

Magdalena Szymańska - Bartman

ORTHOGONALITY AND ORTHOCOMPLEMENTATION
IN PARTIALLY ORDERED SETS0. Introduction

An orthogonality can be defined on an arbitrary non-empty set in twofold ways: either as the primary notion by means of which we define the further structure of the set as, for example, a partial order and orthocomplementation, or as a secondary notion in partially ordered sets. An orthogonality is the basic notion in the quantum logic and has a natural physical interpretation (see e.g. [4], [7], [8], [9]).

In this paper we consider connections between an abstract orthogonality on a set and an orthocomplementation on a partially ordered set, as well connections between a Boolean orthogonality and an orthocomplementation on partially ordered sets. It is also shown what conditions must be satisfied in a lattice in order that this lattice be a pseudocomplemented one or a Boolean algebra. Finally, it is well known that some algebraic structures can be represented as partially ordered sets of real functions, for example, Boolean orthomodular partially ordered sets, [6]. Also partially ordered sets with complete weak orthogonality admitting a full set of states can be represented in this way.

D e f i n i t i o n 0.1. ([2]). Let (P, \leq) be a partially ordered set. A mapping $\prime : P \rightarrow P$ is called a weak orthocomplementation if and only if it satisfies the following conditions:

$$(0.1) \quad (\forall x \in P)(x < x''),$$

$$(0.2) \quad (\forall x, y \in P) \quad (\text{if } x \leq y, \text{ then } y' \leq x').$$

If the condition (1) is replaced by the condition

$$(0.3) \quad (\forall x \in P) \quad (x = x'')$$

then the mapping ' is called a strong orthocomplementation. If P has the least element 0 and the mapping ' satisfies conditions (0.1), (0.2) and if

$$(0.4) \quad N = \{0\}, \quad \text{where } N = \{x \in P : x \leq x'\},$$

then ' is called a weak non-degenerate orthocomplementation.

D e f i n i t i o n 0.2. ([2]). Let (P, \leq) be a partially ordered set. A binary relation \perp on P is said to be a weak orthogonality if and only if the following conditions are satisfied

$$(0.5) \quad (\forall x, y \in P) \quad (x \perp y \Rightarrow y \perp x),$$

$$(0.6) \quad (\forall x, y \in P) \quad (x \leq y \Rightarrow \{y\}^\perp \subseteq \{x\}^\perp),$$

where $\{z\}^\perp = \{p \in P : z \perp p\}$.

If \perp satisfies conditions (0.5), (0.6) and if

$$(0.7) \quad (\forall x \in P) \quad (\text{there exists } \sup \{x\}^\perp \text{ and } \sup \{x\}^\perp \in \{x\}^\perp),$$

then \perp is called a weak complete orthogonality.

By a strong orthogonality we mean a relation \perp such that the conditions (0.5), (0.6) and

$$(0.8) \quad (\forall x, y \in P) (\{y\}^\perp \subseteq \{x\}^\perp \Rightarrow x \leq y)$$

are satisfied.

Assume that a partially ordered set (P, \leq) has a least element 0 . We call \perp defined on P a weak non-degenerate orthogonality, if the conditions (0.5), (0.6) and

$$(0.9) \quad \text{Ker } \perp = \{0\}, \text{ where } \text{Ker } \perp = \{x \in P : x \perp x\}$$

are satisfied.

D e f i n i t i o n 0.3. ([5]). Let P be a set. A binary relation on P is said to be an abstract orthogonality if and only if it satisfies the following conditions:

$$(0.10) \quad (\forall x, y \in P)(x \perp y \Rightarrow y \perp x),$$

$$(0.11) \quad (\forall x \in P)(x \perp x \Rightarrow \{x\}^\perp = P),$$

$$(0.12) \quad (\forall x, y \in P)(\{x\}^\perp = \{y\}^\perp \Rightarrow x = y).$$

It is easy to see that in the set P with an abstract orthogonality there exists at most one element which is orthogonal to itself. If there exists such an element, we call it 0 and it is the least element in P with respect to the partial order defined in the following way:

$$(\forall x, y \in P)(x \leq y \text{ iff } \{y\}^\perp \subseteq \{x\}^\perp).$$

Hence we have $P^\perp = \text{Ker } \perp$ in the set P with an abstract orthogonality and $\text{Ker } \perp$ has at most one element.

1. Abstract orthogonality and orthocomplementation

To every set with an abstract orthogonality we can associate a partially ordered set with an orthocomplementation. The following theorem holds:

T h e o r e m 1.1. Let (P, \perp) be a set with an abstract orthogonality which is a partially ordered set with respect to the partial order: $x \leq y$ iff $\{y\}^\perp \subseteq \{x\}^\perp$. Moreover, let P have a least element 0 and assume that there exists $\sup \{x\}^\perp$ in $\{x\}^\perp$ for each $x \in P$. Then the mapping $' : P \rightarrow P$ such that $x \mapsto x' = \sup \{x\}^\perp$ is a strong non-degenerate orthocomplementation and $x \perp y$ iff $x \leq y'$. First, we note that if the assumptions of Theorem 1.1 are satisfied, then:

Remark 1.2. $(\forall x \in P)(x \perp x')$.

Proof. We have $x' = \sup \{x\}^\perp \in \{x\}^\perp$, so $x \perp x'$.

Remark 1.3. $(\forall x, z \in P)(x \perp z \Rightarrow z \leq x)$.

Proof. By the definition of a partial order we need to show that if $x \perp z$ and $p \in \{x\}^\perp$, then $p \in \{z\}^\perp$. Note that if $p \in \{x\}^\perp$ then $p \leq \sup \{x\}^\perp = x'$, therefore $\{x\}^\perp \subseteq \{p\}^\perp$. Suppose that $p \in \{x\}^\perp$ and $x' \perp z$. Then $z \in \{x\}^\perp \subseteq \{p\}^\perp$, and so $z \perp p$, thus $p \in \{z\}^\perp$.

Proof of Theorem 1.1. Suppose that $x \leq y$. We know that $x \leq y$ iff $\{y\}^\perp \subseteq \{x\}^\perp$ also $\sup \{y\}^\perp \leq \sup \{x\}^\perp$. But by the definition of the mapping ' $y' = \sup \{y\}^\perp \leq \sup \{x\}^\perp = x'$, so $y' \leq x'$.

Now we are going to show that $x = x''$ for each $x \in P$. Let $x \in P$. By Remark 1.2 we have $x \in \{x\}^\perp$ and so we infer that $x \leq \sup \{x'\} = (x')' = x''$. On the other hand we have $x'' = (x')' = \sup \{x'\}^\perp$, therefore $x' \perp x''$. Set $z = x''$ in Remark 1.3. We get $x'' \leq x$.

Now assume that $x \leq y'$. By the definition of a partial order we have $\{y'\}^\perp \subseteq \{x\}^\perp$. But by Remark 1.2 $y' \perp y$. Thus we get $y \in \{y'\}^\perp \subseteq \{x\}^\perp$ and so $x \perp y$, and conversely if $x \perp y$, then $x \in \{y\}^\perp$. But $x \leq \sup \{y\}^\perp = y'$. Thus $x \leq y'$.

By the definition of the least element in P we have $\text{Ker } \perp = \{0\}$. Set $x = y$ in the property " $x \leq y'$ iff $x \perp y$ ". Then $N = \{x \in P : x \leq x'\} = \text{Ker } \perp = \{0\}$.

On the other hand we have the following theorem.

Theorem 1.4. Let $(P, \leq, 0, ')$ be a partially ordered set with the least element 0 and a strong non-degenerate orthocomplementation. If we define an orthogonality \perp on P by $x \perp y$ iff $x \leq y'$ then \perp is an abstract complete orthogonality and $x \leq y$ iff $\{y\}^\perp \subseteq \{x\}^\perp$.

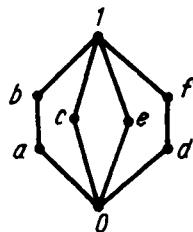
Proof. Note that $(\forall x \in P)(x \perp x')$, because $x \leq x'' = (x')'$. The relation \perp has the completeness property, since $x' \in \{x\}^\perp$ and if $z \in \{x\}^\perp$, then $z \leq x'$, so $x' = \sup \{x\}^\perp$.

Now if $x \perp x$, then $x \leq x'$, therefore $x \in N = \{0\}$. Thus we have $\text{Ker } \perp = N = \{0\}$. Moreover $0 \leq x'$, so $0 \perp x$ for each $x \in P$.

To conclude the proof we need to show that $x \leq y$ iff $\{y\}^\perp \subseteq \{x\}^\perp$. Assume that $\{y\}^\perp \subseteq \{x\}^\perp$. We have $y' \in \{y\}^\perp$, then $x \perp y'$ and so $x \leq y'' = y$. Now let $x \leq y$. If $z \in \{y\}^\perp$, then $y'' \leq z'$. Therefore $x \leq z'$, so $x \perp z$. Thus $z \in \{x\}^\perp$.

Observe that every abstract orthogonality in a partially ordered set P with 0 in which a partial order is defined according to Definition 0.3 is a strong non-degenerate orthogonality, but the converse in general fails.

For example, if we consider the following partially ordered set



in which the orthogonality \perp is defined in such way, that $\{a\}^\perp = \{0, c, d\} \supseteq \{0, c\} = \{b\}^\perp$, $\{d\}^\perp = \{0, a, e\} \supseteq \{0, e\} = \{f\}^\perp$, $\{c\}^\perp = \{0, a, b\}$, $\{e\}^\perp = \{0, d, f\}$, $\{0\}^\perp = P - \{1\}$, $\{1\}^\perp = \emptyset$. Then we get a strong non-degenerate orthogonality which does not have the property " $0 \perp x$ for each $x \in P$ ".

If a strong non-degenerate orthogonality \perp on a partially ordered set P with 0 satisfies the condition " $0 \perp x$ for each $x \in P$ ", then this orthogonality satisfies all the conditions of an abstract orthogonality.

2. Boolean orthogonality

It is easy to see that in a partially ordered set P with a least element 0 and with a non-degenerate weak orthogonality \perp if $x \perp y$ then $x \wedge y$ exists in P and $x \wedge y = 0$

for all $x, y \in P$. The converse of this implication in general does not hold. For example, if $X = \{1, 2, 3, 4\}$, then all subsets of X such that each of them contains even number of elements form a partially ordered set with respect to inclusion. If we define an orthogonality by $A \perp B$ iff $A \subseteq B' = X - B$ for all $A, B \subseteq X$, then we have $\{1, 3\} \wedge \{1, 4\} = \emptyset$ and $\{1, 3\} \not\subseteq \{2, 3\}' = \{1, 4\}$. This orthogonality is weak, non-degenerate and complete and the condition $(\forall x, y \in P) (x \wedge y = 0 \text{ implies } x \perp y)$ fails in P .

Now we define the Boolean orthogonality.

Definition 2.1. Let $(P, \leq, 0)$ be a partially ordered set with the least element 0. An orthogonality \perp on P is called Boolean, if we have

$$(\forall x, y \in P) (x \perp y \text{ iff } x \wedge y \text{ exists in } P \text{ and } x \wedge y = 0).$$

Remark 2.2. Every Boolean orthogonality on a partially ordered set with 0 is a non-degenerate weak orthogonality.

Remark 2.3. If we have $x, y \neq 0$, $x \perp y$ in a partially ordered set with a Boolean orthogonality \perp , then $x \neq y$ and x and y are incomparable.

The theorems analogous to Theorem 1.1 and Theorem 1.4 hold for Boolean orthogonality.

Theorem 2.4. Let $(P, \leq, 0, \perp)$ be a partially ordered set with 0 and with a complete Boolean orthogonality. Then the mapping $\prime : P \rightarrow P$ defined by $x \mapsto x' = \sup \{x\}'$ is a non-degenerate weak orthocomplementation. Moreover

$$(2.1) \quad (\forall x, y \in P) (x \perp y \text{ iff } x \leq y'),$$

$$(2.2) \quad 1 \text{ exists in } P \text{ and } 1 = 0'.$$

Proof. By Remark 2.2 we can apply Corollary 1B of Theorem 3.1 of [2].

Theorem 2.5. Let $(P, \leq, 0, ')$ be a partially ordered set with 0 and with a weak orthocomplementation.

Moreover assume that the following condition holds

(*) $(\forall x, y \in P) (x \leq y \text{ iff } x \wedge y \text{ exists in } P \text{ and } x \wedge y = 0)$.
Then the orthogonality \perp on P defined by $x \perp y \text{ iff } x \leq y'$ is a complete Boolean orthogonality and

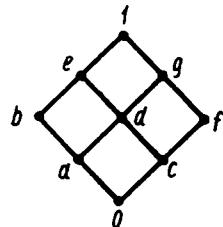
$$(2.3) \quad (\forall x \in P) (\sup \{x\}^\perp = x'),$$

$$(2.4) \quad \{0\}^\perp = P \text{ and } P^\perp = \{0\}.$$

Proof. From the condition (*) it follows that $N = \{x \in P : x \leq x'\} = \{0\}$, thus the orthocomplementation is non-degenerate. So by Corollary 1A of Theorem 3.1 of [2] we infer that \perp is a complete non-degenerate weak orthogonality such that (2.3) and (2.4) are satisfied and it is easy to see that this is a Boolean orthogonality.

Remark 2.6. A Boolean orthogonality on a partially ordered set need be neither strong, nor complete.

For example, if we consider a Boolean orthogonality on the following distributive lattice



then we have: $\{a\}^\perp = \{0, c, f\} = \{b\}^\perp$, $\{c\}^\perp = \{0, a, b\} = \{f\}^\perp$ and $\{d\}^\perp = \{e\}^\perp = \{g\}^\perp = \{1\}^\perp = \{0\}$. This orthogonality is not strong.

In the second case let us consider again the example given at the beginning of the section 2, but now with a Boolean orthogonality. Then we have:

$\{\{1, 2\}\}^\perp = \{\{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}, \emptyset\}$ and of course $\sup \{\{1, 2\}\}^\perp \notin \{\{1, 2\}\}^\perp$.

R e m a r k 2.7. Every Boolean orthoposet, [3], is defined as a partially ordered set with 0 and with a Boolean orthogonality.

3. Complete Boolean and complete non-degenerate strong orthogonality in lattices

Here we show when a lattice with some kind of an orthogonality is a pseudocomplemented lattice or a Boolean algebra.

D e f i n i t i o n 3.1. A lattice $(B, \vee, \wedge, 0)$ with 0 is called a pseudocomplemented lattice if it has the following property:

$$(3.1) \quad (\forall a \in B) (\exists a^* \in B) (\forall x \in B) (a \wedge x = 0 \text{ iff } x \leq a^*).$$

a^* is called a pseudocomplement of a .

If B is a distributive lattice with 0 and if it satisfies the condition 3.1, then B is called a pseudocomplemented lattice.

T h e o r e m 3.2. If $(B, \vee, \wedge, 0, 1, \perp)$ is a finite distributive lattice with 0 and 1 and a Boolean orthogonality, then this orthogonality is complete.

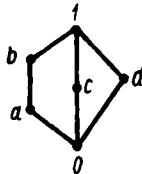
P r o o f . Since the orthogonality is Boolean we conclude from $x \wedge 0 = 0$ for every $x \in B$ that $x \perp 0$, $\{0\}^\perp = B$ and $\{x\}^\perp \neq \emptyset$. Suppose that there is an element $b \in B$ such that $\sup \{b\}^\perp$ does not exist in $\{b\}^\perp$. Since $\{0\}^\perp = B$ and $\sup \{0\}^\perp = 1$ we have $b \neq 0$. If we have $\{b\}^\perp = \{0, a\}$ and $0 < a$, then we have $\sup \{b\}^\perp = a$ which is a contradiction.

Therefore we can choose elements $a, c \neq 0$, $a, c \in \{b\}^\perp$ such that a and c are incomparable. If the elements of $\{b\}^\perp$ are pairwise comparable, then $\{b\}^\perp$ is a finite chain and $\sup \{b\}^\perp$ exists in $\{b\}^\perp$ which is a contradiction. So if a and c are incomparable then they are also incomparable with b by Remark 2.3.

Thus $\{0, a, b, c, 1\}$ forms a sublattice of B which is not distributive, a contradiction. Therefore $\sup \{b\}^\perp$ exists in $\{b\}^\perp$ for every $b \in B$ and the orthogonality is complete.

Remark 3.3. If the lattice B in Theorem 3.2 is infinite or not distributive, then the thesis of Theorem 3.2 fails. For example, the set of all positive integers in which we define $x \vee y = \text{l.c.m.}(x,y)$ and $x \wedge y = \text{g.c.d.}(x,y)$ forms a complete distributive lattice in which a Boolean orthogonality does not have the completeness property.

In the second case we consider the following lattice B



with a Boolean orthogonality. Then $\{d\}^\perp = \{0, a, b, c\}$ and $\sup \{d\}^\perp \notin \{d\}^\perp$.

Theorem 3.4. If $(B, \vee, \wedge, 0, 1)$ is a lattice with 0 and a complete Boolean orthogonality \perp , then $(B, \vee, \wedge, 0, *)$ is a pseudocomplemented lattice in which $x^* = \sup \{x\}^\perp$ for every $x \in B$.

Proof. Observe that $\sup \{x\}^\perp = \sup \{p \in B : x \perp p\} = \sup \{p \in B : x \wedge p = 0\} \in \{x\}^\perp$, so $x^* = \sup \{x\}^\perp$ for each $x \in B$.

Theorem 3.5. If $(B, \vee, \wedge, 0, *)$ is a pseudocomplemented lattice then the orthogonality defined on B by

$$(\forall x, y \in B) (x \perp y \text{ iff } x \leq y^*)$$

is a complete Boolean orthogonality.

Proof. We have $x \perp y$ iff $x \leq y^*$ and iff $x \wedge y = 0$. But by the definition of x^* x^* is the greatest element disjoint with x . So we get: $x^* = \sup \{p \in B : p \wedge x = 0\} = \sup \{p \in B : p \leq x^*\} = \sup \{p \in B : p \perp x\} = \sup \{x\}^\perp \in \{x\}^\perp$.

Corollary 3.6. If $(B, \vee, \wedge, 0, 1, \perp)$ is a finite distributive lattice with 0 and 1 and with a Boolean orthogonality, then $(B, \vee, \wedge, 0, 1, *)$ is a pseudocomplemented distributive lattice in which $x^* = \sup \{x\}^\perp$ for all $x \in B$.

The theorems analogous to the theorems 3.4 and 3.5 hold also for Boolean algebras.

Theorem 3.7. If $(B, \vee, \wedge, 0, 1)$ is a distributive lattice with 0 and with a complete non-degenerate strong orthogonality, then there exists a greatest element 1 in B and $(B, \vee, \wedge, 0, 1, ')$ is a Boolean algebra in which $x' = \sup \{x\}^\perp$ for each $x \in B$.

Proof. We only need to show that 1 exists in B and $(\forall x \in B) (\exists x' \in B) (x \vee x' = 1 \text{ and } x \wedge x' = 0)$. But this follows from Corollary 2B of Theorem 3.1 [2].

Theorem 3.8. If $(B, \vee, \wedge, 0, 1, ')$ is a Boolean algebra, then the orthogonality \perp defined on B by

$$(\forall x, y \in B) (x \perp y \text{ iff } x \leq y')$$

is a complete non-degenerate strong orthogonality.

Proof. In a Boolean algebra B we have: $x = x''$ for each $x \in B$ and $x \leq y$ iff $y' \leq x'$ for all $x, y \in B$. Moreover if $x \leq x'$, then $x = x \wedge x'$. But $x \wedge x' = 0$, so $x = 0$ and $N = \{0\}$. Now we can apply Corollary 2A of Theorem 3.1 [2], and we get the thesis.

Remark 3.9. $(L, \leq, ')$ is a lattice with a strong orthocomplementation if and only if $(L, \leq, ')$ is a polarity lattice, [11].

4. A characterization of partially ordered sets with a complete weak orthogonality and with a full set of states

A partially ordered set with a complete weak orthogonality admitting a full set of states can be represented as a set of functions satisfying some properties.

Let M be an arbitrary set and let L be a set of functions (not necessarily all) from M into $[0, 1]$ such that

- (i) $0 \in L$ (the zero function),
- (ii) $(\forall f \in L) (\text{there exists } \sup \{g \in L : f+g \leq 1\} \text{ in } \{g \in L : f+g \leq 1\})$.

L e m m a 4.1. L is a partially ordered set with respect to the natural order of functions; L contains the least element 0 and if we define an orthogonality \perp on L by $f \perp g$ iff $f+g \leq 1$, then this orthogonality is weak and complete.

P r o o f. If we define \leq on L by $f \leq g$ iff $(\forall x \in M) (f(x) \leq g(x))$ then it is easy to see that it is a partial order on L . Of course \perp is symmetric and if $f \leq g$ and $g \perp h$, i.e. $g+h \leq 1$, then $f+h \leq 1$, so $f \perp h$. By the condition (iii) we have: $(\forall f \in L)$ (there exists $\sup \{g \in L : f+g \leq 1\} = \sup \{g \in L : f \perp g\} = \sup \{f\}^\perp$ in $\{f\}^\perp$), thus the orthogonality is complete.

D e f i n i t i o n 4.2. Let $(P, \leq, \perp, 0)$ be a partially ordered set with 0 and with a weak orthogonality. A mapping $m : P \rightarrow [0,1]$ is called a state on P , if

$$(4.1) \quad (\forall a, b \in P) (a \leq b \text{ implies } m(a) \leq m(b)),$$

$$(4.2) \quad (\forall a, b \in P) (a \perp b \text{ implies } m(a) + m(b) \leq 1),$$

$$(4.3) \quad m(0) = 0.$$

D e f i n i t i o n 4.3. Let $(P, \leq, \perp, 0)$ be a partially ordered set with 0 and with a weak orthogonality. We say that a set M of states on P is full if

$$(4.4) \quad (\forall a, b \in P) [\text{if } (\forall m \in M) (m(a) \leq m(b)), \text{ then } a \leq b],$$

$$(4.5) \quad (\forall a, b \in P) [\text{if } (\forall m \in M) (m(a) + m(b) \leq 1), \text{ then } a \perp b].$$

D e f i n i t i o n 4.4. Let (P, \leq, \perp) and (P_1, \leq_1, \perp_1) be partially ordered sets with a weak orthogonality. We say that P and P_1 are isomorphic, if there exists a mapping $i : P \xrightarrow{\text{1-1 onto}} P_1$ such that

$$(4.6) \quad (\forall x, y \in P) (x \leq y \text{ iff } i(x) \leq_1 i(y)),$$

$$(4.7) \quad (\forall x, y \in P) (x \perp y \text{ iff } i(x) \perp_1 i(y)).$$

Definition 4.5. Let S be a set of functions from X into Y , and let $S' = \{\bar{x} : x \in X\}$ where \bar{x} is a function from S into Y induced by $x \in X$, such that $\bar{x}(f) = f(x)$ for all $f \in S$. We call S' the dual of S .

Theorem 4.6. Let $(P, \leq, \perp, 0)$ be a partially ordered set with 0 and with a complete weak orthogonality. Assume that P admits a full set of states M and let M' be the dual of M . Then M' is a partially ordered set with respect to the natural order of real functions

$$(\forall a, b \in P) [\bar{a} \leq_1 \bar{b} \text{ iff } (\forall m \in M) (\bar{a}(m) \leq \bar{b}(m))]$$

with a complete orthogonality \perp_1 defined by

$$(\forall a, b \in P) [\bar{a} \perp_1 \bar{b} \text{ iff } (\forall m \in M) (\bar{a}(m) + \bar{b}(m) \leq 1)] .$$

Moreover $(M', \leq_1, \perp_1, 0)$ and $(P, \leq, \perp, 0)$ are isomorphic.

Proof. Since M is a full set of states on P , we obtain:

$$\begin{aligned} (a) \bar{a} \leq_1 \bar{b} &\iff (\forall m \in M) (\bar{a}(m) \leq \bar{b}(m)) \iff (\forall m \in M) (m(a) \leq m(b)) \\ &\iff a \leq b, \\ (b) \bar{a} \perp_1 \bar{b} &\iff (\forall m \in M) (\bar{a}(m) + \bar{b}(m) \leq 1) \iff \\ &\iff (\forall m \in M) (m(a) + m(b) \leq 1) \iff a \perp b. \end{aligned}$$

By definition the relation \leq_1 is a partial order on M' . It is also easy to see that \perp_1 is symmetric and if $\bar{a} \leq_1 \bar{b}$ and $\bar{b} \perp_1 \bar{c}$ then by (a) and (b) we get $\bar{a} \perp_1 \bar{c}$. Now we will show that there exists $\sup \{\bar{a}\}^{\perp_1}$ in $\{\bar{a}\}^{\perp_1}$ for every $\bar{a} \in M'$. Let \bar{a}^* be a function induced by $a^* = \sup \{a\}^{\perp}$ (as the orthogonality \perp is complete, such a^* exists for each $a \in P$). Since $a \perp a^*$, so by (b) we obtain $\bar{a} \perp_1 \bar{a}^*$. If $\bar{a} \perp_1 \bar{b}$, then by (b) we have $a \perp b$. But by the completeness of the orthogonality \perp we get $b \leq a^*$, so again we have by (b) $\bar{b} \leq_1 \bar{a}^*$. Thus there exists $\sup \{\bar{a}\}^{\perp_1}$ in $\{\bar{a}\}^{\perp_1}$ for every $\bar{a} \in M'$ and the orthogonality \perp_1 is complete.

Finally, it is easy to see that the mapping $i : P \rightarrow M'$ defined by $i(p) = \bar{p}$ for all $p \in P$ is a natural isomorphism between $(P, \leq, \perp, 0)$ and $(M', \leq_1, \perp_1, 0)$.

The following theorem provides a full characterization of partially ordered sets with a complete weak orthogonality and with a full set of states:

Theorem 4.7. (1) If L is a set of functions satisfying the conditions (i) and (ii) at the beginning of this section, then L is a partially ordered set with 0 and with a complete weak orthogonality.

Moreover: each element $m \in M$ induces a state \bar{m} on L such that $\bar{m}(f) = f(m)$ for every $f \in L$ and $M' = \{\bar{m} : m \in M\}$ is a full set of states on L .

(2) On the other hand, if $(P, \leq, 0, \perp)$ is a partially ordered set with 0 and with a complete weak orthogonality, and if P admits a full set of states M , then the dual of M satisfies (i) and (ii) and M' is isomorphic to P .

Proof (1). The first part of the theorem follows from Lemma 4.1. By the definition of \bar{m} we see that each of \bar{m} is a state on L and since

$$(\forall m \in M)(\bar{m}(r) \leq \bar{m}(g)) \iff (\forall m \in M)(f(m) \leq r(g)) \iff f \leq g,$$

$$(\forall m \in M)(\bar{m}(f) + \bar{m}(g) \leq 1) \iff (\forall m \in M)(f(m) + g(m) \leq 1) \iff f \perp g$$

we infer that M' is a full set of states on L .

(2) This follows from Theorem 4.6. In fact the condition (ii) is satisfied, because we have shown in Theorem 4.6 that the orthogonality \perp_1 is complete. The least element in M' is the zero function induced by the element $0 \in P$, i.e. such that $\bar{0}(m) = m(0) = 0$ for all $m \in M$. So the condition (i) also holds.

BIBLIOGRAPHY

[1] R. Balbes, Ph. Dwinger: Distributive lattices, Columbia, 1974.

- [2] G. Cattaneo, A. Mania : Abstract orthogonality and orthocomplementation, Proc. Camb. Phil. Soc. 76 (1974) 115-132.
- [3] J. Kłukowski : On the representation of Boolean orthomodular partially ordered sets, Demonstratio Math. 8 (1975) 405-423.
- [4] G.W. Mackey : The mathematical Foundations of Quantum Mechanics, New York 1963.
- [5] D. MacLaren : Atomic orthocomplemented lattices, Pacific J. Math. 14 (1964) 597-612.
- [6] M.J. Mączyński, T. Traczyk : A characterization of orthomodular partially ordered sets admitting a full set of states, Bull. de L'Acad. Polon. des Sci. Ser. Sci. Math. Astr. Phys. 21 (1973) 3-8.
- [7] M.J. Mączyński : The orthogonality postulate in axiomatic quantum mechanics, Intern. J. Th. Physics 8 (1973) 353-360.
- [8] M.J. Mączyński : Functional properties of quantum logics, International J. Th. Physics 11 (1974) 149-156.
- [9] B. Mielnik: Quantum logic is it necessarily orthocomplemented, Quantum Mechanics. Determinism. Causality and Particles. (1976) 117-135.
- [10] R. Sikorski : Boolean algebras, Berlin-Heidelberg-New York 1964.
- [11] D. Schweigert : Vollständige, geometrische Verbande mit Polarität. Arch. Math. 28 (1977) 233-237.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF WARSAW
 Received December 9, 1978.