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ON THE DIVISIBILITY THEORY IN (m, n)-RINGS

1. Introduction

In some papers several authors generalize the study of
ordinary rings to the case where the ring operations are res-
pectively m-ary and n-ary. The existence of such theories has
motivated us to extend the divisibility theory in ordinary
rings to the case (m,n)-rings.,

Yor self-containment we give some definitions and results
which will be used in the sequel, A detailed investigation may
be found in the papers mentioned in the references. We shall
use terminology and notaiions of [8], [9] and [5].

A non-empty set R 1is called an {(m,n)~ring if the follow-
ing conditions are satisfied:

(i) There exists an m-ary operation g, called the addi-
tion, such that <R,g> is a commutative m-group.
(ii) There exists an n-ary operation f, called the multi-
plication, such that <R,f> is an n-semigroup.
(1ii) The operation f is distributive with respect to g,
i.e,

i~1 my .n i-1 n m
(1) f@ '3(3’1>’xi+1> = 8({‘“@1 ’yj’xi+1>}j=>
for all i=1,2,oa',n and X1,...,Xn,y1,-..,3’m € Rl

This paper and [9] make basic part of the paper which was
awarded the prize in J.Marcinkiewicz competition tfor the best
student ‘s work in the academic year 1976/77.
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2 W.A.Dudek

4n ordinary ring is a special case of an (m,n)-ring, na-
mely for m=n=2, .

The concept of (m,n)-rings was introduc;d by éupona [7]
and, in a special case, by Boccioni [1]. The more general con-
cept is introduced by Celakoski in [3]. In [6] is generalized
the method of constructing quotientrings to the case of (m,n)-
~-rings. The paper [5] is concerned with homomorphism theorems
and some idealtheoretic aspects. I described (see [10]) a spe-
cial class of n-groups <G,f> which are (n,n)-rings over it~
self i,e. <G,f,f> are (n,n)-rings. For n=2 this class is
trivial,

4 zero of R (if it exists) is an element 2z € R, such
that f(z,xS) = f(xz,z,xg) = ses = f(xg,z = 2z, If a zero
exists, it is unique and it is denoted by 8 . R* denotes the
set 'R\{s} if 6 exists and R otherwise. A neutral ele-
ment of <R,f> is called an identity of § and it is denoted
by e. Por n > 2 there exists a commutative (n,n)-ring which
every element is an identity in this (n,n)-ring [10] « Horeover,
there exists an (m,n)-ring without any zero and any identity.
For example: a two-elements non-idempotent 3-group considered
as a (3,3)-ring has not a zero and an identity (see algo $2.3
in [5]).

An element x € R 1is called an additive or multiplicative
idempotent, if x is an idempotent in <R,g> or <R,f> res-
pectively. Since the addition is commutative, an additive idem-
potent is a neutral element for this operation., It is easily

verified that if Bqgeeeslpy b e R are additive idempotents,

then g(a;n) and f(x?l.‘q,b,x?”) are additive idempotents
for all Xxq,...,X, € R and 1i=1,2,...,n. Hence, if ® has
only one additive idempotent, this idempotent is a zero of R .
4 non-empty subset G of an m-group <R,g> is called an
m-subgroup of <R,g>, if it is closed under the operation g
and if x € G, then also X € G. 4n m-subgroup <G,g> of
<R,g> is called an ideal of <R,g,f>, if f x?]"1,a,x?+1)e(}
for all a ¢ G, XgreeesX, € R and 1i=1,2,«4.,0.
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Cn the divisibility theory 3

In the sequel by glhy,ess,d ), where A;,...,A are

ideals of &, we mean the set { ( ) 8; € Ay } The gym-
b0l f(By,.s.,B }, where By,...,B, are non-empty subsets
of R, will denote the set

(2) { <{ ( }k(m‘””> D ayg e Bj}.

The next proposition is very usefull for us in the sequel
Proposition 1.1. (see[s]). Let R be an
(m,n)=-ring.

(i) f(x ) = 1,il,xl+£) for all Xx;,...,X, € R and

i=1 2,...,n.

(ii) The intersection an arbitrary number of ideals of R
is also an ideal of R,

(iii) g(A1,...,Am) is an ideal of R , if 4,,...,A  are
ideals of R.

(iv) If R 1is commutative and some Bi is an ideal of R,
then f(By,e..,B ) is an ideal, too.

For a non-empty subset A of an (m,h)-ring R, we define:

K;{ieR xeA},

=2

= {x eR:Xe A} .

The following proposition is very easy and we omit the
proof,
Propoeition 1.2. Iet R be an (m,n)-ring.
(i) If A is a mesubgroup of <R,g>, then A C A,
(ii) If there exists a natural number k such that

H
= A,

(iii) is an ideal of R if and only if, A is an ideal.
(iv) If A is an ideal, then A is an ideal, too.

for all elements of an m-subgroup A, then

E R ]
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4 W.A.,Dudek

Direct computation show that

Proposition 1.3, IfKisaB-subgroupof
a 3-group, then 4 = A,

By an i-center of R we mean the set

(3) Ci(ﬁR.) = {aeR: £ a,xg) = f(x%,a,xg_‘_‘I) fOr Xpseee X € R}.

n
The set C(R) = () C;(R) is called the center of an (m,n)-
i=1

-ring R. Obviou;ly C.l(!R.) = R for all (m,n)-rings. More-
over, there exists (m,n)-rings such that an i-center is etupty
for some i1=2,3,+..,n. Indeed, it is easily verified that 1¥
<R,g> is an idempotent commutative m~-group (m>2) and ey

is an n-ary projection (i.s. ek(xﬁl) = xk), then ®, =
= <R,g,ek> is an (m,n)-ring Por k=1 and k=n, Obviously,
the set C;(®,) is empty for all i=k.

Proposition 1.4, If C;(R) is non-empty,
then it is an (m,n)-subring of R .

Proof., Let @4yeeey8 € Ci(R), then for all

XoyeeesX, € R, we have f x%,g(a?),xg.l_l_.]):g({f(x]é,aj,sz_l“)}?:):
n\im m\ _n . s .
= ng(aj,xz)}j=1> = f(g(a1 ,x2) by distributivity. This im-
plies that g(a.i'I € Ci(ER).
= = i
Now, if a e C;(R), then f(x%,a,x_f:”) = f@:z,xya,x?H):
= f a,iz,xg): £ E.,x?) by Prop.l1.1. Hence a ¢ Ci(R), i.e.

Ci('R.) is an m-subgroup of <R,g>.
If 84,ee008) € Ci(ER), then we obtain

i n\ _n _ i n-i+1\ n n _
f("z'f("‘1)”‘i+1> = f<f("2'aq )’an-i+2’xi+’D =
_ i n-i+1) n n _ i n-i+2> n n -
- fG@v"z'az )'an-i+2’xi+1> = f(%”@z"“z ’an-i+3'xi+1> =
_ i n-i+2) n n )_ 2 i n-i+3> n n _
= f(a,l,f(a_z,x 133 Ay _5430%54q/) f<9.1,f X133 28 449 %54q) =

2 e = f(s(a’;)xg)
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Or the divisibility theory 5

for all X,,ess,%, € R, Hence f(a?) € C;(R), which comple-
tes the proof.

Proposition 1.5, If C(R) is non-empty,
then it is a maximal commutative (m,n)-subring of R .

Corollary 1.6, in (m,n)-ring ¥, is commuta-
tive if and only if, C(R) = R.

It is well knowr that the group Sn is generated by cy-
cles (1,2) and (1,2,...,0)e Hence

Corollary 1.7. 4n (m,n)-ring R is commuta~
tive if and only if, C,(R) = C R) = R.

Proposition 1.8, 4n (m,n)-sfield R is com-

n

mutative if and only if, C,(R) = R for some i=2,...,n.
Proof. 4 (m,n)-ring R is an (m,n)-sfield, if
<R,f> is an n-group. Let % be a skew element (under f)

(n-2)
to x. Since Ci(R) =R, we have a = f\a,%X, x ) =

= f(%,a,ﬁ, nx3}> for all a,x € R. Applying Corollary 9 in
[8 , we infer that R is commutative.

Observe that the standard i-center of an n-semigroup
<R,f>, i.6. the set

(4)  2,(R) = {aeR s f a,xg); = f(xi,x;'1,a,x?+1> for
x2,...,xneR}
is an m-subgroup of <R,g> . In general, it is not an
(m,n)-subring of R . Indeed, if R 1is g non-commutative
(m,4)-ring, then we have f(%%,f(af),x4 = f(?(g?),x%,x4>

for all Bireserly € ZB{R) and  Xq,%,,X, € R. Hence, in ge-

neral, it is not true that f a?)e.ZB(ﬂ).

An (m,n)-ring R is called cancellative, if an n-semi-
group <R,f> is cancellative [9]. A cancellative (m,n)-ring
has not zero-divisors [6]. I proved in [10] that a cancellati-
ve (m,n)-ring R has not additive idempotents, or only zero
(if it exists) is an additive idempotent, or <R,g> is an
idempotent m-group.

-23 -



6 WehoDudek

2. {(m,n)-domains

4 comautative and cancellative (m,n)-ring R 1is called an
{(m,n)~domain, if for all y e R there exist EpreeesXp € R
such that y = £ ,'y,xrz1 « In other words, an (m,n)-ring R is
an (m,n)=-domain, if <R,f> is an n-domain [9].

Let x and y be elements of R . Ve say that x divides
y 1if and only if, x divides y in <R,f>, 1i.e. if there
exist XyseeesX, € R such that y = f(x,xg).

Proposition 2.,1. ILet R be an (m,n)-domain
and let a,b € R.

Tik
(i) ala for all natural k.
(ii) If &a|b, then a|b.
(iii) If alb, then z]|b.
(iv) If alb, then alb.
(v) If afb; for i=1,...,m, then alg(b'f).

Proof. From Proposition 1.1 immediately follows
(i)-(iv). The condition (1) implies (v].

Wotice that the inverse implications are not true, For
example: if R 1is an (5,3)-ring derived from Galois field
GF(3), then we put a =a =b = ¢, where a is a zero of
GF(3). It is easily verified that alb but afb, 3|b but
afb, etc.

As in the blnary case, we can prove

Proposition 2.2. Let R be an (2,n)-domain.
If there exist GCD a,b} and GCD{a,a+b}, than they are
egual.

Observe that if R is an (m+1,n)-ring of integers num-

bers, then GCD{m,1,...z1} = [1] but GCD{m,g+ltLé;il} -
= GCD{m,Zm} = [m]. Hence, in general, it is not trues that
GCD{a1 ,...,am} = GCD{a1,g(a‘1n)} for m > 2.

From Proposition 2.1 and Proposition 1.2, we obtain
Proposition 2.3. Theset. & ={xeR: a|x}
is an ideal of an (m,n)-domain R for every a € R. Mereover,

A= {}'reR: a x} and A = {xeR: al:'(} are idsals, ftoo.
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On the divisibility theory 7

The ideal generated by an element a e€ R is called a
srincipal ideal and is denoted by <a> . Observe that an
ideal B 1is & principal ideal generafed by b 1f and only
if B = {xe Rs bl'x}. Cbviously <b>= R if and only if
b e DR'

Proposition 2.4, If e,be R, where R is
an (m,n)-domain, then

(i) alb if and only if <b> c <a> .
(ii) amb if and only if <b> =<a>.
(iii) <a> = <&> c<a>.

(iv) If a g(a%n), then <a> cg(<a1>. veves <am>) .

(vl If b 4is an additive idempotent, then <b> is an ad-

ditive idempotent ideal.
(vi) f(<a1> se s <an>) = <f(a?)>.
Proof. If be<> = <ag(af)>, then b =

= f( (am> 2) = g( (al,xz,D 1 1) Hence {iv). On the other

hand, if b e g G<a>',..., <a is an idempotent,

a
then = ({ (8. Xln ) = g( (3,13“_1921)}2] 1) =
= f(a,t2 ,g(z1)) € <a>, where i € Iy and 2. _f<fn,xig

This implies (v). The condition (vi) follows from (1) and

Froposition 1.1,
Corcllilary 2.5 If R 1is an (m,n)-domain such

that a = 5}1( for all a € R and some fixed k (in parti-
cular, if R is a (3,n)-domain), then <a> = <E>.

an ideal B 1is called prime, if f(a]) € B implies that
a; € B for some 1i=1,2,...,n. & orincipal ideal of R is
called & maximal principel ideal, if it is maximal (with res-
pect to inclusion) in the set of proper principel ideals
of R. .

Proposition 2.6 Let R be an (m.n)-domain
and let b e R™,

(i) b 1is an invertible element of R if and only if

<b> =R.
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8 W.A.Dudsk

{ii} b is irreducible if and only if <b> is a maximal
principal ideal.

(iii) b is prime if and only if the proper ideal <b> is
prime, 4

Proof, 4As an example we prove (iiiJ. If b is pri=-
me and f(afil) € <b> , then b|f<a111). Since b 1is prime,
b|ai for some i. Hence a;e <b>, i.s. <b> 1is a prime
ideal of R .

Now, let <b> be a prime ideal and let blf(aﬁ‘). Then
f(a?) € <b>. This means that a; € <b> for some i. There-
fore bla, and b is prime.

Proposition 2,7. Let & be an (m,n)-domain,
If 8130008, € R¥ and g(k)<<a1> ,...,<ap>> = <Ld>,
where p = k(m-1)+1, then GCD{a.l,...,ap} = [d].

1%

Proof. From Proposition 1.1', M <a;> 1is an
i=1
) P
ideal of R, If ¢ € q <a;>, then &, too. Hence, by
1=
commutativity, we have

_aj=g.(k) €y, € 48:y C 48y € 4Cy € ,yeee4yC, C

(3-2) (n-j) _ (n-2) _ (n-2) ) (n-2)>
J ’

i.e. a'j € g<k) <<a1> yesey <ap>> for all j=1,2,.¢s4p. The-

refore d |aj for every a.. If there exists b e R such that
in W oLin _in

blai, then a; = f(b,zig) and d=g(y) {f(Z)(o,zig,xiQ}fi)ﬂ) =

_ n=1 p _ n=1j P ; -

= g(k)<{f<b,t2- ’ui)}i=1> = f(b,’c2 ,g(k)<u1)), where ;e By,

" in _in s s : _ . v _ [
.lj = f(2)<tn,zi2,xj_2 « This implies that GCD{a,1,...,ap} = [d].

Proposition 2.8 ILet R be an {(m,n)~domain.
ir Byreeesag € R¥, then LCIvI{a1,.-.,.,ap} = [d] if and only if
M <&;> = <d> .

. r s p
proof. If[d]-= LCI.i{a1,...,ap}, then de.r.i(;\1 <a;> .
>

« On the other hand, zny slenent

_‘.26..
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o e P s o S i b o

P A
¢ e () <a;> 1s @ common multiple of each of the ay. But

i=1
[d] = LCM{a1,...,ap}, g0 that d!c. This means that ¢ ¢ <d>,

o

1]
-

il.e. (R\ <a.,> ¢ <d» . Thersfore <a;> =<d> .,
i=1 - i

b -
Conversely, Iif <d>= [} <a;>, then for all i=1,2,...,p
i=1

v

we have < :.SQ;i,x;?>. 1f there exists b e R such that
- . p 0 :
8,|b for svery i, then b e M <a;> =<Kd> 1i.s. [d] =
i i=1 i
= IIC_' Jr"a seoe g8 .
4 1 1 ] p’i

in {(m,n)-domair R is celled a principal ideal (m,n)-do-
main, if every ideal of R 1is a principal ideale.

Proposition 2.9. Let R be a principal ideal
(m,n)-domain and let Bps00es8 € R¥, where p = k(m-1)+1.
“hen GCD{a1,...,ap} = [d] if and only if, gy )(<a>,<ay>,...
...,<ap> = <d> .

Proof. If <b> = g(k)<<a1>,<a2>,..\~.,<ap>), then
[b] = GCD{a1,...,ap}, from Proposition 2.7. Hence bw~d and
<b> =<d>.

4s ir the binary case (see e.g.[z] Theorem 6-~9), we prove:

Proposition 2.10, It B1 c B2 (o B3 C ees
is any infinite sequence of ideals of a principal ideal
(m,n)-cdomain R, then there exists an integer p such that
Bp = 3, for all s2> p.

Corollary 2.11, If 8198558q50 0 is any in-
finite sequence of elements of a principal ideal (m,nj-domain
and ai+1|ai for all i, then a ~ag for some p and
all s 2 p.

An (m,n)-domain R is a factorization (unigque factoriza-
tion) (m,n)-domain, if <R,f> is a factorization (unique fac-
torization)} n-domain, Therefore Proposition 4.8 from [9] im=-
plies that an (myn)-domain is e unique factorization (m,n)~do~-
main if and only if, R is a factorization (m,n)~domain and
eech irreducible element is prime.
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10 W.h.Dudek

Proposition 2.12, Bach principal ideal
(myn)-domain is a unique factorization (m,n)-domain.

Proof. FPirst we prove that a principal idesl
(m,n)_domain R is a factorization (m,n)-domain. Observe that
for every a € R*\\DR there exists d € R such that dla
and d 1is an irreducible element., Indeed, if 2 is irredu-
cible, then d = a., On the other hand, if a nas a factori-
zation

(5) a = f(t)(a.l,.oo,ak,bk+1,ooo,bt(n_1)+1.),

where k > 2, byje Dy and aje R*\DR, then some aj is
irreducible. If any &, dis not irreducible, then every a.

h]
has a factorization. Iet a, has a fectorization

(1) 1) (1) (1)
a = .t )< ,-co,a bk1+1’..°,bt1(n—1)+1>’

(1) (1)
b5

€ DR and k. 2 2, If any a.

(1) *
where a; '€ R \DR’ i i

is not irreducible, then we have

al1) ~(2) (2) (2] pt2)
1 —-f(t1,)G1 ,...,akh b 1;---, .I](ﬂ1 >o

Continuing this argument, we arrive {(after p steps) at some
aip). Indeed, if all agp can be factored into a finite
product of irreducible elements, thsen we have an infinite se~
guence of elements ago) = a1,a11 ,a12 yeee Siuch that

g g 1) for all natural s. Corollary 2.11 shows that
there exists an 1nteger k such that agk) ~ a%p) for all
p > k. Heuce a1 = f<;§k+1),x2,...,xn> for sonme

XppeeesXy € Dy (see Proposition 2.7 in [9]). Therefore
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Cn the divisibility {heory 11

\
a‘](k) = fégkﬂ),x?,...,xz,z) =
(k+1) (k1) (k+1) (k+1] -
f(p)@1 ,...,as ’b8+1 ,o-.,bp(n_1)+1 =

féfkﬂ ),xz,...,xz,b,

e‘&*\DR,' z,u,xi,b§k+1) € D, and

{k+1)

where a;

. (k+1) _(k+1) (k+1) ,(k+1) (k1)
1= I(p)(%? 183 BRRRLS ’bs+1 ""’bp(n- J+109)
The cancellative law implies that u =2z, i,e. a£k+1),...
...,aékﬂ)e Dpsy which is impossible, Hence every a € R*\DH

has an irreducible divisor,
In tne same manner we prove that every 8y "from (5) has
. . - . (1) (1) (1)
an irreducible divisor Cjs iee. ai"f<§i’X2 ,x3 yeees Xy .
Therefore

(6) a = f(t)<g1’02""'Ck’z’bk+1’bk+2""’bt(n-1i)’

where

(1) _(1 (1) (k) (k)
(7) z = f(k)GQ ¥4 )y--'9xn 1eeesXn Tyeeey Xy ’bt(n—‘])+1>'

If z € Dy, then a has a factorization (6). If =z ¢ Dy,
then using above procedure we may prove that 2z has a facto-
rization into a finite product of irreducible elements. Hence
every a € R*\D}2 has a factorization, i.e. ® is a facto-
rization (m,n)-domain.

Now, we prove that every irreducible element 'd is prime.
Let d]f a? +» 1In view of commutativity, there is no loss of
generality, if we assume that 4 ay for 1i=2,3,...,n. Hence
GCD{d,ai} =D, for all i=2,3,...,n. Since R is a (m,n)-do-

- 29 ~



12 WehoDudek

. n .
main, then a, = hig a1,t2 for some +"2’t3""’tn€ DR‘ Cn
the other hand (see Proposition 2.¢), there exists xgi) € R
such that

i
((1”‘12 EERRES 1(n) ’
1 i) i
\9 féz),...,xén)),...,f d,~£2),...,xé;)i> .
‘‘he digtributive law and direct computaticn show that

a = f(a,]g Py 31 tn) =

=f <1,g<<a2,x 5 ....,xgi) ,f(d,xg ,...,x(2)> ..,f<d,x 2 e X rﬁi)))
g€<5,ng), xgz)> (d xég), éi’) ceesl d,xrgg),...,xr(ng))>1

for some 254 € R¥,

Since I ( ) and d[f(d,xi?), we have ¢ Ay Hence d
is prime, which completes our proof.

3. Final remarks
in (m,n)~domain Rb with 8 ig called Euclidean, if the~
re exists a function 8§ (the EBuclidean valua_tion) such that

the following conditions are satisfied:
(i) 6(x) 4is a positive integral number for every x € R, .
(ii) 6(x) = 0 if and only if a =8,
/
{1ii) 5(\f(x?)> = 6(x1).5( Jeeeed (x )} for =all XqyKpsenesXp,
y € RO such that a =g f(b x2 2y 9 ,...,8 where
gither 3y =98 or §8(y) < &(bj.

- 3¢ -



Gn the divisihility theory 13

It is clear that 6(x) =1 if and only if, x e Dy .
0

Lioreover, ii two elements a,b € Ro are associates, then
8la) = §(b).

Froposition 3.1, fivery Buclidean (m,n)=do-
main is a principal ideal (m,n}-domain. lloreover, it is a uni-
gue factorization {(m,n)-domain.

The proof is standsrd.

Let &o be a Buclidean (m,n)-domain with valuation § .
From (iv) for any a € R and b e R: we have a =

<'th2>,J,e,...,9> for scme XpseeesX, )7 € Ro' Ify =89,
then bla. If y #8, then §(y)<8(b) and there exists
z2,23,...,zn,y1 € Ro such that b = g(f(y,zg),y1,9,...,8).

As in a binary case we can prove that the final nonzero re-
mainder of this n-ary Division Algorithm is a greast common
divisor of a and b,

A very important role in the theory of (m,n)-rings is
played by (m,2)-rings. We give several particular interesting
properties of (m,2)-rings. In general, these properties are
not true for {m,n)-rings, if n > 2. ,

Proposition 3.2, Let 1,...,ap bp e R¥
where R is an (m,2)-domain and ajby = a5b, = se. = p o =4,

(1) If iCk{aq,...,a_} exists, then GCD{by,+..,b p} also
exists and ICM{a;,...,a}: GCD{b1,..., o} = [-

{ii) If GCD{ra1,...,:a exists for all r e R*, then
LCH b1,,..,b also exists and we have

{ GCD a1,...,aJ.Lcm{b“...,bp} = [d].

(iii) LICM a1,...,ap} exists if and only if GCD{a1,...,ap}
exists.

(iv) If R is a principal ideal (m,2)-domain, then every
nontrivial ideal of ® 1is the product of & finite nua-
ber of prime ideals.,

The proof is analogous to the case of ordinary rings

{see [2] D.36~101).
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