] = GCD , . . . > a p | » from P r o p o s i t i o n 2 . 7 . Hence b ~ d and 
< b > = < d > , 

a s i n the binary c a s e ( see e . g . [ 2 ] Theorem 6 - 9 ) , we prove : 
P r o p o s i t i o n 2 . 1 0 . I f B 1 c B j c B^ c . . . 

i s any i n f i n i t e sequence of i d e a l s o f a p r i n c i p a l i d e a l 
(m,n.) -a omain £ , then t h e r e e x i s t s an i n t e g e r p such t h a t 
B p = B s f o r a l l s ^ p. 

C o r o l l a r y 2 . 1 1 . I f a^ ..a^ , . . . i s any i n -
f i n i t e sequence of e l ement s of a p r i n c i p a l i d e a l (m,n)-domain 
and a . , I a . f o r a l l i , . then a „ ~ a „ f o r some p and 1+1| 1 ' p s r 

a l l s ^ p . 
An (m,n)-domain 31 i s a f a c t o r i z a t i o n (unique f a c t o r i z a -

t i o n ) (m,n)-domain, i f < R , f > i s a f a c t o r i z a t i o n (unique f a c -
t o r i z a t i o n ) n-domain. T h e r e f o r e P r o p o s i t i o n 4'.8 from [9 ] im-
p l i e s t h a t an (m,n)-domain i s a unique f a c t o r i z a t i o n ( m , n / - d o -
main i f and only i f , iR i s a f a c t o r i z a t i o n (m,n)-domain and 
each i r r e d u c i b l e e lement i s p r ime . 
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P r o p o s i t i o n 2.12. Each principal idea l 
(m,n)-domain i s a unique fac tor iza t ion (m,n)-domain. 

P r o o f . F i r s t we prove that a principal idea l 
(m,n)_domain R i s a fac tor iza t ion (m,n)-domain. Observe that 
for every a e ft*\DR there ex i s t s d € ft such that d|a 
and d i s an i rreducible element. Indeed, i f a i s ^ r e d u -
c ib l e , then d = a . On the other hand, i f a nas a f a c t o r i -
zation 

(5) a = f ( t ) ( a 1 , . . . , a k , b k + 1 , . . . , b t ( n _ 1 

where k ^ 2, b^ e DR and a.. e then some a^ i s 
i r r educ ib l e . If any a . i s not i r reduc ib le , then every a . 

J D 
has a fac tor iza t ion . Let â  has a fac tor iza t ion 

f f j ^ J ^ I h ( 1 ) >\ a1 - I ( t 1 ) \ ^ 1 • • • • ' a k 1 '°k1+1 *Dt1 (n-1 )+y * 

where a [ 1 * e b^1 ^ £ DR and k.. » 2. If any a [ 1 } 

i s not i r reduc ib le , then we have 

a 1 
( 1 ) r ¿ ( 2 ) J 2 ) A 2 ) h (2) \ 

- l ( t 1 ' ) h l " • " a k | 2 ' k2+1 " " ' t!j (n-1 )+1J ' 

Continuing th i s argument, we arr ive ( a f t e r p steps) at some 
a j ^ . Indeed, i f a l l a j ^ can be factored into a f i n i t e 
product of i rreducible elements, then we have an i n f i n i t e se -
quence of elements = a ^ ^ ^ , . . . such that 

a 1 
(s ) ) 

' for a l l natural s . Corollary 2.11 shows that 
there ex i s t s an integer k such that ~ i"or a H 

:or some p ^ k. Hence a| k ) = f ( a j k + 1 ) , x 2 , . . . f c 

x 2 > . . . , x n e Dr (see Proposition 2.7 in [ 9 ] ) . therefore 
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a 1 ^ - ^ (^1 ^ ' * * * , x 2 '
 ZJ 

/ j k + 1 } (k+1 ) h ( k + 1 1 h ( k + l ) N 
• ( p ) ^ 1 ' ' ' ' ' s ' s+1 ' ° p ( n - 1 ) + y -

/(k+i ) ^ 
= \ 1 > x 2 ' * * * ' x 2 ' U J ' 

w h e r e a { k + 1 z , u , x ± , b ( k + 1 ' e DR and 

U = I ( A k + 1 ) ( k + 1 ) ( k + 1 ) h ( k + 1 ) h ( k + 1 ) \ 
( p ) ^ 2 ' 3 ' * * * ' a s ' b s + 1 ' * * * ' b p f n - 1 )+1 

I V,-| ) 
The c a n c e l l a t i v e l a w i m p l i e s t h a t u = z , i . e . a^ > • • • 

. . . ^ a g ^ ' e i ) ^ , w h i c h i s i m p o s s i b l e . Hence e v e r y a e 

h a s a n i r r e d u c i b l e d i v i s o r . 

I n t n e same manner we p r o v e t h a t e v e r y a ^ f r o m ( 5 ) h a s 

a n i r r e d u c i b l e d i v i s o r c ^ , i . e . a^ = f ^ c ^ X g ^ » x ^ ^ » . . . , 

T h e r e f o r e 

( 6 ; a - f ( t ) ( ° 1 ' c 2 ' * * * ' V z ' b k + 1 ' b k + 2 ' * * * * b t ( n - l ) ) ' 

w h e r e 

( 7 ) z - f , , / x ( 1 ) x ( 1 ] X ( 1 ) x ( k ) x ( k ) b ^ \ u z ' 3 x n »• • • ' 2 • • • • » x n ' " t i n - I k y * 

I f z € D R , t h e n a h a s a f a c t o r i z a t i o n ( 6 ) . I f z £ D R F 

t h e n u s i n g a b o v e p r o c e d u r e we may p r o v e t h a t z h a s a fiacto-

r i z a t i o n i n t o a f i n i t e p r o d u c t ' o f i r r e d u c i b l e e l e m e n t s . Hence 

e v e r y a e rt*^DH h a s a f a c t o r i z a t i o n , i . e . & i s a f a c t o -

r i z a t i o n ( m , n ) - d o m a i n . 

Now, v/e p r o v e t h a t e v e r y i r r e d u c i b l e e l e m e n t ' d i s p r i m e . 

L e t d |f a!^ . I n v i e w o f c o m m u t a t i v i t y , t h e r e i s no l o s s o f 

g e n e r a l i t y , i f we assume t h a t d | a i f o r i = 2 , 3 , . . . , n . Hence 

GCD|d ,a^j- = Dh f o r a l l S i n c e ft i s a ( m , n ) - d o -
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main, than a^ = f a - j » ^ f o r some t 2 . t ^ , . . . , t n £ D^. On 

the other hand (see Propos i t ion 2 . 9 ) , there e x i s t s e R 
such that 

J D . ( i n 
= «Vf ' • • • ' x 1 n V > 

f i d r ( i ) x ( i ) N ) f f d x ( i ) ' x ( i ) t ) , . . . , x 2 n y . . . . x m n JJ . 

I'he d i s t r i b u t i v e law and d i r e c t computation show that 

a1 = f ( a 1 f t 2 , t 3 , . . . , t n ) = 

' i n V M * ' • £ > ) • £ ' ) > 

4V) >iV)} 

* (L>) < • > • • £ 

< < • < ) ) 

) x ( n ) 
' ' " * mn 

a^ . Hence d 

f o r some z . . e R * . 
\ \ 

Since d | f ( a ° ) and d j f (d ( X ^ , we have d 

i s prime, which completes our proof . 

3. F i n a l remarks 

An (m,n)-domain !R,0 with 9 i s c a l l e d Eucl idean, i f the-
re e x i s t s a funct ion 8 (the Eucl idean v a l u a t i o n ) such that 
the fo l lowing condi t ions are s a t i s f i e d : ( i ) 5 (x ) i s a p o s i t i v e i n t e g r a l number f o r every x e RQ , . 

( i i ) 6 (x ) = 0 i f and only i f a = 9 , 
( i i i ) ffff^x^ = 6(x 1 ) « f i ( x 2 ) ' . . . » 5 ( x n ) f o r a l l x 1 , x 2 , . , . , x n , 

y \ RQ such that a = g ^f ,y , 9 , . . . , 9^, wh.pre 
e i t h e r y = 9 or §(y) < 8 ( b ) . 
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I t i s c lear that 8[x) = 1 i f and only i f , x e DR . 
.0 

¿¡oreover, i f two elements a ,b e RQ are a s s o c i a t e s , then 
5(aI = 5 ( b ) . 

P r o p o s i t i o n 3 .1 . Every iïuclidean (m, n) -do-
main i s a pr incipal idea l (m,n)-domain. Moreover, i t i s a uni-
que f a c t o r i z a t i o n (m,n)-domain. 

The proof i s s tandard. 
Let S. be a Euclidean (m,n)-domain with va luat ion S . 

Prom ( iv ) f o r any a e Rq and b e R * we have a = 

= g ( f ( b , x £ ) , y , 8 , . . . f o r some x 2 , . . . , x n , y e RQ. I f y = 8, 

then b | a . I f y t A, then 5 ( y ) < 6 ( b ) and there e x i s t s 
z 2 , z 3 , . . . , z n , y 1 e RQ such that b = g (f ( y , 8 , . . . , e ) . 
As in a binary case we can prove that the f i n a l nonzero r e -
mainder of th i s n-ary Divis ion Algorithm i s a g rea s t common 
d i v i s o r of a and b. 

A very important ro le in the theory of (m,n)-rings i s 
played by (m,2)-r ings . We give severa l p a r t i c u l a r i n t e r e s t i n g 
proper t ie s of ( in,2)-r ings . In genera l , these proper t ie s are 
not true f o r (m,n)-r ings , i f n > 2. 

P r o p o s i t i o n 3 .2 . Let a 1 , . . . , a n , b n e R* , 
where 

( i ) 

( i i ) 

( i i i ) 

( i v ) 

The proof i s analogous to the case of ordinary r i n g s 
(see [2] p. 96-101). 

1 ¡j p 
i s an (m,2)-domain and a^b^ = agbg = . . . = a p b p 

I f LCto ja^ , . . . , a j e x i s t s , then GCD{b.j, . . . , b p j. a l so 
e x i s t s and LCM|a 1 , . . . , a p j • GCD jb1 , . . . , b p | = [d] . 
I f G C D ^ r a ^ , . . . , r a p | e x i s t s f o r a l l r e R* , then 

b ^ , . . . , b \ a l s o e x i s t s and we have 
a 1 a p j . L C M | b 1 , . . . , b p J = [d] . 
a . , , . . . , a p J e x i s t s i f and only i f GCD fa1 , . . . , a p \ 

e x i s t s . 
I f $1 i s a pr inc ipa l idea l (m,2)-domain, then every 
nont r iv i a l i dea l of i s the product of a f i n i t e num-
ber of prime i d e a l s . 

LCM 
GCD 
LCM 
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