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Introduction 
In this paper we consider the random linear parabolic 

equation 

(0.1) Lu = V ak(x,t)Dju - D tu = 0
 1 ), 

Ikfitb 

where b is a positive integer and a^ are complex random 
functions defined in the strip h= {(x,t) :x 6 Rn,t e <0,T>j . 
Applying the same parametrix method as in [2], we construct 
a fundamental solution of the equation (0.1). This enables us 
to prove the existence of a solution of the Cauchy problem 

(0.2) Lu = f(x,t), (x,t) e H 0 = R
n x ( 0 , T > , 

(0.3) u(x,0) = g(x), x 6 R n, 

where f and g are given complex random functions. 
In paper [4] there were treated random linear parabolio 

equations of the second order and there were obtained results 
similar to the above-mentioned ones. We applied in [4] the 
same parametrix method as in [3] (chapter 1) which required 

^ notation and definitions will be stated in Section 1. 
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2 H.Ugowski 

stronger assumptions conoerning coeff ic ients than those made 
in the present paper specialized to the case b = 1. 

1. Preliminaries 
Let (Si, 7 , P) be a probabil ist ic space, where P i s 

a complete probability measure. By Lp(£2) (1 < p < oo) we 
denote the Banach space of a l l complex random variables f(u'i) 
defined on (fl, 7 , P) with f in i t e norm 

1 
||f||p = [ ¿ | f M P p ( d u ) ] P . i f p < ° ° } ||f|| = ess sup |f(col | . 

The l imit , continuity and part ia l derivatives of a random 
function u : A——Lp(ft), A C Rn , are understood in the-strong 
sense and they are called respectively the L p - l imit , Lp-con-
tinuity and L -derivatives of u. By Ck(A,L (£) ) , k € N = 

r IP ' P 0 
= <l 0 , 1 , 2 , . . . | , we denote the set of a l l random functions 
u: A —L (fl) which are L -cointinuous in A together with 

p P a i i a l l their Lp-derivatives Dxu, |ot| < k, where 

oc = (a1 , . . . , a n ) e N", |a|= + . . . + a n , 
(1.1) 

a i an al« D? = D J . . . D. 11 - 31 
'x - "x, • • • % Sj • 

• • • 

We abbreviate C°(A,L (a)) = C(A,L (fi)). Let us denote P ' P oO 
C°° (A,L (&) ) = P i Ck(A,L (fl)). This enables us to introduce 

P k=1 P 
the set S (R n , L JQ) } of a l l functions u e C°° (Rn,L (a) ) P P such that for any multi-indexes a , /ieNj? we have 

sup 
xeRn 

x^Paix) 
a a 

< oo , x a = x 1 1 . . . x n n 

For a function u € S(Rn ,L p (a)) there i s defined the Fourier 
transform 
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Random l i n e a r pa rabo l i c equa t ion 

u 
u(§) = J e-i{x*V*lx)ix 2 } , f 6 R n , (x ,§ ) = J ] x J? ; J" 

The fo l lowing lemmas w i l l be needed. 
L e m m a 1 . 1 . I f a 6 S ( R n , L p ( a ) ) , then a 6 S(R n ,L p ( f l ) ) 

and 

u(z) = (23T)-n J û ( f ) e i ( a c » ? } d | . 

Rn 

The proof i s the same as t h a t f o r nonrandom f u n c t i o n s . 
L e m m a 1 .2 . I f h e C 1 ( < a , |S>, L {£ ) ) , then t h e -

r e e x i s t s a number jfe <oC , (3 > such t h a t | | h{^) -h(a) | | < 

< | | h ' ( i r ) | p ( M J . 
P r o o f . We have 

6 
h(/5) - h ( a ) = j h' (x)dx. 

a 

Hence i t f o l l ows from the i n t e g r a l mean value theorem t h a t 
fi 

| | h (p ) -h(a ) | | p I h' (x)| | dx = (fi-tf) I h' ip j M - up - » '» '»P 
a 

L e m m a 1 . 3 . Let A c Rn be a convex domain. I f A 
u 6 C ( A , L p ( û ) ) t then f o r any po in t s a , | J e A , a t P , t he re 
e x i s t s a point f l y ing on the segment a/5 such t h a t 

(1 .2 ) H / 5 ) - M l p < £ : ( i V V K ^ I I p -
3=1 0 

p) 
Throughout t h i s paper the proper and improper i n t e g r a l s 

of Lp-continuous random f u n c t i o n s are taken in the s t rong R i e -
npjpn sense ( L p - i n t e g r a l s ) . D e f i n i t i o n s and lemmas of paper 
[4J concerning L p - i n t e g r a l s of r e a l random f u n c t i o n s hold t r u e 

a l s o f o r complex ones. Moreover, the measu rab i l i t y of random 
f u n c t i o n s , assumed i n [4] , i s s u p e r f l u o u s . 
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4 H.Ugowski 

P r o o f . The random function v(r) = U((1 -fld+tfr), 
t€ < 0,1 > , belongs to C1{< 0,1 > ,Lp(a)) and ita ^-deri-
vative is defined by formula 

n 
(1.3) v'(r) = £ (<*+*(?>-<*))' 

d=1 i 

In view of Lemma 1.2, there is a number ZQ & < 0,1 > such 
that ||v(1 )-v(0)||p < ||v'(ro)||p which implies, by (1.3), the 
inequality (1.2) with ¡f= oi+zro((5-a). 

Finally we introduce the following definition. 
D e f i n i t i o n 1.1. The operator . L (defined 

by (0.1)) is called uniformly parabolic if 
3) 

(1.3) Re av(x,t)(i^)k < -g|6|2to, (x,t)eH, 6eRn 

Ikl =2b 

5 > 0 being a constant and |£> J = 

2. An equation with random coefficients depending only 
on t 

We consider the equation 

(2.1) L'u= ; ak(t)D^u - Dtu = 0. 
|kU2b 

T h e o r e m 2.1. If ak e C( < 0,T> ,L«> (£)) and 
the operator L' is uniformly parabolic (Definition 1.1), 
then there exists a complex random function Z(x,t,f,r) de-« 
fined in the set 

(2.2) Aq = {(x,t,f,r): x,£ e Rn, 0 4 % < t 4 l} 

Note that ak(x,t) are random functions. Therefore ine-
quality (1.3) holds for (x,t) eH, 6 e Rn, u e ^ where 
p ( a x > t ) = 1 . 
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Random linear parabolic equation 5 

and possessing the following properties: 

1° Z e C ( A , L 00(a)) and we have 

n_ 
(2 .3 ) ||z(3c,t,$ ,r)||M < B ( t - r ) 2 b exp 

( t - r ) * 

b' 

/ 2b 11 1 

where b = , b" = 2^1" an<^ ^ '^o 5 , ® a i >e s o m e constants; 

2° there exist Loo-derivatives e C(A0,L«> (&) ) , m e N^ and we have the estimate 0 

(2.4) 
_n+ 1 ml 

D °Z ( x , t , § , r ) é B(| m|)(t-er) 2 b exp 
b' 

( t - r ) 0 

B(| m I ) being a certain constant depending on | m |; 
3° there exists an 

f u l f i l s the inequality 
3° there exists an L«>-derivative D^Z e C ( A , L « , (& ) ) which 

(2.5) ||'DtZ(x,t,$,r)|| ^ B ( t - r ) exp 
M*-* I 
( t - r ) b" 

4° for f ixed §e Rn, re < 0,T) the function Z ( x , t , t , t ) 

sa t i s f i e s with respect to the variables x 6 Rn , t 6 [ t > 

the equation (2.1 ) j 
5° fo r any function g e C(Rn,Lri (ffl)), 1 4 q 4 00 , which 

i s Lq-bounded ( i . e . ||g(x)|^ 4 const., x e Rn ) we have 

lim 
t-f+O 

j Z ( x f t , 5 , t ) g ( { ) d $ - g ( x ) = 0, 

where the convergence is uniform with respect to x 6 
(A c Rn being a bounded domain). 

The above-mentioned function Z ( x , t , $ , r ) is called a 
fundamental solution of the equation (2.1) A) 

4) In the def init ion of tha fundamental solution i t suf-
f i ces to assume that the condition 3° holds fo r I ml 4 2b. 
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6 H.Ugowski 

"i r o o f . V/e use the same method as in [2 J (p. 1 5 - 2 0 , 
3 4 ) . I'aael-j l e t us introduce the function 

( 2 .6 ) Q ( t , T, 6) = exp | ( i 6 ) k j ak((5)d(i 
|kU2b 

defined in the set ^ = { ( t , 1, 6): 0 < X < t < T, 6 e H n ] . 
Obviously C.' € and there e x i s t s L o o - d e r i v a t i v e 

6 C U.j ,L oo(fi) / given by formula 

(2 .7 ) 

ote that 

(2.8) 

Q + ( t , r , 6 ) = ! ( ± 6 ) ^ a k ( t ) 
|k|«2b 

| | a k ( t , L < B 1 ' t e < ° ' T > ' 

> 0 being some constant. In view of ( 2 . 6 ) , ( 2 . 8 ) and 
( 1 . 3 ) , we have 

( 2 . 9 ) | | Q ( t f t f 6 ) m < B 2 exp [ - R , | 6 | 2 b ( t - e : ) ] in A, ( 5 ^ ( 0 ^ ) ) . 

I t f o l l o w s from ( 2 . 7 ) - ( 2 . 9 ) that 

( 2 . 1 0 ) | | Q t ( t f i , 6 ) | | 0 . < B 3 ( | 6 | 2 b + 1 ) e x p [ - « | | 6 | 2 b ( t - r ) ] i n A , . 

Now l e t us introduce the f u n c t i o n 

( 2 . 1 1 ) . G ( x , t , r ) = ( 2 j r r n J e i ( x ' 6 , Q ( t , c , 6)d6 

R 
defined in the s e t 

( 2 . 1 2 ) a 2 = | ( x , t , t ) j x e R n , 0 4 1 < t £ T } 
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Random l inear parabolic equation 7 

In virtue of the estimate (2.9) and of Lemma 4.6 of [4] , the 
integra l (2.11) i s uniformly Loo-convergent fo r x e A, 
t - z ^ h, where A C Rn i s a bounded domain and h £ (0,T) 
i s a constant. Thus, by Lemma 4.7 of [4] , G £ C(A2,Loo(&)). 
S imi lar ly , the estimates (2 .8 ) , (2 .9) and Lemma 4.9 of [ 4 ] 
imply the existence of L«, -der ivat ives D^GjD^G € (A2,Loo (û) ) , 
m 6 given by formulas 

(2.13) D°G(x, t , r ) = (2 JT)- n / ( i 6 ) m e i ( x ' 6 ) Q ( t , * , 6 ) d 6 , 

Rn 

(2.14) D tG(x,t , i : ) = (23T)"Û J e i ( x ' 6 ) Q t ( t , t , 6 ) d 6 . 

Rû 

He have proved that for the function 

(2.15) z ( x , t , $ , r ) » G ( x - $ f t , « M x f t t $ t r ) 6 

hold the as ser t ions 1°-3° except the estimates ( 2 . 3 ) - ( 2 . 5 ) . 
The re la t ions (2 .11) , (2 .13)- (2 .15) and (2.7) imply the asser 
tion 4 ° . 

. In order to derive the estimate (2.3) we use the inequa-
l i t y 

(2.16) | | Q ( t , r , 6 + i f ) L < B4 e x p ^ | 6 | 2 b + t f o | 0 Ï 2 b ) ( t - t ) ] f 

0 < 1 < t 4 1 , Rn . of0> 0 being some constant. Intro-
ducing the var iables 

1 

tfj = j S j ( t - r ) " 2 5 , i = 1 , . . . , n , 

in the integra l (2.11) we obtain 
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8 K.Ugowski 

(2.17) G(x,t,r) 

2jr(t-r) 2b 
U-r) 1/2b 

a/3. 

The integrand of the last integral is, under fixed x,t,r, 
an L^-analytic function of the complex variables (J^+i^,..., 
|Jn+ii7n. Let n = (î  ,..., q ) e R n be a fixed point. Changing 
the integral in (2.17) into the iterated one-^, applying suc-
cessively the Cauchy integral theorem (see [l], p.226) and 
using the estimate (2.16) we obtain 

Q(x,t,T) = 25T(t-1) 2b I dß. 

Kence it follows from (2.16) that 

n 

(2.18) || Gix.t.r)^ 4B5(t-t) ^ exp 

Setting 

(t-r) 
x N, . . 2b 
T72b'?r0to|'?| 

•?3 = 7o ( s ß n V x.(t-r) 
_1 "2b b' -1 

? 0 > 0, j = 1 

we find that 

(2.19) 
b' 
F » 

,2b „ 2 where S2 = qQ - a °q > o for sufficiently small qQ> 0. 
How, the estimate (2.3) results from (2.18), (2.19) and (2.15). 

We use the estimate (2.9) and Pubini's theorem I'll 
(p.193). 
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Random linear pa:?abolic equation 

proceeding in a similar wa:j and using (2.13), we obtain 
the estimate (2.4). The estimate (2.5) is an immediate conse-
quence of (2.4) and of the equality 

tZ(x,t,5,r) = > am{t)Djs(x,t,ftfi. 
|m| 4.2b 

In order to prove the assertion 5° let us denote 

(2.20) K a = {$ «|$-x| * a}, k; = {$: |S > a], a > 0. 

T.7e have 

(2.21 ) 

•/here 

I 2 = Z(x,t,$,r) [g($) - g(x)] d|, 

J z(x,tf$,t) d$ - 1 . 
R n 

Let A C R n be an arbitrary bounded domain and let t > 0. 
According to the uniform L^-continuity of g in any bounded 
domain and the estimate (2.3), there exists an a > 0 such 
that for any x e A , 0 < r < t ^ T we have. 

(2.22) ¡I.,!,,«/ ||zU,M fl)|U|g(SJ - g(x)||qd$ < § . 
Ka 

For the above a there exists, by ( 2 . 3 ) , an h Q such that 
for x 6 A, 0 ^ r < t < r+hQ holds the inequality 

J Z(x,t,5,r) g ( 5 - g(x) = I1. + ± 2 + I 
Hn 

= J z ( x , M , *) [g(U - g (*)] d?, 

i, = g(*) 
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10 H.Ugowski 

( 2 ' 2 3 ) N q < / | z ( x , t , j ( r ) L [ | g ( s ) | q + | g ( x i | J d 5 . 

The es t imate (2 .9) guarantees the ex i s t ence of the Fou r i e r 
t ransform 

£(t,Z,V = f e " i ( x » ? ) Q ( t , z , x ) d x , 0 4 r < t < T, $eRn, 
n R 

v/hence, by Lemma 1 .1 , we have 

C , ( t , r ,x ) = (2Jr)~n j e i ( x » ! ) Q ( t , r , $ ) d § , 0 4 % < t 4 T, x e R n . 
->n 

The above e q u a l i t y impl ies t h a t 

(2 .24) Q( t ,T ,0 ) = (2JT)"n f Q[t,Z,\)d\ = 

R 

= (2ir)"n J Q ( t , t , $ - x ) d $ = f z ( x , t , f , r ) d $ . 

R11 RE 

Taking i n t o cons ide ra t i ons the r e l a t i o n s 

"t 
J ao(0)dp w ( t , i , 0 ) = exp , Re j ao(/5)d(S < 

I Z1 a 

(2.25) | e 1 - e 4 2e |z1 - z 2 Rez.,, R e z ^ a , 

we c one1ud e t h a t B T 
( 2 . 2 6 ) || Q ( t , r , 0 ) - l l l ^ 4 2e 1 ( t - t ) . 

I t fo l lows from (2.24) and (2.26) the i n e q u a l i t y 

£ 
(2.27) I 3 | | q < § , X e Rn , 0 < t - r < h 1 
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Random l i n e a r parabol ic equat ion 11 

provided h^ > 0 ia s u f f i c i e n t l y smal l . Now the a s s e r t i o n 5° 
i s a consequence of r e l a t i o n s (2 .21) - (2 .23) and (2 .27 ) . This 
completes the p roof . 

3 . An equat ion wi th parameter 
In t h i s s e c t i o n we s h a l l cons ider the equat ion 

(3 .1) L0u s a k ( y , t ) D i u - D ta - 0 
|k|=2b 

with the parameter y e R. The fo l lowing assumptions w i l l 
be needed. 

(3 .1) The c o e f f i c i e n t s a k , | k | = 2b, are complex r a n -
dom f u n c t i o n s Lao-bounded i n H and Loo-continuous i n 
t 6 < 0,T> uniformly with r e spec t to y e Rn ^K 

( 3 . I I ) There are cons tan ts a e (0 ,1) and M̂  > 0 such 
t h a t 

a k ( y , t ) - a k ( y ' f t ) | | o o ^ M ^ y - y ^ , t 6 < 0 ,T> , y , y ' e R n . 

( 3 . I l l ) The opera tor LQ i s uniformly parabol ic ( D e f i n i -
t i o n 1.1 ) . 

As in Sect ion 2, we int roduce the f u n c t i o n 

(3 .2) Q ( t , r , y , 6 ) = exp ( i ó ) k f ak(y f(5)d/5 
Ikl =2b r 

def ined i n the s e t A^ = j ( t , r , y , 6 ) : y , 6 e R n , 0 4 r 4 t 
Clear ly Q e C(A^,Loo(fi)) and there e x i s t s Leo-der iva t ive 

e CU^.L«*, (fi)) given by formula 

(3 .3) Q t ( t , f , y , 6 ) = ( i 6 ) k a v ( y , P ) 
Ikl =2b 

Q ( t , r , y , 6 ) . 

6) I . e . f o r any t e < 0,T> we have 

where the convergence i s uniform with r e spec t to y e R . 
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12 H.Ugowski 

For the funct ion ( 3 . 2 ) remain v a l i d the e s t imate s ( 2 . 9 ) , 
(2 .10 ) and ( 2 . 1 6 ) . The funct ion 

( 3 . 4 ) G 0 ( x , t , y , r ) = (2jt)"n f e i ( x ' d ) Q ( t , Z , y , 6 ) d6 

R 

i s L„o-continuous in kQ (def ined by ( 2 . 2 ) ) . Moreover, there 
e x i s t Loo-der iva t ive s D?G , D+G e C ( A , L <*>(&)), m e a O u O O w 
given by formulas 

( 3 . 5 ) D ° G 0 ( x , t , y , r ) = (23T)"n J ( i 6 ) m e i { x ' 6 }Q ( t , t , y , 6)d6 , 

Rn 

( 3 . 6 ) D t G 0 ( x , t , y , t ) = (23r)_n J e i ( x ' 6 ) Q t ( t , r , y , 6 ) d 6 . 

fi-
iii 

We have the e s t imate s 

( 3 . 7 ) 
n+ |m| 

c 5 G 0 ( x , t , y , r ) ^ <M(| m| ) ( t - r ) 2 b exp 

- n - l 

( 3 . 3 ) | | D t G 0 ( x , t , y , t ) | 4 M 2 ( t - r ) ^ exp 

How l e t us cons ider the d i f f e r e n c e 

i M b ' 
( t-T) 

AQ = Q{t,r,~j,6+ltf)-Q(t,z,z,6+iff), y , z , 6 , 

In view of assumptions ( 3 . 1 ) and ( 3 . I I I ) , we have 

t 
( 3 . 9 ) Re ( i s ) k f av(y,fl)d|S < ( - 5 , |6 | 2 \ g n | y | 2 b ) ( t - g ) 

Ikl =2b r 

f o r s = d + i f , 7 , 6 , 0 v e H n , 0 ¿ r ^ t ^ T ( ^ 6 (0,5"), a Q > 0 ) . 
assumption ( 3 . I I ) impl ies that 
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Random linear parabolic equation 13 

(3.10) 
Ikl =2b r 

I t fol lows from (3 .9 ) , (3.10) and (2.25) that 

¡AQIU < M 4 | y - z r e x p [ ( - ^ |6|2b+a;\f\2b ) ( t -1 ) ] , 

where 0 < < S1, a'0> Hence, arguing as in the proof of 
(2 .3 ) , we obtain the estimate 

(3.11) DjG 0 (x , t ,y , r ) - r g a 0 U . t . . . r ) U 4 

n+ |m| 
< a # (|m|)|y-z| a ( t -r ) " 2 b exp 

S; |x|b' 

( t - r ) F 

ïïe introduce the following assumption. 
(3.IV) The random function f £ C(H,Lc(ffi)), , 

is Lq-bounded and sat is f i es f o r x 6 ftn a local Holder con-
dit ion in the Lc-sense with exponent oc , uniform with respect 
to t e <0,T> , i . e . for any bounded domain « c there 
i s a constant Jl > 0 such that 

(3.12) ||f(x,t )- f (x ' , t )|| c ^ î,l|x-x'|a, x.x' & t e < 0,T> . 

T h e o r e m 3.1. I f assumptions (3 .1 ) - (3 . IV ) are 
sa t i s f i ed , then the function 

t 
(3.13) ; ( x , t ) = f f G 0 ( x - f , t , § , t ) f ( | , * id jdr 

o Kn 

has the following properties: 
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14 H.Ugowski 

1° it is L -continuous in H and q o 

(3.14) lim |?/(xft)| = 0 
t 

uniformly with respect to x e A (A C Rn being a bounded 
d omain)} 

2° there exist L-derivates d!?.7 e C(H ,Lr(a)), |m| 4 2b-1, 
defined by formula 

t 
(3.15) D£7(x,t) = j j DjQ0(x-§,ttifr)f($ft)d$dtt 

o Rn 

3° there exist L-derivates E% f D+W €. C(H„fL_(a)), Jw v 0 (j |m| = 2bf given by formulas 
t 

(3.16) LpU,t) » j dr j" DjGo(x-5,t,5,z)f(5,r)d5, 
o Rn 

t 
(3.17) Dt\7(x,t) = f dZ f DtG0(x-f,ttJfT)f(fft)dJ + f(x,t). 

o Rn 

P r o o f . The assertions 1° and 2° follow from (3.7) 
and Remark 4.9 of [4} In order to prove 3° we introduce the 
function 

(3.18} J(x,t,r) = J G0(x-|,ttffr)£(f,r)dJ. 
Rn 

Taking into considerations the estimate (3.7) with |m| = 0 
and Lemmas 4.6 and 4.7 of [4]» we find that J 6 C(A2,Lq (Si)), 
Ag being defined by (2.12). The estimates (3.7̂ ), (3.8) and 
Lemma 4w8 of [4] imply the existence of Lq-derivatives D®J, 
D^J e C(A2,Lq(fl)) given by formulas 

(3.19) Djj(x,t,T) = J D^}0(x-j,t,5,i-)f(f ,r)d£, 
Rn 
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Random linear parabolic equation 15 

(3.20) rtJ(x,t,r) = f rtG0(x-f,t,$ fr jf( j ,r)dj . 
tìn 

Jrite the function (3.19) with |m| = 2b in the form 

(3.21) D®j(x,t,T) = I1 + I 2 + I 3, 

where 

h = / EjJ0(*-$.t f! fr)[f(5,r)-f(x ftJ]d5t 

K1 

h = / ExGo(x-f»tfj,r)[f(?,r)-f(x,r)]di, 

l 3 = f(x,rl J DjG0(x-|ft,|,t)d| 

R n 

and K 1, K-j are defined by (2.20). 
Let A C R n be an arbitrary bounded domain. The estimate 
(3.7) and the inequality (3.12) yield 

- 1 + — 

(3.22) || I 1| < M5(t - r)
 2 b , x 6 A, 0 $ r < t < T . 

The Lq-boundedness of f and the estimate (3.7) imply that 

(3.23) |l2| <U6(t-r) in A 2. 

Applying Green's theorem for functions with values in Banach 
space and the estimate (3.7)» we obtain 

(3.24) / D°G0(x-f,t,y,t)d$ = Dj' / D x G0(x-f,t,y,r)d$ = 
R n Rn 1 

" Dx / Df G0(x-|,t,y,.t)d| = 0, 
~ *** t) tfn 
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16 H.Ugowski 

where m' = (m.j,... , m = (m1,...,mn), £ m k (k £ j ), 

mi = m.-1, 1 < j.k^n and D® , are defined by (1.1). So 
J J X X 

we have 

I 3 = f(x,r) J ["DjJ0(x-S,t,|fr) - DjG0U-5ft,y,«)|yis3|:]clt, 

R n 

which implies, by (3.11), the inequality 
„ „ 

(3.25) ||l3||q 4 M?(t-r)
 d 0 in A2. 

It follows from relatione (3.21 M 3 . 2 3 ) and (3-25) that 

-1+-T-
(3.26) II D°J{x ft tr ) L < IL(t-t) 2 b , x e A , 0 « T < t < T , 

M g > 0 being a constant depending on the domain A. Hence, 
by Remark 4.9 of [ 4 ] , there exist Lq-derivatives D^W e 
e C(H0,Lq(fl)) given by formula 

t 

(3.27) Dj?(x,t) = J D°J(x,t,r)dr, |m| = 2b, 

0 

which implies (3.16). 

In order to prove (3.17) observe that 

DtJ(x,t,r) = / [am(5,r)f(^,i)]DjG0(x-?,t,^ir)d5. 

Iml=2b R n 

Since the functions a ($, t)f(§, r), |m| = 2b, satisfy assump-

tion (3.IV), therefore it follows from the proof of (3.26) 

that 

i i - 1 + ! B 
(3.28) |DtJ(x,t,r)|q < Mg(t-r) X e A, 0 < f < t < T. 
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Hence, by Remark 4.9 of [4], the integral 

(3.29) j rtJ(x,t,r)dr 

is uniformly LQ-convergent for x e t e < h Q,T> (h^fe (0,T)) 
and consequently the function (3.29) is LQ-continuous in :i0. 

Now let us introduce the function 

t-h 
T.7h(x,t) = j J(x,t,C)dr, x 6 A, t 6 < h,T> (0 < h < I). 

0 

There exists L -derivative 

D 
t-h 

t^ h(x,t) = / DtJ(x,t,z)dr + J(x,t,t-h). 
0 

Take an arbitrary sequence 0 < < (h0 e (0,T) 
being an arbitrary 
Then the sequence 
being an arbitrary fixed number) such that h m — a s m -—00. 

t-h. 

j DtJ(x,t,r)dr 
0 

is uniformly Lq-convergent to the integral (3.29) for x e A, 
t e < h Q,T> . Further we have 

(3.30) 

where 

J(x,t,t-hm) - f(x,t) = i!, + + I3 + 

1!, = / G0(x-5,t,5,t-hm) [f(J,t-hm) - f(x,t-hm)] df, 

I'2 = / G 0(x-^t,i,t-h m) [ f i J . t - V - f(x,t-hm)] dj, 
k! 
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18 H.Ugowski 

l'3 = f(x,t-hm) [/ Go(x-f,t,M-hm)d$ - l], 
R n 

I4 = f(x,t-hm) - f(x,t) 

and K1, Kij are defined by (2.20). Evaluating the norms 
||lj|q (j=1,2) like as ||l3||q (see (3.22) and (3.23)),we 
conclude that for j =1,2 

uniformly with respect to x e A, t e <h Q,T>. Obviously 
(3.31) holds for j = 4, too. The validity of (3.31) for 
j = 3 is a consequence of the relation 

(3.32) lim J / G 0 ( x - $ , t , M - V d * " 1 I U = o 7 ) -
m — o® 

R n 

So we have 

lim ¡J(x,t,t-hm) - f(x,t)||q = 0 

uniformly with respect to x e A, t 6 <h0,T> and consequent-
ly the sequence 
the function 

D.W. (x,t) 1 is uniformly I -convergent to 
x nm J q 

t 
J rtJ(x,t, ijdr + f(x,t), x 6 A, t 6 < h0,T> 
0 

11 This relation can be proved by the similar considera-
tions as those for relations (2.24), (2.26) and (2.27). 
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Hence, in virtue of the uniform L -convergence of the seauen-

which i s Lq-continuous in HQ. This completes the proof. 

4. A fundamental solution 
In th is sect ion we discuss the existence of a fundamental 

solution of equation (0.1 J . The following assumption wi l l be 
additionally needed. 

(4 .1 ) The c o e f f i c i e n t s a^, |k|<2b-1 s a t i s f y assumptions 
(3 .1 ) and ( 3 . I I ) , where the norm || • || ^ in ( 3 . I I ) i s replaced 
by || • ||p, (1 < p < -

T h e o r e m 4 . 1 . I f assumptions ( 3 , I ) - ( 3 . I I I ) and 
(4 .1 ) are f u l f i l l e d , then there e x i s t s a complex random func-
t ion Z ( x , t , Ç , r ) such that : 

1° i t has the properties 1° , 2° for |m| < 2b-1 and 5° 
from Theorem 2.1 ; 

2° there ex is t L -derivatives D®Z, D.Z e C(A .L ( a ) ) , p x ' t o ' p " 
| m | = 2b, which f u l f i l the inequal i t ies 

3° Z(x,t,l,z) has the property 4° from Theorem 2.1 with 
respect to the equation ( 0 . 1 ) . 

The above-mentioned function Z ( x , t , J , r ) i s cal led a fun-
damental solution of equation ( 0 . 1 ) . 

P r o o f . v7e shal l prove that 

o 

D.Z $ B ( t - f ) 2 b exp 

(4 .2 ) Z ( x , t , $ , r ) = G 0 (x -Ç , t ,\ ,z ) + 
t 

t Hn 
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w h e r e G Q i s d e f i n e d b y ( 3 . 4 ) a n d f i s a s o l u t i o n o f t h e 
i n t e g r a l e q u a t i o n 

t 

( 4 . 3 ) ? ( x , t , | , t ) = K ( x , t , $ , t ) + j f K ( x , t , y , / 3 ) y ( y , | 3 , $ , r ) d y d | 3 

r R 

w i t h 

( 4 . 4 ) K ( x , t , * , r ) = y D X i x - j t t , { , t ) - D A ( x - S , t , S , r ) , 
I k l £ 2 b 

W e h a v e 

K ( x , t , $ , r ) = | [ a k ( x , t ) - a k ( | , r ) ] D ^ G o ( x - h t , s , r ) + 

| k | = 2 b 

+ ^ ^ a k ( x , t ) D ^ G 0 ( x - S , t ^ , t ) . 
| k | i 2 b - 1 

T h i s i m p l i e s , b y ( 3 . 7 ) a n d ( 3 . I I ) , t h e e s t i m a t e 

n + 2 b - a 
2 b 

( 4 . 5 ) | | K ( * , t , 5 , t ) | | o o < ^ ( t - r ) 2 ° e x p _ 5 ' | x - H b 

( t - r ) 1 5 * 

N o w c o n s i d e r t h e s e r i e s 

( 4 . 6 ) 

w h e r e 

y ( x , M , z ) = Y , K a ( x f t , j , r ) , 
m = 1 

j ^ i x . M . r ) = K ( x , M , r ) , 

K m + 1 ( x , t , ^ f ti = j j K ( x f t f y , ( S j K m ( y f j j , J f r ) d y d j J f m - 1 , 2 , 

r R 
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For the norms | one can obtain the estimates analogous 
to those of [3] (p.254). Hence, it follows the uniform Loo-con-
vergence of the series (4.6) for x,§ 6 Rn, t-rjt h (he (0,T) 
being a constant). Since K m £ C(A0,Loo(ffl)), therefore also 
<p e C(A0,Loo (ffl)). Moreover, we have 

_n+2b-a 
(4.7) Iftx.t.S.tJl^iCgit-r) 2 b exp 

Taking into account the estimates of the norms l^l«^» 
(4.5), (4.7) and the theorem on termwise integration of 
functional series,one can find that the function ( 4 . 6 ) is a 
solution of the equation (4.3). 

Now we shall consider the difference 

(4.8) A <f = <p(x,t,J,r) - fix', t,£,r) 

under the condition 

(4.9) | x - x'| 2 b £ t-r. 

For this purpose we first evaluate the difference 

(4.10) AK = K(x,t,J,r) - K(x' ,t,{, t) = F1+F2+F'3+P4, 

where 

^ - [ak(x,t)-ak(x',t)]D^G0(x-j,t^,r), 
Ikl =2b 

P2 = > ! ra,,(x,t)-ajS,t)] [D^(x-Lt,!,r) -
Ikl =2b 

- DjGo(x'-i,t,5,r)], 
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22 H.Ugowski 

?3 = 3 > ; [ a J s , t i - a J ^ t J ] D X ( x - S , M , t ) , 
Ikk2b-1 

= 

|k| «?2b-1 
; a k ( x ' , t ) [ D j G 0 ( x - ! , t , Ç t r ) - D j G 0 ( x ' - S f t , Ç t r ) ] 

Using Lemma 1 .3 , the estimate (3 .7 ) and the condition ( 4 . 9 ) , 
we get fo r some 0 e < - 1 , 1 > the inequal i ty 

(4 .11) 

_n+ |k| +1 
4 C( | k | ) |x-xj ( t - r f 2 b exp 

n+ |k|+1 
^ C ' ( | k| ) |x-x ' | ( t - r ) " 2 b exp 

_ g | x - $ + 9 ( x - x ' ) | b ' 
( t - r ) W 

b' 

where C ( | k | ) , C ' ( | k | ) are pos i t ive constants depending on 
|k| and £ (0, 5'). Hence, by assumption ( 3 . I I ) , we get 

3 _n+2b-«2 
(4 .12) ||P?|| < C, |x-x ' | 1 ( t - r ) exp 

( t - r ) W 

where 0 < a 1 < a , a 2 = a - a 1 , 0 < S i m i l a r l y , the 
est imates ( 4 . 1 1 ) , (3 .7 ) and assumptions ( 3 . I I ) , (4 .1 ) imply 
the est imates of the norms J|r31(p» ||Fj||oo o f "fcil0 

form (4 .12 ) . Therefore, by ( 4 . 1 0 ) , we obtain, under the con-
d i t ion ( 4 . 9 ) , the estimate 

n+2b-a 
a 2 £ | x - f | 

(4.13|) | | ak | | p < C 4 | X - X ' | 1 ( t - r ) 2 b exp - ^ ( t - r ) 1 

In View of the est imates ( 4 . 7 ) , (4 .12) and by Lemma 7 
( [3] f c p.253),ithe function 
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t 
W ( x , t , § f r ) = j j K(x , t ,y , j j )<p(y , f$ ,$ , r )dyd0 

r Rn 

s a t i s f i e s , under the c o n d i t i o n ( 4 . 9 ) , the i n e q u a l i t y of the 
form (4 .13) w i t h C^ and r e p l a c e d by some c o n s t a n t s 

> 0 and e ( O , ^ ) , r e s p e c t i v e l y . Hence, i f (4 .9 ) 
h o l d s , then wi th the aid of ( 4 . 3 ) , ( 4 .8 ) and (4 .13) we con-
clude t h a t f o r the norm ||Acp||p remains v a l i d the e s t i m a t e 
(4 .13) w i th C^ and r ep l aced by Cg > 0 and r e s -
p e c t i v e l y . 

Now we s h a l l c o n s i d e r the f u n c t i o n 
t 

(4 .14) V ( x , t , § , t) = j j G 0 ( x - y , t l y l ^ ) < ? ( y , ^ , ^ , z ' ) d y d ( J . 

f Rn 

According t o the e s t i m a t e s (3 .7 ) and ( 4 . 7 ) , Lemma 7 of [3] 
and Remark 4 .9 of [ 4 ] , we have V e C(A0 ,L«. (fl)) and f o r 
|m| ^ 2b-1 t h e r e e x i s t I M - d e r i v a t i v e s DgV e C(A0,Lo= (fl)) 

g iven by formula 

t 
( 4 . 1 5 ) D £ V ( X , M , T ) = J f D ^ G 0 ( x - y , t , y , ^ « / > ( y , ^ , ^ r ) d y d / 3 . 

r Rn 

Moreover, these d e r i v a t i v e s s a t i s f y the i n e q u a l i t i e s 

n+ | m| - a 
(4 .16) | | D 5 v ( x , t , ? , r ) H^ ¿ C 7 ( t - r ) ^ F Q X p 

In o rde r t o prove the e x i s t e n c e of d e r i v a t i v e s D^V» 
|m| = 2b, and D^V we i n t roduce the f u n c t i o n 

(4 .17) J ( x , t , M > * ) = / G 0 ( x - y , t , y , ( 3 ) ^ ( y , / 5 , ^ , r ) d y 

Rn 

i n the s e t A^ = { ( x , t , / 5 , $ , r ) : x , f € R n , 0 4 r < ( i < t < T } . Like 
a s f o r the f u n c t i o n (4 .14) we have J e C(A. ,Loo(a) ) and 
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24 H.Ugowski 

there exist Loo-derivatives D™J e C(A^,Loo(£l)) defined by 
formula 

(4.18) D j j ( x , t , ( j , 5 , t ) = j D jG 0 (x-y,t f y,p}f(y f j&,$ ,r)dy. 

Rn 

Moreover, for |m| = 2b holds the inequality 

- 1 + a 
25, (4.19) D^J 4 C P ( p - t ) ( t - r ) 2b 1 

exp 
(t -T) 1 

b' 

for x, ? 6 R n , 0 « r < t < T , 

In virtue of (4.19) and Remark 4.9 of [4]»the function 
t 1 

V.,(x,t ,$,E) = j J(x,t, /J,$,r)d|J 
r 

possesses Loo-derivatives D̂ V̂  e C(AQ,!«,(&)), |m| = 2b, 
given by formula, 

Djv^x.'t.^r) = J rJ j(x,t,(5,^,r)d(J 

and there i s sat isf ied the inequality 

n+2b-a 

x 1 00 y 
"2F exp »61*"*I 

b' 

( t - r ) b" 

I t remains to prove the existence of derivatives 
|m| = 2b, of the function 

V 2 ( x , M , t ) = | J(x,t , fr ,$ ,r)dp. 

1 

For this purpose let us denote 

= { (x , t , ( l ,^ , t ) : x, 5 £ R n , 0 < r < t 4 T, t 1 < p> < t } , 
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(4.20) 20 

Now we write the derivatives |m| = 2b, in the set , l r > 

in the following form 

(4.21) 

where 

D,:J = J1 + J 2 + J3 + J4 , 

•7-1 
a 

J3 = - c f ( x , ß , l , z ) J DjG^x-y.t.y.ßjdy, 

"'a 

J4 = J EjG0 (x-y,t,y,|J)dy 

En 

and a - ß - t . In view of (3 .24) , we have 

z=x 
H 

Hence, using estimates (3.11) and ( 4 . 7 ) , i t follows that 

n+2b-a 
(4.22) | j J < C 1 0 <t -c )~ 2 b ( t - ß f 2 b exp 

g J x - H 

( t - i ) b 

ihe estimates (3.7) and (4.13) fo r if imply, by Lemma 7 of 
[ 3 ] , the inequality 

(4.23) || Jillp é c ^ f t - r ) 
n+2b-a 

T5~ -1+; 
(t-fb) " exp 

a 
2i « t H I » 
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26 H.Ugowski 

Taking into account the estimates ( 3 . 7 ) , (4 .7 ) and the abo-
ve-mentioned Lemma 7 we find that 

2b/, 2b 
4 - 2 4 J v A J c i 2 ( t - ^ exp B r M I 

( t - r ) ' 

k=2,3. 

Kelations (4.21 ) - ( 4 . 2 4 ) immediately imply, for |m| = 2b, the 
estimate 

£J 
p é c 1 3 ( t - f t ) 2 b ( t - i ) 2 b exp 

(t-r)1 
in ky 

So, by Remark 4 .9 of [ 4 ] , there ex i s t L -derivat ives D^V2 e 
e C(AQ ,Lp(a)j given by formula 

D ^ U . t . s . i ) = / i>;j(*,t ,|5,f fr)d|i 
t„ 

and there holds the estimate 

n+2b-a 
(4 .25) # 2 | p ^ C H ( t - r ) 

2b exp 
(t-r) W 

Thus we have proved the existence of Lp-derivatives 
D̂ V e C(A ,L (Q)i , Im| = 2b, defined by formula x o p 

(4 .26) D j v ( x , t , $ , r ) = J Dj j (x , t ,|i , i , t )d|S. 

Moreover, for | remains valid the estimate (4 .25) 
(with possibly other constants C ^ and S'̂ ) and the integral 
(4 .26) i s uniformly L^-convergent in the set 

a 6 = { ( x , t , ^ , r ) : fc ±tn, t - r ^ 3h > 0 } . 
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Similarly to D°J there exists L -derivative D+J e 
JC p I 

e C(Ao,Lp(a) J. Observing that 

DtJ(i,t,Pt!,t). > ; [ D°G0(x-y,t,y,|5)[am(y^)^(7,|S,t,r)]d7 
Iml=2b Kn 

and using the above considerations,we conclude the uniform 
Lp-convergence of the integral 

t 
(4.27) j DtJ(x,t,|S,S,r)djJ 

l 

in the set Ag. Moreover, for the norm ||• || of the inte-
gral (4.27) holds the estimate (4.25) in the set AQ. 

Like in the proof of Theorem 3.1 we introduce the function 
t-h 

Vh(x,t,$,i) = / J(x,t,(J,5,t)d/i in A6. 
t+h 

ihis function possesses L «»-derivative 
t-h 

DtVh(x,t,f,r) = j DtJ(x,t,j&,5, rJd/5 + J(x,t,t-h,$,r). 
r+h 

Take an arbitrary sequence j^m]« ® < ^m < ten<3ing to 
zero as m—— <». Then the sequence 

is uniformly Lp-convergent to the integral (4.27) in the set 
Ag. 'He write the expression J(x,t,t-hm,r) - y(x,t,£,t) 
in the form similar to (3.30) with K1 and K^ replaced 
by and (defined bj (4.20)), respectively. Next, 
using the estimates (3.7) (for |m| =01, (4.13) (for <f ), 
(4.7) and relation (3.32),we find that 

t-h, m 

r+h, m 
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lim ||j(x,t,t-hm,5,f) - f (x,t,$,r)|| = 0 
m —=o ^ 

uniformly with respect to x, $ e A and t-£ ? 3h (AC iin 
being a bounded domain). From the above considerations it 
follows the existence of L -derivative D+V e C(A .L (&)) gi-p x o p 
ven by formula 

t 
(4.28) DtV(x,t,$,i) = J" DtJ(x,t,/5,S,r)dj5 + f(x,t,J,r). 

X 
This implies the estimate of the form (4.25) for the norm 
|DtV||p* S o w e i i a v e Proved assertion 2°. Assertion 3° follows 
immediately from relations (4.28), (4.26), (4.17), (4.18), 
(4.14), (4.15) and (4.2)-(4.4). 

It remains to prove the property 5° of Theorem 2.1 with 
respect to the equation (0.1 ). For this purpose it suffices 
to observe that 

J* Z(x,t,$,*)g($)d! = / G0(x-f,t,!,«)g(SJd$ + 
Rn 

+ J, V(x,t,J, t)g($)d£ 
R n 

and next to apply assertion 5° of Theorem 2.1 (for function 
Z(x,t,1,1) = GQ(x-£,t,$,l)) and the estimate (4.16) with 
I m I = 0. 

5. The Cauchy problem 
In this section the fundamental solution Z(x,t,$,f) con-

structed in the previous section will be used in proving 
of the existence of a solution of the Cauchy problem (0.2), 
(0.3). 

T h e o r e m 5.1. Let assumptions (3.1)-(3.IV), 
(4.1) be satisfied and suDDOse that a f unction g, e C(Rn,L (&)) - 1 - 1 - 1 is L0-boundea, where r = p + q 4 1. Then the runction 
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t 
(5 .1 ) u (x , t ) = f Z(x , t f $,0)g($)¿1 - J j ¿ { x , M , i ) f ( $ ,c)d$dr 

Rn 0 Rn 

has the following properties: 
1° u 6 C(H,Lq(ffl)) and for | k| < 2b-1 there exis t ^ - d e -

r ivat ives D û e C(H ,L (G)); 
o " k i i 2 there ex is t ^ - d e r i v a t i v e s i>xu, |k| = 2b and L^u 

which are L -continuous in H : r o' 
3 u (x , t ) i s a solution of the problem ( 0 . 2 ) , ( 0 . 3 ) . 
P r o o f . The method of proving i s similar to that 

applied in the proof of Theorem 3.1 of [4]. in view of the 
estimate (2 .3 i the function 

(5 .2 ) u 1 ( x , t ) = J Z(x , t , 5 ,0 )g (^d$ 

Kn 

i s L^-continuous in hQ. Using assertion of Theorem 2.1 
(with respect to the equation ( 0 , 1 i j and setting additionally 

(5 .3 ) u1 (x ,0) = g (x i , x 6 tin, 

we conclude that û  fe C wi,L0 (ft) /. ¿y (2 .4) for |m| ^ 2b- i , 
there exis t L -derivatives D®u1 e C(n ,L„(fl)/ given by for -X I 0 ^ 
mula 

(5 .4 ) D ° u 1 ( x , t ) = J i ) J i ( * , t , f ,0Jg(f )d|, |m|<2b-1. 
Hn 

Similarly, the estimates (4.1 1 impl:> the existence of ^ - d e -
r ivat ives D®u1 , L'̂ û  e C(H0 ,Lj,(ii^, |m| = 2b, where L̂ û  
are defined by (5 .4) and 

(5 .5 ) .a^(x,ti = J L ^ i x , t , ¡¡,0)g( 
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i 'aking into c o n s i d e r a t i o n s formulas ( 5 . 2 ) , ( 5 . 4 ) , ( 5 . 5 ) and 
a s s e r t i o n 3 ° of Theorem 4 . 1 , we f i n d that 

( 5 . 6 ) L u 1 ( x , t ) = 0 , ( x , t ) e H . 

£ow l e t us denote 

t 
( 5 . 7 ) u 2 ( x , t ) = J J Z ( x , t , J , T ) f ( § , ryd^dr. 

o Rn 

The est imate ( 2 . 3 ) impl ies that u2 fc C(H0 ,ii and 
l im ||uo(x,t)|L = 0 uniformly wi th r e s p e c t to x 6 K n . Hence, 
t—0 " i "q 

s e t t i n g a d d i t i o n a l l y 

( 5 . 6 ) u 2 ( x , 0 ) = 0 , x € Hn , 

we conclude that u2 & C(H,L g ( f ly/ . By ( 2 . 3 ) wi th | m | $ 2 b - 1 , 
there e x i s t - d e r i v a t i v e s D®u2 £ C(H 0 /L q (a/ J g i v e n by f o r -
mula 

t 

( 5 . 9 ) D°u2 ( x , t j = J J D j z ( x , t f f f * ) f ( $ ,Z)dl , | m | < 2 b - 1 . 
o R n 

In order to show the e x i s t e n c e of d e r i v a t i v e s D°u2 f o r 
Im| = 2b and D^u^ we w r i t e 

( 5 . 1 0 ) u 2 ( x , t ; = W(x, t) + V J 1 ( x , t ) , 

where 

t 
( 5 . 1 1 ) W-j ( x , t ) = j j G 0 ( x - f , t , ! , t ) f 1 ( ^ , r ) d ^ d r , 

o R n 
t 

( 5 . 1 2 ) f . , U , t ) = J j ? ( x , t , $ , t ) f ( f , r ) d j d r 
o R n 
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and Vi'(x,t) i s defined by (3 .13) . I t r e su l t s from (4 .7) that 
f 1 e C(H,L (•&)). Taking into account (3.IV), (4 .7) and the 
estimate 

n+2b-a„ 

2b exp i y 
( t - t ) TP + exp 6 v i i ; . 

— — 
( t - r ) b 

following from (4 .7) and (4.13) (with K = <jf>), we obtain 

f 1 ( x , t I - f 1 ( x ' , t ) < C"|x-x'| , x , x ' 6 A , t £ <0 ,T>, 

A C R being any bounded domain. 
Hence, by (5 .10) , (5.11) and by Theorem 2 .1 , there ex i s t 

L r -der iva t ives £ ' |ml = 2 D ' S^ven by 
formulas 

t 
(5.13) Dju2 = J dz J D t G 0 ( x - § , t , $ , z ) [ f ( S , r ) + f 1 ( $ , t ) ] d $ , 

o 
t 

(5.14) Dtu2 = j dr J D tG0(x-{,t,$ ,r)[t[l,z)+t, ( ? , r ) ] d f + 
o Rn 

+ f ( x , t ) + f (x, t ) . 

Combining (5 .7 ) , (5 .9 ) , i5-13J , (5 .14) , ( 4 . 2 ) - ( 4 . 4 ) and (5.12) 
we conclude that 

(5.15) Lu ? ( x , t ) = - f ( x , t ) , ( x , t ) e H 

Relat ions 15.6 ; , (5 .15) , (5 .2 ) , ( 5 . 7 ) , (5 .1 ) , (5 .3) and (5.BJ 
immediately imply assert ion 3°. This completes the proof. 
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