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ORTHOGONALITY AND ORTHOCOMPLEMENTATION
IN PARTIALLY ORDERED SETS

0. Introduction

An orthogonallty can be defined cn an arbitrary non-empty
set in twofold ways: either as the primary notion by means of
which we define the further structure of the set as, for exam-
ple, a partial order and orthocomplementation, or as a secon-
dary notion in partially ordered sets. An orthogonality is the
basic notion in the quantum logic and has a natural physical
interpretation (see e.g. [4], [7], [8], [9]).

In this paper we consider connections between an abstract
orthogonality on a set an an orthocomplementation on a par-
tially ordered set, as well connections between a Boolean
orthogonality and an orthocomplemenfation on partially ordered
sets, It is also shown what conditions must be satisfied in
a lattice in order that this lattice be a pseudocomplemented
one or & Boolean algebra. Finally, it is well known that some
algebraic structures can be represented as partially ordered
sets of real functions, for example, Boolean orthomodular par-
tially ordered sets, [6]. Also partially ordered sets with
complete weak orthogonality admitting a full set of states
can be represented in this way.

Definition 0.1, ([2]). Let (P, <) bea
partially ordered set. A mapping’ : P—= P 18 called a weak
orthocomplementation if 2nd only if it satisfies the following
conditions:
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2 M.Szymariska-Bartman

(0.1) (VxeP)(x ¢x"),

(0.2) (Vx,yeP) (if x <y, then 3'< x').
If the condition (1) is replaced by the condition
(0.3) (VxeP) (x = x")

then the mapping ' is called a strong orthocomplementation,
If P has the least element O and the mapping’ satisfies
conditions (0.1), (0.2) and if ’

(0.4) N={O}, where N={xeP:x4x’},

then’' 1is called a weak non-degenerate orthocomplementation.
Definition 0.2, ([2]). Iet (P,¢) be

a partially ordered set., A binary relation 1 on P is said

to be a weak orthogonality if and only if the following con-

ditions are satisfied

(0.5) (Vx,5 e P) (xly =ylx),
(0.6) Vz,y eP) (x <y = {y}lg {x}'t),

1
where {z} = {p €P: 2z _Lp}.
If | satisfies conditions (0.5), (0.,6) and if

(0.7) (Mx eP) (there exists sup {x}l and sup {x}le {x}i).

then L is called a weak complete orthogonality.
By a strong orthogonality we mean a relation L such that
the conditions (0.5), (0.6) and

(0,8) (Vx,yeP)({y}"' C {x}L =x <y)

are satisfied.

Assume that a partially ordered set (P, ) has a least
element 0, We call 1 defined on P a weak non-degenerate
orthogonality, if the conditions (0.5), (0.6) and
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Orthogonality and orthocomplementation 3

(0.9) Ker 1 = {0}, where Ker 1 = {x €P:x .Lx}

are satisfied.

Definition 0.3. ([5]). Iet P be a set.
A binary relation on P is said to be an abatract orthogona-
1ity 4if and only if it satisfies the following conditions:

(0.10) Vk,yeP)(x Ly =3 Lx),
(0.11) VxepP) (xL x= {x}l = P),
(0.12) v x,5 € P) ({x}l' = {y}J'=>x =3).

It is easy to see that in the set P with an abstract ortho~
gonality there exists at most one element which is orthogonal
tio 1tself, If there exists such an elemqnt, we call it O and
it is the least element in P with respect to the partial or~
der defined in the following way:

(Vx,7, € P)(x ¢y iff {y}i' C {x}"').

Hence we have PL = Ker L in the set P with an abstract
orthogonality and Ker .l has at most one element.

1. Abstract orthogonality and orthocomplementation

To every set with an abstract orthogonality we can asso-
clate a partially ordered set with an orthocomplementation.
The following theorem holds:

Theorem 1.1, Iet (P,1) be a set with an ab-
stract orthogonality which is a partially ordered set with
respect to the partial order: x gy 1iff {y}J'Q {x}JZ More~
over,let P have a least - element (0 and assume that the-
re exists sup {x}l in {x}l for each x ¢ P. Then the map-
ping /! :+ P —7P such that x +=x' = sup {x}'L is a strong
non-degenerate orthocomplementation and x Ly iff x ¢y'.
First, we note that if the assumptions of Theorem 1.1 are
satisfied, then:
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Remark - 1.2. (Vxe P)ix Lx').

- L (1L

Troof. Te have x' = sup {x e{x , 80 X 1x',
Pemark 1.3. (Vx,ze?) (xlz=3z¢ x).

Froof. By the definition of a partial order we need
to show that if x L1l 2z and p e {x'L, then p e {z}l. Note
that if p e {x}J' then p < sup {x = x', therefore
{x’}l C {_}'L. Suppose that p e {x} and x'1 z. Then
Z € {x'}‘L C {p}"', and so z 1 p, thus p e {z}l.

Proof of Theorem 1.1, Suppose that
X € Je Je know that x ¢y iff {y}l_c_{x}l also sup {y}J‘
< sup {x}‘L. But by the definition of the mapping ' 3y’ =
= sup {y}"‘ < sup {x}l =x', so y' gx’.

Jow we are going to show that x = x” for each x € P,
Let x € P. By Remark 1.2 we have xe{x’}"‘ and so we infer
that x ¢ sup {x’} ="(x') = x", On the other hand we have
x" = (x')' = sup {x’} , therefore x'l x"., Set 2z =x" 1in
Remark 1.3. Ve get x"¢ x.

Now sssume that x «€y’. By the definition of a partial
order we have {y}i C {x}'l‘. But by Remark 1.2 y’L y. Thus
we get ye{y’}"‘ ¢ {x}* and so x Ly, . and conversely if
x 1y, then x e {y]J‘. But x < sup {y}'l' =y's Thus x €y’.

By the definition of the least element in P we have
Ker 1 = {0}. Set x =y 1in the property "x <y’ iff x4iy',
Then I\I:{xeP : xsx’} = Kerl ={O}.

On the other hand we have the following theorem.

Theorem 1.4. ILet (P, <, 0, ') be a partially
ordered set with the least element O and a strong non-degene-
rate orthocomplementation. If we define an orthogonality L on
P by xLly iff x <y’ then 1 is an abstract complete
orthogonality and x ¢ y irff {y}lg{x}l.

Proof. Note that (Vx e P)(x L x'), because
x < x" = (x')'. The relation 1 has the completeness proper-
ty, since x’e{x}‘L and if 2z € {x}"‘, then 2z ¢x’', 8o

x' = sup {x}l.
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Now if x 1 x, then x ¢ x’', therefore x € N = {O}.
Thus we have Ker 1 = N = {O}. Moreover O < x', so 0O 1 x
for each x € P.

To conclude the proof we need to show that x<gy iff
{y}lg {x}l. Assume that {y}lg {x}L. We have 3y’ e {y}l,
then x 1y’ and so x ¢ 3" =3. YNow let x ¢y. If
ze{y}i' then y”"¢ 2z'. Therefore x < 2, so x L z. Thus
2 e =}

Cbserve that every abstract orthogonality in a partially
ordered set P with O in which a partiel order is defined
according to Definition 0,3 is a strong non-degenerate ortho-
gonality, but the converse in general fails,

For example, if we consider the following partially or-
dered set

in which the orthogonallty l is defined in such way, that
{af" = {o,c,a} 2 {0y} = {o} {a]" = {0,are >{oel (e},
{c}" = {0,a,b}, {e}" = {o,d,1}, {o} P-{1} =9,
Then we get a strong non-degenerate orthogonality whlch does
not have the property "Olx for each x € P",

If a strong noh-degenerate orthogonality . on a partially
ordered set P with O satisfies the condition "OLx for
each x e P", +then this orthogonelity satisfies all the con-
ditions of an abstract orthogonality.

2. Boolean orthogonality

It is easy to see that in a partially ordered set P with
a least element O and with a non-degenerate weak orthogo-
nality L if x 1y then x Ay exists in P and x Ay =0
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6 U, Szymarska-Bartman

for all x,y € P. The converse of this implication in gene-
ral does not hold. For example, if X = {1,2,3,4}, then all
subsets of X such that each of them contains even number of
elements form a partially ordered set with respect to inclu-
sion. If we define an orthogonality by A LB iff A C B' =
= X-B for all A,B C X, then we have {1,3} A{1,4} =@ and
{1,3} ¢{2,3}* = {1,4}. This orthogonality is weak, non-degene-
rate and complete and the condition (Vx,y € P) (xAy =0
implies x L y) fails in P,

Now we define the Boolean orthogonality.

Definition 2.1. Let (P,<, O) Dbe a partial-
ly ordered set with the least element 0, An orthogonality L
on P 1is called Boolean, if we have

(\/x,y €P) (xly iff x Ay exists in P and x Ay = 0),

Remark 2.2 Every Boolean orthogonality on a
partially ordered set with O is a non-degenerate weak ortho~
gonality.

Remark 2,3, Ifwehave x,y #0, x1ly ina
partially ordered set with a Boglean orthogonality L , then
x £y and x and y are incomparable,

The theorems analogous to Theorem 1.1 and Theorem 1.4
hold for Boolean orthogonality.

Theorem 2.4, Let (P,<,0,l) be a partially
ordered set with O and with a complete Boolean orthogonali-
ty. Then the mapping / : P ——P defined by x i—x' =
= sup {x}J' is a non-degenerate weak orthocomplemeptation.
Moreover

(2.1) (Vx, eP) (x1y iff xg73y'),
(2.2) 1 exists in P and 1 = 0',
Proof., By Remark 2.2 we can apply Corollary 1B

of Theorem 3.1 of [2].
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Theomem 2.5 Let (2,4, 0,’ ) be s partially
ordered set with O and with a weak orthocomplementation,
moreover assume that the following condition holds
() 07&,3 e?P) (x ¢ y' itt x Ay exists in P and xAy =0Uh
Yhen the orthogonality L on P defined by x L 3y iff x € 7'
is a complete Boolean ortaogonality and

(2.3) Vk € P) (sup {X}J': x'),
(2.4) [o}t =7 ana »*- {o].

Proof . From the condition (*) it follows that
N = {x €P:x < x’} = {O}, thus the orthocomplementation
is non-degenerate. So by Corollary 14 of Theorem 3.1 of [2]
we infer that L 1is a complete non-degenerate weak orthogona-
1lity such that (2.3) and (2.4) are satisfied and it is easy
to see that this is a Boolean orthogonality.
Remark 2.6, A Boolean orthogonality on & partial-
ly ordered set need be neither sfrong, nor complete.
For example, if we consider a Boolean orthogonality on
the following distributive lattice

n

then we have: {a}l'= {O,c,f}
aoa {o}* - {o]t - fs} - 1]
not atrong.

In the second case let us consider again the example gi-
ven at the beginning of the section 2, but now with a Boolean
orthogonality. Then we have:

vl = {{1,3),{1,4).{2,3}.{2.4},{3,4},8} and of course
s{up {”,2}}{;{{1,2]}%{ (e }

(ot (o] =[] - (]

0}. this orthogonality is
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8 M.Szymarnska-Bartman

Remark 2.7 Every Boolean orthoposet, [3], is
defined as a partially ordered set with 0 and with a Boolean
orthogonality,

3. Complete Boolean and complete non-degenerate strong
orthogonality in lattices
Here we show when a lattice with some kind of an orthogo-
nality is a pseudocomplemented lattice or a Boolean algebra.
Definition 3.1. A lattice (B,v,A,0} with O
is called a pseudocomplemented lattice if it has the follow-
ing property:

(3.1) (VaeB) (3a¥eB) (VkeB) (anx=0 1iff x < a*).

a* 1is called a pseudocomplement of a.

If B is a distributive lattice with O and if it sati-~
sfies the condition 3.1, then B 1is called a pseudocomplemen~
ted lattice.

Theorem 3,2. If (B,v,A,0,1,1) is a finite di-
gtributive lattice with O and 1 and a Boolean orthogonality,
then this ortihogonality is complste.

Proof . Since the orthogonality is Boolean we con-
clude from x A O =0 for every x € B that x 1 0, {O}J'= B
and {x}l# ®. Suppose that there is an element b € B such
that sup {b}l does not exist in {b}l. Since {O}L = B
and sup {O}J'= 1 we have b #£ 0. If we have {b}l = {O,a}
end O < a, then we have sup ‘[b}'L = a which is a contradic~-
tion.

‘therefore we can choose elements a,c # 0, a,c ¢ {b}l
such that a and c¢ are incomparable., If the elemsnts of
{b}L are parwise comparable, then {b}l is a finite chain
and sup {b} exists in {b}l which is a contradiction. So
if a2 and ¢ are incomparable then they are also incompara-
ble with © by Remark 2.3.

Thus {O,a,b,c,1} forms a sublattice of B which is not
distributive, a contrediction. Therefore sup {b}* exists in
{b}l for every b € B and the orthogonaliiy iz comnlete.
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Orthogonality and orthocomplementation 9

Remark 3.3. If the lattice B in Theorem 3.2 is
infinite or not distributive, then the thesis of Theorem 3.2
fails. For example, the set of all positive integers in which
we define x v y = l.c.m.{x,¥y) and x A J = g.c.d.(x,y) forms
a complete distributive lattice in which a Boolean orthogona-
1ity does not have tae completeness property.

In the second case we consider the following lattice B

with a Boolean orthogonality. Then {d}J'= {O,a,b,c} and
sup {d}'L ¢ {d}l.

Theorem 3.4. If (B,v,A,0,1) is a lattice with
0 and a complete Boolean orthogonality L , then (B,v,A,0,%)
is a pseudocomplemented lattice in which x* = sup {x}l for
every x & B,

Proof. Observe that sup {x}l'= sup {pe B : x.Lp} =
= sup {pe.B t XAp = O} € {x}l, so x* = sup {x}l for each
x € B,

Theorem 3.5 If (B,v,A,0,%) is a pseudocomple-
mented lattice then the ortaiogonality defined on B by

W,y ¢ B) (x Ly iff x < y%

is & comzlete Boolean orthogonality.

Proof., %e-have x 1y iff x ¢ y* and iff xAy =0.
But by the definition of * x* is the greatest element dis-
joint with =x, So we get: x¥ = sup {pe B:pax=20}-=
= sup {peB : pgx'} = sup {peB : p.l.x} = 8up {x}‘LeEx}‘L.

Corollary 3.6 If (B,v,A0U,1,L} is a finite
distributive lattice with O and 1 &nd with a Boolean or-
thogonality, then (B,v,A,0,1,%) is a pseudocomplemented dis-
tributive lattice in which x* = sup {x}J' for all x € B,
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10 M.Szymariske-Bartman

The theorems analogous to the theorems 3.4 and 3.5 hold also
for Boolean algebras,

Theorem 3.7. If (B,v,A,0,1) is a distributive
lattice with O and with a complete non-degenerate strong
orthogonality, then there exists a greatest element 1 in B
and (B,v,A,0,1,’) is a Boolean algebra in which x’ zsup {x}l
for each x € B.

Proof., We only need to show that 1 exists in B
and (Vx € B) (3x'eB) (x vx/ =1 and x A x’ =0). But
this follows from Corollary 2B of Theorem 3.1 [2].

Theorem 3.8, If (B,v,A,0,1,’) is a Boolean
algebra, then the orthogonality 1 defined on B by

Vx,y e B) tx Ly iff x<y'}

is a complete non-degenerate strong orthogonality.

Proof. In a Boolean algebra B we have: x = x"”
for each x € B and x ¢y iff y ¢ x' for all x,y e B,
Moreover if x g x/, then x =x A x'., But x A x' =0, so0
Xx=0 and XN = {O}. Now we can apply Corollary 2A of The=~
orem 3.1 [2], and we get the thesis,

Remark 3.9 {L,<,’) 1is a lattice with a strong
orthocomplementation if and only if (L, <,’) is a polarity
lattice, [11].

4. 4 characterization of partially ordered sets with
a cohplete weak orthogonality and with a full set of
states
A partially ordered set with a complete weak orthogonaligy
admitting a full set of states can be represented as a set
of functions satisfying some properties,
Let i be an.erbitrary set and let L be a set of func-
tions (not necessarily all) from ¥ into [0,1] such that
ti) 0 € L (the zero tunction),
(1i) {(VF € L) (there exists sup {g € L : f+g ¢ 1} in

{g € L : f+g 1}).
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Lemma 4.1, L is a
pect to the
element O©
tlg ift
plete.
Proof., If we define
(V% e i) (£{x) < glx))
a psrtial order on L.
f<g and gL h, 1i.e,
By the condition (ii) we have:
sup {g € L : f+tg < 1}
{f}i), thus the orthogonality
Definition 4.2.

f+g < 1, then this

natural order of functions;
and if we define an orthogonality L on L by

g+h

sup {g € L s

pertially ordered set with res.-
L containe the leas:

orthogonality is weak and com-

<& on L by £ g iff

then it is eas; to see that it is
Of course 1 is symmetric and

if
1, then t+h 1, so f L h,
(Vf € L) (there exists

L g} = sup {f}l in

is complete.

et (P,<,.1l, 0} be a par-

tially ordered set with O and with a weak orthogonality.

— [0,1]

A mapping m : P

(4.1) (Va,b ¢ P) (a ¢ b

(4.2)

(4.3) m0)
Definition 4.3,

tially ordered set with O and
say thet a set

il

(4.4) (vB,b e
(4.5) (Va,be
Definition 4.4,

(74,<4,14)

nality., i'e say thet P and P
exista 2 mapping 1 P-%ﬁ%;—P1
(4.6) Wi,y € P) (x g y
(4.7) (V,y e? (x13

is celled a state on

of states on

.E

, if

implies m(e) g al(bjl,

Va,b 6 P) {2 L o implies m(aj + m(b) < 1),

=Oo
Let (P,g,Ll, O) be e nar-
with a weak orthogonslity. ..e
¥ is full if

?)[if (Vi € i1) (m(e) < m(b), then a g o] ,

2)[if (Vh e 1) (a(e) + a(b) € 1), tasn als] .

et (?,<, 1) end

be partially ordered sets with a weak ortasso-

are isomorphic, if tazre
suca that

irf ilx) <4 iy)),

iff i(x) L, (il
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Pefinition 4.5, Let S be a set of functions
from X into Y. and let 5' = {E ! X € X] where X 1is a
function from S into Y induced by x e %, such fthat
X(f) = f(x) for all f e S. Ve call S' the dual of &.

Theorem 4.6, ILet (P,¢,1, O) be a partially
ordered set with O and with a complete weak orthogonality.
iscume that P admite a full set of states M and let M'

e the dual of . Then M' 1is a partially ordered set with
respect to the natural order of real functions

(Va,p e 2} [a <, b iff (Vb e ul(ala) < 5(n)/]
with a complete orthogonality _L1 defined by
(Ve,pe2) [8 L, 5 ifr (VR eu)(am) + Bla) < 11] .

ioreover (i, <4, 14, 0) and (P, <,1l, 0) are isomorphic.
Proof., Since M 1is & full set of states on P,
we obtain:

(a) 3 2, b ¢=>{V ¢ #) (&(m) < Blm)) &= (Vh € t1)(mla) ¢m(p))
& a < b,
(b) @ 1, B e=>(Vhe ) (n) + Bln) ¢ 1) &=

= (Vh ¢ i)(m(aj + m(b) < 1) &> a Lob.
By definition the relation <4 is s partial order on ',
It is also easy to see that 1, is symmetric and if & <4 b
and b L, c then by (a) and (b) we get a L, c. Now we
will show that there exists sup {§}l1 in {E}l1 for every
geil’. Let @* be a function induced by a* = sup {a}'L (as
the orthogonality L is complete, such a* exists for each
a € P). Since a L a¥, so by (b) we obtain & L, &% If
a 1, b, then by (b) we have a 1L b, But by *he completeness
of the orthogonality 1 we get b & a*, so again we have by
{(b) b <, @* Thus there exists sup {§}l1 in {§}L1 for
every a € M’ and the orthogonality .L1 is complete.
Finally, it is easy to see that the mapping i : P —=M’
defined by i{p) = p for all p € P is a naturel isomorphism
between (P, <,.l, 0) and (M',<,, 14 o},
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The following theorem provides a full characterization of
partially ordered sets with 2 complete weak orthogonality and
with a full set of states:

Yheorem 4,7. (1) If L is a set of functions
satisfying the conditions (i) and (ii) at the beginning of
this section, then L 1is a partially ordered set with O
and with a complete weak orthogonality.

Hloreover: each element m e M induces a state W on L
such that @(f) = f(m) for every fe L and 4’ = {ﬁ : me;M}
is a full set of states on 1L,

(2) On the other hand, if (P, <, 0,1} is a partially
ordered set with 0 and with a complete weak orthogonality,
and if P admits a full set of states L, <then the dual of
i1 satisties (i) and (ii) and M’ is isomorphic to P,

Proof (1). The first part of the theorem follows
from Lemma 4.1, By the definition of m we see that each of
m is a state on L and since

Vo oe M)(R(r) < Glg)) ==>(Vh e M) (f(n) < r(g)ie1 < g,

(\fmsm)(ﬁ(f) + dlg) € 1)e>(Vh e i) (fla)igln) ¢ 1) L g

we infer (2t M' is g full set of states on L.

(2) This follows from Theorem 4.6, In fact the condition
(ii) is satisfied, because we have shown in Theorem 4.6 that
the orthogonality .L1 is complete. The least element in i1’
is the zero function induced by the element 0 e P, i,.e.
such that 0O(m) = m(0) = 0 for all m € . So the condition
(i) also holds.
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