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0. Introduction 
An orthogonality can be defined cn an arbitrary non-empty 

set in twofold ways: either as the primary notion by means of 
which we define the further structure of the set a s , for exam-
ple, a par t ia l order and orthocomplementation, or as a secon-
dary notion in par t ia l ly ordered s e t s . An orthogonality i s the 
basic notion in the quantum logic and has a natural physical 
interpretation (see e .g . [4] , [7 ] , [ 8 ] , [ 9 ] ) . 

In this paper we consider connections between an abstract 
orthogonality on a set an an orthocomplementation on a par-
t i a l l y ordered s e t , as well connections between a Boolean 
orthogonality and an orthocomplementation on par t ia l ly ordered 
s e t s . I t i s a l so shown what conditions must be s a t i s f i e d in 
a l a t t i c e in order that this l a t t i c e be a pseudocomplemented 
one or a Boolean algebra. Final ly , i t i s well known that some 
algebraic structures can be represented as part ia l ly ordered 
se t s of rea l functions, for example, Boolean orthomodular par-
t i a l l y ordered s e t s , [6]. Also part ia l ly ordered se t s with 
complete weak orthogonality admitting a f u l l set of s t a te s 
can be represented in this way. 

D e f i n i t i o n 0 .1 . ( [ 2 ] ) . Let (P, <£ ) be a 
part ia l ly ordered s e t . A mapping' : P—— P i s called a weak 
orthocomplementation i f and only i f i t s a t i s f i e s the following 
conditions s 
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2 M.Szymanska-Bartman 

(0.1) ( V i £ P ) ( x <x") , 

(0.2) ( V x j e P ) ( i f x < i y , then y'<x'). 

If the condition (1) i s replaced by the condition 

(0.3) ( V x e P ) (x = x") 

then the mapping ' i s cal led a strong orthocomplementation. 
If P has the least element 0 and the mapping' s a t i s f i e s 
conditions (0 .1) , (0.2) and i f 

(0.4) N = {o}, where N = {x e P : x < x ' j , 

then' i s cal led a weak non-degenerate orthocomplementation. 
D e f i n i t i o n 0.2 . ( [2] ) . Let (P, 6 ) be 

a par t i a l l y ordered se t . A binary re la t ion ± on P i s said 
to be a weak orthogonality i f and only i f the following con-
dit ions are s a t i s f i ed 

(0.5) (Vx,y e P) (x-Ly = > y l x ) , 

(0.6) (Vx ,y e P) (x ^ y {y}X Q {*}*), 

where j2}"1 = {p P : z ± p|. 

If ± s a t i s f i e s conditions (0 .5) , (0.6) and i f 

(0.7) ( V x e P ) (there ex i s t s sup {x]"*" and sup {xj^e {x}1) ! 

then -L i s cal led a weak complete orthogonality. By a strong orthogonality we mean a re la t ion X such that 
the conditions (0 .5) , (0.6) and 

(0,8) ( V j t . y e P K j y ^ c j x ^ x o ) 

are s a t i s f i e d . 
Assume that a par t i a l l y ordered set (P, <) has a least 

element 0. We c a l l ± defined on P a weak non-degenerate 
orthogonality, i f the conditions (0 .5) , (0.6) and 
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(0.9) Ker -L = {oj, where Ker ± = { x e P : x J _ x | 

are satisfied. 
D e f i n i t i o n 0.3. ([5])* Let P be a set. 

A binary relation on P is said to be an abstract orthogona-
lity if and only if it satisfies the following conditions: 

(0.10) (Vjx.y 6P)(x ± y => y J_x), 

(0.11) ( V x c P) ( i i z = > {x}1 = P), 

(0.12) ft/x,y e Pi ({x}X = {y}-1" = > x = y). 

It is easy to see that in the set P with an abstract ortho-
gonality there exists at most one element which is orthogonal 
tio itself. If there exists such an element, we call it 0 and 
it is the least element in P with respect to the partial or-
der defined in the following way: 

(Vx,y, E P)(X ^ y iff {y}"1" c {x}X). 

Hence we have P-1- = Ker -L in the set P with an abstract 
orthogonality and Ker J. has at most one element. 

1. Abstract orthogonality and orthocomplementation 
To every set with an abstract orthogonality v?e can asso-

ciate a partially ordered set with an orthocomplementation. 
The following theorem holdsi: 

T h e o r e m 1.1. Let (P,X) be a set with an ab-
stract orthogonality which is a partially ordered set with 
respect to the partial order: x < y iff {y}"*" £ . More-
over,let P have a least element 0 and assume that the-
re exists sup |xj in {x-J"1" for each x 6 P. Then the map-
ping ' : P —- P such that x x' = sup i8 a strong 
non-degenerate orthocomplementation and x _L y iff x 4 y'. 
First, we note that if the assumptions of Theorem 1.1 are 
satisfied, then: 
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R e m a r k 1.2. (Vx 6 P)(x lx'). 
P r o o f . T"e have x' = sup jxj € {x]X, so x ± x'. 
R e m a r k 1.3. (Vx,z e F) (x J_ z z i x). 
r r o o f . By the definition of a partial order we need 

uo show that if x 1 z and p £ {X|X» then p e {zJ"L . Note 
that if p e {x} then p < sup {x̂ j = x', therefore 
{x']J' c {p}"1 • Suppose that p e {xj and x'± z. Then 
z e jx'}1 C {p}1, and so z ± p, thus p e f2}1» 

P r o o f o f T h e o r e m 1.1. Suppose that 
x < y. 7/e know that x $ y iff {y}"1"̂  { x} X a l s o SUP {̂ j"1" 
< sup {x]"1". But by the definition of the mapping ' y' = 
= sup {y}1 < sup |x]"L = x', so y'^ x'. 

Sow we are going to show that x = x" for each x 6 P. 
Let x 6 P. By Remark 1.2 we have xejxj"1" and so we infer 
that x ^ sup {x'| ="(x')' = x". On the other hand we have 
x" = (x')' = sup {x'}"1 , therefore x'lx". Set z = x" in 
Remark 1.3. V/e get x " ^ . x . 

Now assume that x By the definition of a partial 
order we have {y}"1" C {x}"1"» Bu,fc Remark 1.2 y'-L y. Thus 
v/e get y e jyjx C {x]"L and so x 1 y, • and conversely if 
x ± y, then x e. (y But x ^ sup Jy}x = y'. Thus x < y'. 

By the definition of the least element in P we have 
Ker _L = {o} . Set x = y in the property "x 4 y' iff x ly". 
Then N = {x e P : x jg xj = Kerl = {o}. 

On the other hand we have the following theorem. 
T h e o r e m 1.4. Let (P, 0, ' ) be a partially 

ordered set with the least element 0 and a strong non-degene-
rate orthocomplementation. If we define an orthogonality X on 
P by x ± y iff x ^ y' then ± is an abstract complete 
orthogonality and x « y iff {y} c{x] . 

P r o o f . Note that (Vx e P)(x 1 x'), because 
x < x" = (x1)'. The relation _L has the completeness proper-
ty, since x'€ {x}1 and if z e {x}1» then z <x', so 
x ' = sup {x}"1". 
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Now if x _L x, then x < x' , therefore x e N = [oj. 
Thus we have Ker _L = N = {o}. Moreover 0 4 x' , so 0 X x 
for each x e P. 

To conclude the proof we need to show that Xjgy iff 
{y}^ {x}"1. Assume that { 7 } { * J1- We have y' 6 {y}X, 
then x ± y' and so x 4 y" = y. Now let x 4 y. If 
zejy}-1-, then y"<£ z'. Therefore x $ z', so x ± z. Thus 
z e {x}"1. 

Observe that every abstract orthogonality in a partially 
ordered set P with 0 in which a partial order ia defined 
according to Definition 0.3 is a strong non-degenerate ortho-
gonality, but the converse in general fails. 

For example, if we consider the following partially or-
dered set 

in which the orthogonality -L is defined in such way, that 
{af = {o,c,d} 2 {0,c] = {d}X = {o,a,e} 2 {o.ej = {f}\ 
{ c ^ = {0,a,b}, {eJX = {0,d,f}, {0}1 = P - {1}, { l } = * . 
Then we get a strong non-degenerate orthogonality which does 
not have the property "O-Lx for each x 6 P". 

If a strong non-degenerate orthogonality _L on a partially 
ordered set P with 0 satisfies the condition "01 x for 
each x e P", then this orthogonality satisfies all the con-
ditions of an abstract orthogonality. 

2. Boolean orthogonality 
It is easy to see that in a partially ordered set P with 

a least element 0 and with a non-degenerate weak orthogo-
nality _L if i l j then x A y exists in P and x a y = 0 
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for all x,y e P. The converse of this implication in gene-
ral does not hold. ?or example, if X={l,2,3,4], then all 
subsets of X such that each of them contains even number of 
elements form a partially ordered set with respect to inclu-
sion. If we define an orthogonality by A ± B iff A c B' = 
= X-B for all A,B C X, then we have {l ,3} a {1,4} = 0 and 
(1,3} ̂ {2,3}X = {1»4}- This orthogonality is weak, non-degene-
rate and complete and the condition (Vx,y e P) (x Ay = 0 
implies x J. y) fails in P. 

How we define the Boolean orthogonality. 
D e f i n i t i o n 2.1. Let (P, <, 0) be a partial-

ly ordered set with the least element 0. An' orthogonality _L 
on P is called Boolean, if we have 

(Vx ,y e P) (x_Ly i f f x A y e x i s t s in P and x AY = 0). 

R e m a r k 2.2. Every Boolean orthogonality on a 
partially ordered set with 0 is a non-degenerate weak ortho-
gonality. 

R e m a r k 2.3. If we have x,y £ 0, x _L y in a 
partially ordered set with a Boolean orthogonality _L , then 
1 / y and x and y are incomparable. 

The theorems analogous to Theorem 1.1 and Theorem 1.4 
hold for Boolean orthogonality. 

T h e o r e m 2.4. Let (P, < ,0,_L) be a partially 
ordered set with 0 and with a complete Boolean orthogonali-
ty. Th$n the mapping ' : P —- P defined by x H—x' = 
= sup {x}"1" is a non-degenerate weak orthocomplementation. 
Moreover 

(2.1) (Vx,y 6 P) (x 1 y iff x < y ' ) , 

(2.2) 1 exists in P and 1 = 0 ' . 

P r o o f . By Remark 2.2 we can apply Corollary 1B 
of Theorem 3.1 of [2]. 
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T h e o r e m 2.5. Let (? , 0 , ' ) be 8 partially-
ordered set with 0 and with a weak orthocomplementation. 
moreover assume that the following condition holds 
(*) fr/x.yeP) (x 4 y' i f f x A y ex i s t s in P and x A y = Oj. 
Then the orthogonality _L on P defined by x -L y i f f x ^ y ' 
i s a complete Boolean ortnogonality and 

(2.3) 

(2.4) 

(Vx e P) (sup { x ] 1 = x ' ), 

ana 

P r o o f . Prom the condition (*) i t follows that 
N = |x e P : x ^ x ' ] = {oj , thus the orthocomplementation 
i s non-degenerate, bo by Corollary 1« of Theorem 3.1 of [2] 
we infer that 1 i s a complete non-degenerate weak orthogona-
l i t y such that (2.3) and (2.4) are s a t i s f i ed and i t i s easy 
to see that th i s i s a Boolean orthogonality. 

R e m a r k 2.6. A Boolean orthogonality on a par t ia l -
ly ordered set need be neither strong, nor complete. 

For example, i f we consider a Boolean orthogonality on 
the following d is t r ibut ive l a t t i c e 

then we have: {a} = { o , c , f j = • b {c }"*" = { 0 , a , b ] = {f }"*" 
and {d}"1 = j e j 1 = [g|X = [ 1 ] =• 0 . This orthogonality i s 
not strong. 

In the second case l e t us consider again the example g i -
ven at the beginning of the section 2, but now with a Boolean 
orthogonality. Then we have: 

ft1'?)}1 r J l V j l ' h ^ ' t 2 ' 3 } ' ! 2 « 4 } ' ^ » 4 } ^ } « a o f 
sup { { l . z - j j ^ j l l . z } } 1 . 

course 
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8 M. Szymanska-Bartman 

K e m a r k 2.7. Every Boolean orthoposet, [ 3 ] , is 
defined as a partially ordered set with Ü and with a Boolean 
orthogonality. 

3. Complete Boolean and complete non-degenerate strong 
orthogonality in lattices 

Here we show when a lattice with some kind of an orthogo-
nality" is a pseudocomplemented lattioe or a Boolean algebra. 

D e f i n i t i o n 3.1. A lattice (B,V,a,O) with 0 
is called a pseudocomplemented lattice if it has the follow-
ing property: 

(3.1) faaeB) (3a* T BJ M c e B ) (¡a A X = 0 iff x 4 a*). 
a* is called a pseudocomplement of a. 

If B is a distributive lattice with 0 and if it sati-
sfies the condition 3.1» then B is called a pseudocomplemen-
ted lattice. 

T h e o r e m 3.2. If (B,v,A,Of1,1) is a finite di-
stributive lattice with O and 1 and a Boolean orthogonality, 
then this orthogonality is complete. 

P r o o f . Since the orthogonality is Boolean we con-
clude from x A 0 = 0 for every x e B that x -L 0, {o}"L= B 
and j x } 1 / ^ Suppose that there is an element b e B such 
that sup {bj"L does not exist in {b}"L. Since {o} = B 
and sup {o}i = 1 we have b ¿ 0. If we have {b}1 = {o,aj 
and 0 < a, then we have sup {b}"L = a which is a contradic-
tion. 

therefore we can choose elements a,c i 0, a,c 6 {bj 
such that a and c are incomparable. If the elements of 
{b}"1" are parwise comparable, then (bj is a finite chain 
and sup {b]1 exists in {b}"1 which is a contradiction. So 
if a and c are incomparable then they are also incompara-
ble with b by Remark 2.3. 

Tnus {o,a,b,c,l] forms a sublattice of B which is not 
distributive, a contradiction. Therefore sup {b}^" exists in 
{b]"L for every b e B and the orthogonality i3 complete. 
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R e m a r k 3.3. I f the l a t t i ce B in Theorem 3.2 is 
in f in i t e or not d istr ibut ive , then the thesis of Theorem 3.2 
f a i l s . For example, the set of a l l positive integers in which 
we define x V y = l . c .m. (x , y ) and x A y = g . c . d . ( x , y j forms 
a complete distr ibutive l a t t i c e in which a Boolean orthogona-
l i t y does not have tne completeness property. 

In the second case we consider the fol lowing l a t t i ce B 

1 

with a Boolean orthogonality. Then {d}"1 "3 { o , a , b , c ] and 
sup { d } x i { d } 1 . 

T h e o r e m 3.4. I f IB,v,A ,0,1) i s a la t t i ce with 
0 and a complete Boolean orthogonality 1 , then (B,V,A ,0,* ) 
i s a pseudocomplemented la t t i ce in which x * = sup {x}"1" f o r 
every x e B. 

P r o o f . Observe that sup { x j"1" = sup j p eB : x l p j = 
= sup { p t B : XAp = o } e {x } "1 , so x* = sup f x } 1 f o r each 
x e B. 

T h e o r e m 3.5. I f ( B , V , A , 0 , * ) i s a pseudocomple-
mented la t t i ce then the orthogonality defined on B by 

(Vi,y e B) (x 1 y i f f x 4 y * ) 

i s a complete Boolean orthogonality. 
P r o o f . ?ie have x 1 j i f f x 4 y* and i f f x A y =0. 

But by the de f in i t ion of * x* is the greatest element d is-
jo int with x. So we gets x* = sup { p e B : p * x = o } = 
= sup { p e B : p = sup { p e B : p X x ] = sup { x } J " e { x } " L . 

C o r o l l a r y 3.6. I f (B,v,A,0,1 , U is a f i n i t e 
distr ibutive l a t t i ce with 0 and 1 and with a Boolean or-
thogonality, then (B,v ,a ,0 ,1 , * ) i s a pseudocomplemented d is-
tr ibutive la t t i ce in which x * = sup {x}"1" f o r a l l x e B. 
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The theorems analogous to the theorems 3 . 4 and 3 . 5 hold a l s o 
f o r Boolean a l g e b r a s . 

T h e o r e m 3 . 7 . I f ( B ,V,A , 0 , . U i s a d i s t r i b u t i v e 
l a t t i c e wi th 0 and w i t h a complete non-degenerate s t r o n g 
o r t h o g o n a l i t y , then t h e r e e x i s t s a g r e a t e s t element 1 i n B 
and ( B , v , A , 0 , 1 ) i s a Boolean a l g e b r a i n which x ' r B u p { x } " 1 

f o r each x E B . 
P r o o f . a'e only need t o show t h a t 1 e x i s t s i n B 

and (Vk E B) ( 3 x ' E BJ (x V x ' = 1 and x A x ' = 0 ) . But 
t h i s f o l l o w s from C o r o l l a r y 2B o f Theorem 3 . 1 [ 2 ] . 

T h e o r e m 3 . 8 . I f ( B , v , a , 0 , 1 , ' ) i s a Boolean 
a l g e b r a , then the o r t h o g o n a l i t y ± def ined on B by 

(Vxty e B) i x 1 y i f f x 4 y 

i s a complete non-degenerate s t r o n g o r t h o g o n a l i t y . 
P r o o f . I n a Boolean a l g e b r a B we have : x = x " 

f o r each x e B and x 4 y i f f y ' 4 x ' f o r a l l x , y e B . 
Moreover i f x ^ x ' , then x = x A X ' . But x A x ' = 0 , so 
x = 0 and H = { o } . Now we can apply C o r o l l a r y 2A o f The-
orem 3 . 1 [ 2 ] , and we g e t the t h e s i s . 

R e m a r k 3 . y . I L , ^ , ' ) i s a l a t t i c e wi th a s t r o n g 
orthocomplementat ion i f and only i f (L , < , ' } i s a p o l a r i t y 
l a t t i c e , [ i t ] . 

4 . A c h a r a c t e r i z a t i o n of p a r t i a l l y ordered s e t s w i t h 
a complete weak o r t h o g o n a l i t y and w i t h a f u l l s e t of 
s t a t e s 

A p a r t i a l l y ordered s e t wi th a complete r e a k o r t h o g o n a l i t y 
a d m i t t i n g a f u l l s e t o f s t a t e s can be r e p r e s e n t e d as a s e t 
o f f u n c t i o n s s a t i s f y i n g some p r o p e r t i e s . 

Let lii be an> a r b i t r a r y s e t and l e t L be a s e t of f u n c -
t i o n s Inot n e c e s s a r i l y a l l ) from M i n t o such t h a t 
l i j 0 e L ( the zero f u n c t i o n ) , 
( i i ) M r e L) ( t h e r e 

[ g 6 L : f + g ^ 1 } ) . 
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L e m m a 4 . 1 . L i s a part ia l ly ordered set with r e s -
pect to the natural order of functions; L contains the leas t 
element 0 and i f v/e define an orthogonality J . on L by 
t ± g i f f f+g 4: 1, then th i s orthogonality i s weak and com-
ple te . 

P r o o f . I f we define 4 on L by f < g i f f 
fVk fc M) (f'(x) ^ g ( x ) ; then i t i s easy to see that i t i s 
a par t ia l order on L. Of course ± i s symmetric and i f 
f < g and g -L h, i . e . g+h 4 1, then l'+h 4 1, so f JL h. 
ay the condition ( i i ) we have: (Vf fc L) (there ex i s t s 
sup |g € L : f+g ^ 1} = sup |g 6 L ! f i g | = sup { f } " 1 in 
{f}"L)» thus the orthogonality i s complete. 

D e f i n i t i o n 4 . 2 . Let (P, J_, 0) be a par-
t i a l l y ordered set with 0 and with a weak orthogonality. 
A mapping m : P — i s called a state on P, i f 

(4 .1 ) e P) (a < b implies m(al < m(b)j , 

(4 .2 ) (Va,b e P) (a ± d implies m(a) + m(b) 4 1 ) , 

( 4 . 3 ) miO) = 0 . 

D e f i n i t i o n 4 . 3 . Let ( P , ^ , _ L , 0) b e e par-^ 
t i a l l y ordered set with 0 and v.-ith a weak orthogonelity. .e 
say that a set Li of s ta tes on P i s f u l l i f 

( 4 . 4 ) € P) [ i f (Vm 6 LI) (m(a) < n(b i , then a 4 b] , 

(4 .5 ) (Va , b e ?) [ i f fvk t II) (m(a) + n(b) 4 1 j , then a l b ] . 

D e f i n i t i o n 4 . 4 . Let (? , 4 , 1 ) end 
be part ia l ly ordered sets with a '.veak orthogo-

n a l i t y . -.:e say that p and P1 are isomorphic, i f thsre 
1 - 1 e x i s t s e mapping i s P such that 

(4 .6 ) 4 Pi (x < y i f f i ( X ) i ( y ) ) , 

( 4 . 7 ) fv?<,y e P) (x ± j i f f i ( x ) _L 1 i ( ; / J . 
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D e f i n i t i o n 4 .5 . Let S be a s e t of funct ions 
from I into Y. and l e t s ' = {x : x e X ] where x i s a 
funct ion from & into Y induced by x e X» such that 
x ( f ; = f ( x ) f o r a l l f e S . 77e c a l l S ' the dual of S . 

T h e o r e m 4 .6 . Let (P, 1 , 0) be a. p a r t i a l l y 
ordered se t with 0 and with a complete weak orthogonal i ty . 
Assume that ? admits a f u l l s e t of s t a t e s M and l e t M' 
be the dual of M. Then M' i s a p a r t i a l l y ordered s e t with 
respect to the natura l order of r e a l funct ions 

( Va ,b e P ) [ I b i f f (Vm e M ) ( a ( m ) 4 b ( m ) ) ] 

with a complete orthogonality defined by 

faa,b e ? ) [ a ± 1 b i f f (Va e M ) ( I ( m ) + b(m) ^ 1 ) ] . 

.".¿oreover (!.!', , , 0) and (P, ¿ , - L , 0) are isomorphic. 
P r o o f . Since M i s a f u l l s e t of s t a t e s on P, 

v/e obta in : 
(a) a. b <=> fVm e II) (a(m) ^ b(m)) «=> (Vm £ ivl) (m(a) 4 m(b)) 

<=> a ^ b, 
( b ) I ± 1 b < = > W b 6 :.I) ( K m ) + b (m) 4 1 ) « = > 

<==> (Vm e M) (m(a) + m(b)- ^ 1 ) « = > a X ' t o . 

By d e f i n i t i o n the r e l a t i o n ^ i s a p a r t i a l order on M', 
I t i s a l s o easy to see that _L ^ i s symmetric and i f a ^ b 
and b 1 1 c then by ( a ; and (b) we get a c . How we 

w i l l show that there e x i s t s sup { a } 1 in { a } 1 f o r every 
a e M'. Let a * be a funct ion induced by a * = sup | a } (as 
the orthogonal i ty _L i s complete, such a * e x i s t s f o r each 
a e P) . Since a 1 a * , so by (b) we obtain a a * . I f 
a b, then by (b) we have a 1 b. But by +he completeness 
of the orthogonal i ty -L we get b 4 a * , so again we have by 
(b) t> ^ a * . Thus there e x i s t s sup { a ] 1 in {a}"*"1 f o r 
every a e ffi' and 1-he orthogonality i s complete. 

F i n a l l y , i t i s easy to see that the mapping i : P —»-m' 
defined by- i ( p ) = p fo r a l l p e P i s a natura l isomorphism 
between (P, ¿ , 1 , 0 ) and (M'f « 1 , 1 1 , 0 ) . 
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The f o l l o w i n g theorem p r o v i d e s a f u l l c h a r a c t e r i z a t i o n of 
p a r t i a l l y ordered s e t s wi th a complete weak o r t h o g o n a l i t y and 
w i t h a f u l l s e t of s t a t e s : 

T h e o r e m 4 . 7 . ( 1 ) I f L i s a s e t of f u n c t i o n s 
s a t i s f y i n g the c o n d i t i o n s ( i ) and ( i i ) a t the b e g i n n i n g of 
t h i s s e c t i o n , then L i s a p a r t i a l l y ordered s e t w i t h 0 
and w i t h a complete weak o r t h o g o n a l i t y . 

Moreover : e a c h element m e M i n d u c e s a s t a t e m on L 
s u c h t h a t 5 ( f ) = f ( m ) f o r every f 6 L and Hi' = [m : m e l i j 
i s a f u l l s e t o f s t a t e s on L . 

(2 ) On the o t h e r hand, i f ( ? , ^ , 0 , - L ) i s a p a r t i a l l y 
o rdered s e t wi th 0 and wi th a complete weak o r t h o g o n a l i t y , 
and i f P a d m i t s a f u l l s e t o f s t a t e s M, then the d u a l of 
i.i s a t i s f i e s ( i ) and ( i i ) and M7 i s i somorph ic to P. 

P r o o f ( 1 ) . The f i r s t p a r t of the theorem f o l l o w s 
f rom Lemma 4 . 1 . By the d e f i n i t i o n of m we s e e t h a t each of 
5 i s a s t a t e on L and s i n c e 

fVm e M)(m(r) ^ E ( g ) ) e M)( f (m) ^ i ( g ) J f 6 g , 

(VmeM) (ni ( f ) + m(g) ^ 1 ) •<=> fr/m e M) ( f U ) + g ( m ) ^ 1 ) f ± g 

we i n f e r M ' i s s f u l l s e t o f s t a t e s on L . 
( 2 ) T h i s f o l l o w s from Theorem 4 . 6 . I n f a c t the c o n d i t i o n 

( i i ) i s s a t i s f i e d , b e c a u s e we have shown i n Theorem 4 . 6 t h a t 
the o r t n o g o n a l i t y i s c o m p l e t e . The l e a s t e lement i n M' 
i s the z e r o f u n c t i o n induced by the e lement 0 £ P , i . s . 
s u c h t h a t O(m) = m(0) = 0 f o r a l l m e M. So the c o n d i t i o n 
( i ) a l s o ' h o l d s . 
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