

Henryk Ugowski

ON A RANDOM LINEAR PARABOLIC EQUATION
OF ANY EVEN ORDERIntroduction

In this paper we consider the random linear parabolic equation

$$(0.1) \quad Lu \equiv \sum_{|k| \leq 2b} a_k(x, t) D_x^k u - D_t u = 0 \quad ^1),$$

where b is a positive integer and a_k are complex random functions defined in the strip $H = \{(x, t) : x \in \mathbb{R}^n, t \in (0, T)\}$. Applying the same parametrix method as in [2], we construct a fundamental solution of the equation (0.1). This enables us to prove the existence of a solution of the Cauchy problem

$$(0.2) \quad Lu = f(x, t), \quad (x, t) \in H_0 = \mathbb{R}^n \times (0, T),$$

$$(0.3) \quad u(x, 0) = g(x), \quad x \in \mathbb{R}^n,$$

where f and g are given complex random functions.

In paper [4] there were treated random linear parabolic equations of the second order and there were obtained results similar to the above-mentioned ones. We applied in [4] the same parametrix method as in [3] (chapter 1) which required

¹⁾ Notation and definitions will be stated in Section 1.

stronger assumptions concerning coefficients than those made in the present paper specialized to the case $b = 1$.

1. Preliminaries

Let (Ω, \mathcal{F}, P) be a probabilistic space, where P is a complete probability measure. By $L_p(\Omega)$ ($1 \leq p \leq \infty$) we denote the Banach space of all complex random variables $f(\omega)$ defined on (Ω, \mathcal{F}, P) with finite norm

$$\|f\|_p = \left[\int_{\Omega} |f(\omega)|^p P(d\omega) \right]^{\frac{1}{p}}, \text{ if } 1 < p < \infty; \|f\| = \text{ess sup}_{\omega \in \Omega} |f(\omega)|.$$

The limit, continuity and partial derivatives of a random function $u : A \rightarrow L_p(\Omega)$, $A \subset \mathbb{R}^n$, are understood in the strong sense and they are called respectively the L_p -limit, L_p -continuity and L_p -derivatives of u . By $C^k(A, L_p(\Omega))$, $k \in \mathbb{N}_0 = \{0, 1, 2, \dots\}$, we denote the set of all random functions $u : A \rightarrow L_p(\Omega)$ which are L_p -continuous in A together with all their L_p -derivatives $D_x^\alpha u$, $|\alpha| \leq k$, where

$$\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}_0^n, \quad |\alpha| = \alpha_1 + \dots + \alpha_n,$$

(1.1)

$$D_x^\alpha = D_{x_1}^{\alpha_1} \dots D_{x_n}^{\alpha_n} = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \dots \partial x_n^{\alpha_n}}.$$

We abbreviate $C^0(A, L_p(\Omega)) = C(A, L_p(\Omega))$. Let us denote $C^\infty(A, L_p(\Omega)) = \bigcap_{k=1}^{\infty} C^k(A, L_p(\Omega))$. This enables us to introduce the set $S(\mathbb{R}^n, L_p(\Omega))$ of all functions $u \in C^\infty(\mathbb{R}^n, L_p(\Omega))$ such that for any multi-indexes α , $\beta \in \mathbb{N}_0^n$ we have

$$\sup_{x \in \mathbb{R}^n} \|x^\alpha D_x^\beta u(x)\|_p < \infty, \quad x^\alpha = x_1^{\alpha_1} \dots x_n^{\alpha_n}.$$

For a function $u \in S(\mathbb{R}^n, L_p(\Omega))$ there is defined the Fourier transform

$$\hat{u}(\xi) = \int_{\mathbb{R}^n} e^{-i(x, \xi)} u(x) dx^2, \quad \xi \in \mathbb{R}^n, \quad (x, \xi) = \sum_{j=1}^n x_j \xi_j.$$

The following lemmas will be needed.

Lemma 1.1. If $u \in S(\mathbb{R}^n, L_p(\Omega))$, then $\hat{u} \in S(\mathbb{R}^n, L_p(\Omega))$ and

$$u(x) = (2\pi)^{-n} \int_{\mathbb{R}^n} \hat{u}(\xi) e^{i(x, \xi)} d\xi.$$

The proof is the same as that for nonrandom functions.

Lemma 1.2. If $h \in C^1(\langle\alpha, \beta\rangle, L_p(\Omega))$, then there exists a number $\gamma \in \langle\alpha, \beta\rangle$ such that $\|h(\beta) - h(\alpha)\|_p \leq \|h'(\gamma)\|_p (\beta - \alpha)$.

Proof. We have

$$h(\beta) - h(\alpha) = \int_{\alpha}^{\beta} h'(x) dx.$$

Hence it follows from the integral mean value theorem that

$$\|h(\beta) - h(\alpha)\|_p \leq \int_{\alpha}^{\beta} \|h'(x)\|_p dx = (\beta - \alpha) \|h'(\gamma)\|_p.$$

Lemma 1.3. Let $A \subset \mathbb{R}^n$ be a convex domain. If $u \in C^1(A, L_p(\Omega))$, then for any points $\alpha, \beta \in A$, $\alpha \neq \beta$, there exists a point γ lying on the segment $\alpha\beta$ such that

$$(1.2) \quad \|u(\beta) - u(\alpha)\|_p \leq \sum_{j=1}^n (\beta_j - \alpha_j) \|u_{x_j}(\gamma)\|_p.$$

²⁾ Throughout this paper the proper and improper integrals of L_p -continuous random functions are taken in the strong Riemann sense (L_p -integrals). Definitions and lemmas of paper [4] concerning L_p -integrals of real random functions hold true also for complex ones. Moreover, the measurability of random functions, assumed in [4], is superfluous.

P r o o f. The random function $v(\tau) = u((1-\tau)\alpha + \tau\beta)$, $\tau \in \langle 0,1 \rangle$, belongs to $C^1(\langle 0,1 \rangle, L_p(\Omega))$ and its L_p -derivative is defined by formula

$$(1.3) \quad v'(\tau) = \sum_{j=1}^n (\beta_j - \alpha_j) u_{x_j} (\alpha + \tau(\beta - \alpha)).$$

In view of Lemma 1.2, there is a number $\tau_0 \in \langle 0,1 \rangle$ such that $\|v(1) - v(0)\|_p \leq \|v'(\tau_0)\|_p$ which implies, by (1.3), the inequality (1.2) with $\gamma = \alpha + \tau_0(\beta - \alpha)$.

Finally we introduce the following definition.

D e f i n i t i o n 1.1. The operator L (defined by (0.1)) is called uniformly parabolic if

$$(1.3) \quad \text{Re } \sum_{|k|=2b} a_k(x, t)(i\delta)^k \leq -\delta |\delta|^{2b}, \quad (x, t) \in H, \quad \delta \in \mathbb{R}^n \text{ }^3)$$

$\delta > 0$ being a constant and $|\delta| = \left[\sum_{j=1}^n |\delta_j|^2 \right]^{\frac{1}{2}}$.

2. An equation with random coefficients depending only on t

We consider the equation

$$(2.1) \quad L' u \equiv \sum_{|k| \leq 2b} a_k(t) D_x^k u - D_t u = 0.$$

T h e o r e m 2.1. If $a_k \in C(\langle 0, T \rangle, L_\infty(\Omega))$ and the operator L' is uniformly parabolic (Definition 1.1), then there exists a complex random function $Z(x, t, \xi, \tau)$ defined in the set

$$(2.2) \quad A_0 = \{(x, t, \xi, \tau) : x, \xi \in \mathbb{R}^n, 0 \leq \tau < t \leq T\}$$

³⁾ Note that $a_k(x, t)$ are random functions. Therefore inequality (1.3) holds for $(x, t) \in H$, $\delta \in \mathbb{R}^n$, $\omega \in \Omega_{x, t}$, where $P(\Omega_{x, t}) = 1$.

and possessing the following properties:

1° $Z \in C(A_0, L_\infty(\Omega))$ and we have

$$(2.3) \quad \|Z(x, t, \xi, \tau)\|_\infty \leq B(t-\tau)^{\frac{n}{2b}} \exp \left[-\frac{\delta_0 |x-\xi|^{b'}}{(t-\tau)^{b''}} \right],$$

where $b' = \frac{2b}{2b-1}$, $b'' = \frac{1}{2b-1}$ and $B, \delta_0 > 0$ are some constants;

2° there exist L_∞ -derivatives $D_x^m Z \in C(A_0, L_\infty(\Omega))$, $m \in \mathbb{N}_0^n$ and we have the estimate

$$(2.4) \quad \|D_x^m Z(x, t, \xi, \tau)\|_\infty \leq B(|m|)(t-\tau)^{\frac{n+|m|}{2b}} \exp \left[-\frac{\delta_0 |x-\xi|^{b'}}{(t-\tau)^{b''}} \right],$$

$B(|m|)$ being a certain constant depending on $|m|$;

3° there exists an L_∞ -derivative $D_t Z \in C(A_0, L_\infty(\Omega))$ which fulfills the inequality

$$(2.5) \quad \|D_t Z(x, t, \xi, \tau)\|_\infty \leq B(t-\tau)^{\frac{n}{2b}-1} \exp \left[-\frac{\delta_0 |x-\xi|^{b'}}{(t-\tau)^{b''}} \right];$$

4° for fixed $\xi \in \mathbb{R}^n$, $\tau \in (-\infty, T)$ the function $Z(x, t, \xi, \tau)$ satisfies with respect to the variables $x \in \mathbb{R}^n$, $t \in (\tau, T)$ the equation (2.1);

5° for any function $g \in C(\mathbb{R}^n, L_q(\Omega))$, $1 \leq q \leq \infty$, which is L_q -bounded (i.e. $\|g(x)\|_q \leq \text{const.}$, $x \in \mathbb{R}^n$) we have

$$\lim_{t \rightarrow \tau+0} \left\| \int_{\mathbb{R}^n} Z(x, t, \xi, \tau) g(\xi) d\xi - g(x) \right\|_q = 0,$$

where the convergence is uniform with respect to $x \in A$ ($A \subset \mathbb{R}^n$ being a bounded domain).

The above-mentioned function $Z(x, t, \xi, \tau)$ is called a fundamental solution of the equation (2.1)⁴⁾.

4) In the definition of the fundamental solution it suffices to assume that the condition 3° holds for $|m| \leq 2b$.

P r o o f. We use the same method as in [2] (p.15-20, 34). Namely let us introduce the function

$$(2.6) \quad Q(t, \tau, \delta) = \exp \left[\sum_{|k| \leq 2b} (i\delta)^k \int_{\tau}^t a_k(\beta) d\beta \right]$$

defined in the set $A_1 = \{(t, \tau, \delta) : 0 \leq \tau \leq t \leq T, \delta \in \mathbb{R}^n\}$. Obviously $Q \in C(A_1, L_{\infty}(\Omega))$ and there exists L_{∞} -derivative $Q_t \in C(A_1, L_{\infty}(\Omega))$, given by formula

$$(2.7) \quad Q_t(t, \tau, \delta) = \left[\sum_{|k| \leq 2b} (i\delta)^k a_k(t) \right] Q(t, \tau, \delta).$$

Note that

$$(2.8) \quad \|a_k(t)\|_{\infty} \leq B_1, \quad t \in (0, T),$$

$B_1 > 0$ being some constant. In view of (2.6), (2.8) and (1.3), we have

$$(2.9) \quad \|Q(t, \tau, \delta)\|_{\infty} \leq B_2 \exp[-\delta_1 |\delta|^{2b}(t-\tau)] \quad \text{in } A_1 \quad (\delta_1 \in (0, \delta)).$$

It follows from (2.7)-(2.9) that

$$(2.10) \quad \|Q_t(t, \tau, \delta)\|_{\infty} \leq B_3 (|\delta|^{2b} + 1) \exp[-\delta_1 |\delta|^{2b}(t-\tau)] \quad \text{in } A_1.$$

Now let us introduce the function

$$(2.11) \quad G(x, t, \tau) = (2\pi)^{-n} \int_{\mathbb{R}^n} e^{i(x, \delta)} Q(t, \tau, \delta) d\delta$$

defined in the set

$$(2.12) \quad A_2 = \{(x, t, \tau) : x \in \mathbb{R}^n, 0 \leq \tau < t \leq T\}.$$

In virtue of the estimate (2.9) and of Lemma 4.6 of [4], the integral (2.11) is uniformly L_∞ -convergent for $x \in A$, $t-\tau \geq h$, where $A \subset \mathbb{R}^n$ is a bounded domain and $h \in (0, T)$ is a constant. Thus, by Lemma 4.7 of [4], $G \in C(A_2, L_\infty(\Omega))$. Similarly, the estimates (2.8), (2.9) and Lemma 4.9 of [4] imply the existence of L_∞ -derivatives $D_x^m G, D_t G \in (A_2, L_\infty(\Omega))$, $m \in \mathbb{N}_0^n$ given by formulas

$$(2.13) \quad D_x^m G(x, t, \tau) = (2\pi)^{-n} \int_{\mathbb{R}^n} (i\delta)^m e^{i(x, \delta)} Q(t, \tau, \delta) d\delta,$$

$$(2.14) \quad D_t G(x, t, \tau) = (2\pi)^{-n} \int_{\mathbb{R}^n} e^{i(x, \delta)} Q_t(t, \tau, \delta) d\delta.$$

We have proved that for the function

$$(2.15) \quad Z(x, t, \xi, \tau) = G(x - \xi, t, \tau), (x, t, \xi, \tau) \in A_0,$$

hold the assertions 1°-3° except the estimates (2.3)-(2.5). The relations (2.11), (2.13)-(2.15) and (2.7) imply the assertion 4°.

In order to derive the estimate (2.3) we use the inequality

$$(2.16) \quad \|Q(t, \tau, \delta + ig)\|_\infty \leq B_4 \exp [(-\delta_1 |\delta|^{2b} + \alpha_0 |g|^{2b})(t - \tau)],$$

$0 \leq \tau < t \leq T$, $\delta, g \in \mathbb{R}^n$, $\alpha_0 > 0$ being some constant. Introducing the variables

$$\delta_j = \beta_j (t - \tau)^{-\frac{1}{2b}}, \quad j = 1, \dots, n,$$

in the integral (2.11) we obtain

$$(2.17) \quad G(x, t, \tau) =$$

$$= \left[2\pi(t-\tau)^{\frac{1}{2b}} \right]^{-n} \int_{\mathbb{R}^n} \psi \left(t, \tau, \frac{\beta}{(t-\tau)^{1/2b}} \right) \exp \left[i \left(\frac{x}{(t-\tau)^{1/2b}}, \beta \right) \right] d\beta.$$

The integrand of the last integral is, under fixed x, t, τ , an L_∞ -analytic function of the complex variables $\beta_1 + i\eta_1, \dots, \beta_n + i\eta_n$. Let $\eta = (\eta_1, \dots, \eta_n) \in \mathbb{R}^n$ be a fixed point. Changing the integral in (2.17) into the iterated one⁵⁾, applying successively the Cauchy integral theorem (see [1], p.226) and using the estimate (2.16) we obtain

$$G(x, t, \tau) = \left[2\pi(t-\tau)^{\frac{1}{2b}} \right]^{-n} \int_{\mathbb{R}^n} \psi \left(t, \tau, \frac{\beta + i\eta}{(t-\tau)^{1/2b}} \right) \exp \left[i \left(\frac{x}{(t-\tau)^{1/2b}}, \beta + i\eta \right) \right] d\beta.$$

Hence it follows from (2.16) that

$$(2.18) \quad \| G(x, t, \tau) \|_\infty \leq B_5 (t-\tau)^{-\frac{n}{2b}} \exp \left[- \left(\frac{x}{(t-\tau)^{1/2b}}, \eta \right) + \alpha_0 |\eta|^{2b} \right].$$

Setting

$$\eta_j = \eta_0 (\operatorname{sgn} x_j)^{b'} \left[x_j (t-\tau)^{-\frac{1}{2b}} \right]^{b'-1}, \quad \eta_0 > 0, \quad j = 1, \dots, n,$$

we find that

$$(2.19) \quad - \left(\frac{x}{(t-\tau)^{1/2b}}, \eta \right) + \alpha_0 |\eta|^{2b} \leq -\delta_2 \sum_{j=1}^n \frac{|x_j|^{b'}}{(t-\tau)^{b'}},$$

where $\delta_2 = \eta_0 - \alpha_0 \eta_0^{2b} \eta^{b+\frac{b'}{2}} > 0$ for sufficiently small $\eta_0 > 0$. Now, the estimate (2.3) results from (2.18), (2.19) and (2.15).

5) We use the estimate (2.9) and Fubini's theorem [1] (p.193).

Proceeding in a similar way and using (2.13), we obtain the estimate (2.4). The estimate (2.5) is an immediate consequence of (2.4) and of the equality

$${}_t^Z(x, t, \xi, \tau) = \sum_{|m| \leq 2b} a_m(t) D_x^m Z(x, t, \xi, \tau).$$

In order to prove the assertion 5° let us denote

$$(2.20) \quad K_a = \{ \xi : |\xi - x| \leq a \}, \quad K'_a = \{ \xi : |\xi - x| > a \}, \quad a > 0.$$

We have

$$(2.21) \quad \int_{\mathbb{R}^n} z(x, t, \xi, \tau) g(\xi) d\xi - g(x) = I_1 + I_2 + I_3,$$

where

$$I_1 = \int_{K_a} z(x, t, \xi, \tau) [g(\xi) - g(x)] d\xi,$$

$$I_2 = \int_{K'_a} z(x, t, \xi, \tau) [g(\xi) - g(x)] d\xi,$$

$$I_3 = g(x) \left[\int_{\mathbb{R}^n} z(x, t, \xi, \tau) d\xi - 1 \right].$$

Let $A \subset \mathbb{R}^n$ be an arbitrary bounded domain and let $\epsilon > 0$. According to the uniform L_q -continuity of g in any bounded domain and the estimate (2.3), there exists an $a > 0$ such that for any $x \in A$, $0 < \tau < t \leq T$ we have

$$(2.22) \quad \|I_1\|_q \leq \int_{K_a} \|z(x, t, \xi, \tau)\|_\infty \|g(\xi) - g(x)\|_q d\xi < \frac{\epsilon}{3}.$$

For the above a there exists, by (2.3), an h_0 such that for $x \in A$, $0 \leq \tau < t \leq \tau + h_0$ holds the inequality

$$(2.23) \quad \|I_2\|_q \leq \int_{K_a} \|z(x, t, \xi, \tau)\|_\infty \left[\|g(\xi)\|_q + \|g(x)\|_q \right] d\xi < \frac{\epsilon}{3}.$$

The estimate (2.9) guarantees the existence of the Fourier transform

$$\hat{Q}(t, \tau, \xi) = \int_{R^n} e^{-i(x, \xi)} Q(t, \tau, x) dx, \quad 0 \leq \tau < t \leq T, \quad \xi \in R^n,$$

whence, by Lemma 1.1, we have

$$Q(t, \tau, x) = (2\pi)^{-n} \int_{R^n} e^{i(x, \xi)} \hat{Q}(t, \tau, \xi) d\xi, \quad 0 \leq \tau < t \leq T, \quad x \in R^n.$$

The above equality implies that

$$(2.24) \quad \begin{aligned} Q(t, \tau, 0) &= (2\pi)^{-n} \int_{R^n} \hat{Q}(t, \tau, \xi) d\xi = \\ &= (2\pi)^{-n} \int_{R^n} \hat{Q}(t, \tau, \xi - x) d\xi = \int_{R^n} z(x, t, \xi, \tau) d\xi. \end{aligned}$$

Taking into considerations the relations

$$(2.25) \quad \begin{aligned} Q(t, \tau, 0) &= \exp \left[\int_{\tau}^t a_0(\beta) d\beta \right], \quad \operatorname{Re} \int_{\tau}^t a_0(\beta) d\beta \leq B_1 T, \\ |e^{z_1} - e^{z_2}| &\leq 2e^{\alpha} |z_1 - z_2|, \quad \operatorname{Re} z_1, \quad \operatorname{Re} z_2 \leq \alpha, \end{aligned}$$

we conclude that

$$(2.26) \quad \|Q(t, \tau, 0) - 1\|_\infty \leq 2e^{B_1 T} (t - \tau).$$

It follows from (2.24) and (2.26) the inequality

$$(2.27) \quad \|I_3\|_q < \frac{\epsilon}{3}, \quad x \in R^n, \quad 0 < t - \tau < h_1$$

provided $h_1 > 0$ is sufficiently small. Now the assertion 5⁶ is a consequence of relations (2.21)-(2.23) and (2.27). This completes the proof.

3. An equation with parameter

In this section we shall consider the equation

$$(3.1) \quad L_0 u \equiv \sum_{|k|=2b} a_k(y, t) D_x^k u - D_t u = 0$$

with the parameter $y \in \mathbb{R}^n$. The following assumptions will be needed.

(3.I) The coefficients a_k , $|k| = 2b$, are complex random functions L_∞ -bounded in H and L_∞ -continuous in $t \in (0, T)$ uniformly with respect to $y \in \mathbb{R}^n$ ⁶.

(3.II) There are constants $\alpha \in (0, 1)$ and $M_1 > 0$ such that

$$\|a_k(y, t) - a_k(y', t)\|_\infty \leq M_1 \|y - y'\|^\alpha, \quad t \in (0, T), \quad y, y' \in \mathbb{R}^n.$$

(3.III) The operator L_0 is uniformly parabolic (Definition 1.1).

As in Section 2, we introduce the function

$$(3.2) \quad Q(t, \tau, y, \delta) = \exp \left\{ \sum_{|k|=2b} (i\delta)^k \int_\tau^t a_k(y, \beta) d\beta \right\},$$

defined in the set $A_3 = \{(t, \tau, y, \delta) : y, \delta \in \mathbb{R}^n, 0 \leq \tau \leq t \leq T\}$. Clearly $Q \in C(A_3, L_\infty(\Omega))$ and there exists L_∞ -derivative $Q_t \in C(A_3, L_\infty(\Omega))$ given by formula

$$(3.3) \quad Q_t(t, \tau, y, \delta) = \left[\sum_{|k|=2b} (i\delta)^k a_k(y, \beta) \right] Q(t, \tau, y, \delta).$$

6) I.e. for any $t \in (0, T)$ we have

$$\lim_{\Delta t \rightarrow 0} \|a_k(y, t + \Delta t) - a_k(y, t)\|_\infty = 0,$$

where the convergence is uniform with respect to $y \in \mathbb{R}^n$.

For the function (3.2) remain valid the estimates (2.9), (2.10) and (2.16). The function

$$(3.4) \quad G_0(x, t, y, \tau) = (2\pi)^{-n} \int_{\mathbb{R}^n} e^{i(x, \delta)} Q(t, \tau, y, \delta) d\delta$$

is L_∞ -continuous in A_0 (defined by (2.2)). Moreover, there exist L_∞ -derivatives $D_x^m G_0$, $D_t G_0 \in C(A_0, L_\infty(\Omega))$, $m \in \mathbb{N}_0^n$, given by formulas

$$(3.5) \quad D_x^m G_0(x, t, y, \tau) = (2\pi)^{-n} \int_{\mathbb{R}^n} (i\delta)^m e^{i(x, \delta)} Q(t, \tau, y, \delta) d\delta,$$

$$(3.6) \quad D_t G_0(x, t, y, \tau) = (2\pi)^{-n} \int_{\mathbb{R}^n} e^{i(x, \delta)} Q_t(t, \tau, y, \delta) d\delta.$$

We have the estimates

$$(3.7) \quad \|D_x^m G_0(x, t, y, \tau)\|_\infty \leq M(|m|)(t-\tau)^{-\frac{n+|m|}{2b}} \exp \left[-\frac{\delta' |x|^{b'}}{(t-\tau)^{b''}} \right],$$

$$(3.8) \quad \|D_t G_0(x, t, y, \tau)\|_\infty \leq M_2(t-\tau)^{-\frac{n}{2b}-1} \exp \left[-\frac{\delta' |x|^{b'}}{(t-\tau)^{b''}} \right].$$

Now let us consider the difference

$$\Delta Q = Q(t, \tau, y, \delta + i\gamma) - Q(t, \tau, z, \delta + i\gamma), \quad y, z, \delta, \gamma \in \mathbb{R}^n, \quad 0 \leq \tau < t \leq T.$$

In view of assumptions (3.I) and (3.III), we have

$$(3.9) \quad \operatorname{Re} \sum_{|k|=2b} (is)^k \int_\tau^t a_k(y, \beta) d\beta \leq (-\delta_1 |\delta|^{2b} + \alpha_0 |\gamma|^{2b})(t-\tau)$$

for $s = \delta + i\gamma$, $y, z, \delta, \gamma \in \mathbb{R}^n$, $0 \leq \tau \leq t \leq T$ ($\delta_1 \in (0, \delta)$, $\alpha_0 > 0$). Assumption (3.II) implies that

$$(3.10) \quad \left\| \sum_{|k|=2b} (is)^k \int_{\tau}^t [a_k(y, \beta) - a_k(z, \beta)] d\beta \right\|_{\infty} \leq \\ \leq M_3 (|6|^{2b} + |7|^{2b}) |y-z|^{\alpha} (t-\tau).$$

It follows from (3.9), (3.10) and (2.25) that

$$\|\Delta Q\|_{\infty} \leq M_4 |y-z|^{\alpha} \exp [(-\delta'_1 |6|^{2b} + \alpha'_0 |7|^{2b})(t-\tau)] ,$$

where $0 < \delta'_1 < \delta_1$, $\alpha'_0 > \alpha_0$. Hence, arguing as in the proof of (2.3), we obtain the estimate

$$(3.11) \quad \left\| D_x^m G_0(x, t, y, \tau) - D_x^m G_0(x, t, z, \tau) \right\|_{\infty} \leq \\ \leq M'(|m|) |y-z|^{\alpha} (t-\tau)^{-\frac{n+|m|}{2b}} \exp \left[- \frac{\delta'_2 |x|^{b'}}{(t-\tau)^{b'}} \right].$$

We introduce the following assumption.

(3.IV) The random function $f \in C(\mathbb{H}, L_q(\Omega))$, $1 \leq q \leq \infty$, is L_q -bounded and satisfies for $x \in \mathbb{R}^n$ a local Hölder condition in the L_q -sense with exponent α , uniform with respect to $t \in (0, T)$, i.e. for any bounded domain $\omega \subset \mathbb{R}^n$ there is a constant $M > 0$ such that

$$(3.12) \quad \|f(x, t) - f(x', t)\|_q \leq M|x-x'|^{\alpha}, \quad x, x' \in \omega, \quad t \in (0, T).$$

Theorem 3.1. If assumptions (3.I)-(3.IV) are satisfied, then the function

$$(3.13) \quad U(x, t) = \int_0^t \int_{\mathbb{R}^n} G_0(x-\xi, t, \xi, \tau) f(\xi, \tau) d\xi d\tau$$

has the following properties:

1° it is L_q -continuous in H_0 and

$$(3.14) \quad \lim_{t \rightarrow 0} \|W(x, t)\|_q = 0$$

uniformly with respect to $x \in A$ ($A \subset \mathbb{R}^n$ being a bounded domain);

2° there exist L_q -derivates $D_x^m W \in C(H_0, L_q(\Omega))$, $|m| \leq 2b-1$, defined by formula

$$(3.15) \quad D_x^m W(x, t) = \int_0^t \int_{\mathbb{R}^n} D_x^m G_0(x-\xi, t, \xi, \tau) f(\xi, \tau) d\xi d\tau;$$

3° there exist L_q -derivates $D_x^m W$, $D_t W \in C(H_0, L_q(\Omega))$, $|m| = 2b$, given by formulas

$$(3.16) \quad D_x^m W(x, t) = \int_0^t d\tau \int_{\mathbb{R}^n} D_x^m G_0(x-\xi, t, \xi, \tau) f(\xi, \tau) d\xi,$$

$$(3.17) \quad D_t W(x, t) = \int_0^t d\tau \int_{\mathbb{R}^n} D_t G_0(x-\xi, t, \xi, \tau) f(\xi, \tau) d\xi + f(x, t).$$

P r o o f . The assertions 1° and 2° follow from (3.7) and Remark 4.9 of [4]. In order to prove 3° we introduce the function

$$(3.18) \quad J(x, t, \tau) = \int_{\mathbb{R}^n} G_0(x-\xi, t, \xi, \tau) f(\xi, \tau) d\xi.$$

Taking into considerations the estimate (3.7) with $|m| = 0$ and Lemmas 4.6 and 4.7 of [4], we find that $J \in C(A_2, L_q(\Omega))$, A_2 being defined by (2.12). The estimates (3.7), (3.8) and Lemma 4.8 of [4] imply the existence of L_q -derivatives $D_x^m J$, $D_t J \in C(A_2, L_q(\Omega))$ given by formulas

$$(3.19) \quad D_x^m J(x, t, \tau) = \int_{\mathbb{R}^n} D_x^m G_0(x-\xi, t, \xi, \tau) f(\xi, \tau) d\xi,$$

$$(3.20) \quad D_t J(x, t, \tau) = \int_{\mathbb{R}^n} D_t G_0(x - \xi, t, \xi, \tau) f(\xi, \tau) d\xi.$$

Write the function (3.19) with $|m| = 2b$ in the form

$$(3.21) \quad D_x^m J(x, t, \tau) = I_1 + I_2 + I_3,$$

where

$$I_1 = \int_{K_1} D_x^m G_0(x - \xi, t, \xi, \tau) [f(\xi, \tau) - f(x, \tau)] d\xi,$$

$$I_2 = \int_{K'_1} D_x^m G_0(x - \xi, t, \xi, \tau) [f(\xi, \tau) - f(x, \tau)] d\xi,$$

$$I_3 = f(x, \tau) \int_{\mathbb{R}^n} D_x^m G_0(x - \xi, t, \xi, \tau) d\xi$$

and K_1, K'_1 are defined by (2.20).

Let $A \subset \mathbb{R}^n$ be an arbitrary bounded domain. The estimate (3.7) and the inequality (3.12) yield

$$(3.22) \quad \|I_1\|_q \leq M_5 (t - \tau)^{-1 + \frac{\alpha}{2b}}, \quad x \in A, \quad 0 < \tau < t \leq T.$$

The L_q -boundedness of f and the estimate (3.7) imply that

$$(3.23) \quad \|I_2\|_q \leq M_6 (t - \tau)^{-1 + \frac{1}{2b}} \quad \text{in } A_2.$$

Applying Green's theorem for functions with values in Banach space and the estimate (3.7), we obtain

$$(3.24) \quad \int_{\mathbb{R}^n} D_x^m G_0(x - \xi, t, y, \tau) d\xi = D_x^{m'} \int_{\mathbb{R}^n} D_{x_j} G_0(x - \xi, t, y, \tau) d\xi = \\ = -D_x^{m'} \int_{\mathbb{R}^n} D_{\xi_j} G_0(x - \xi, t, y, \tau) d\xi = 0,$$

where $m' = (m'_1, \dots, m'_n)$, $m = (m_1, \dots, m_n)$, $m'_k \neq m_k$ ($k \neq j$), $m'_j = m_{j-1}$, $1 \leq j, k \leq n$ and D_x^m , $D_x^{m'}$ are defined by (1.1). So we have

$$I_3 = f(x, \tau) \int_{R^n} [D_x^m G_0(x-\xi, t, \xi, \tau) - D_x^{m'} G_0(x-\xi, t, \xi, \tau)] \Big|_{y=x} d\xi,$$

which implies, by (3.11), the inequality

$$(3.25) \quad \|I_3\|_q \leq M_7(t-\tau)^{-1+\frac{\alpha}{2b}} \text{ in } A_2.$$

It follows from relations (3.21)-(3.23) and (3.25) that

$$(3.26) \quad \|D_x^m J(x, t, \tau)\|_q \leq M_8(t-\tau)^{-1+\frac{\alpha}{2b}}, \quad x \in A, \quad 0 < \tau < t \leq T,$$

$M_8 > 0$ being a constant depending on the domain A . Hence, by Remark 4.9 of [4], there exist L_q -derivatives D_x^m $\in C(H_0, L_q(\Omega))$ given by formula

$$(3.27) \quad D_x^m J(x, t) = \int_0^t D_x^m J(x, t, \tau) d\tau, \quad |m| = 2b,$$

which implies (3.16).

In order to prove (3.17) observe that

$$D_t J(x, t, \tau) = \sum_{|m|=2b} \int_{R^n} [a_m(\xi, \tau) f(\xi, \tau)] D_x^m G_0(x-\xi, t, \xi, \tau) d\xi.$$

Since the functions $a_m(\xi, \tau) f(\xi, \tau)$, $|m| = 2b$, satisfy assumption (3.IV), therefore it follows from the proof of (3.26) that

$$(3.28) \quad \|D_t J(x, t, \tau)\|_q \leq M_9(t-\tau)^{-1+\frac{\alpha}{2b}}, \quad x \in A, \quad 0 < \tau < t \leq T.$$

Hence, by Remark 4.9 of [4], the integral

$$(3.29) \quad \int_0^t D_t \bar{J}(x, t, \tau) d\tau$$

is uniformly L_q -convergent for $x \in A$, $t \in [h_0, T]$ ($h_0 \in (0, T)$) and consequently the function (3.29) is L_q -continuous in H_0 .

Now let us introduce the function

$$W_h(x, t) = \int_0^{t-h} J(x, t, \tau) d\tau, \quad x \in A, \quad t \in [h, T] \quad (0 < h < T).$$

There exists L_q -derivative

$$D_t W_h(x, t) = \int_0^{t-h} D_t J(x, t, \tau) d\tau + J(x, t, t-h).$$

Take an arbitrary sequence $\{h_m\}$, $0 < h_m < h_0$ ($h_0 \in (0, T)$ being an arbitrary fixed number) such that $h_m \rightarrow h_0$ as $m \rightarrow \infty$. Then the sequence

$$\left\{ \int_0^{t-h_m} D_t J(x, t, \tau) d\tau \right\}$$

is uniformly L_q -convergent to the integral (3.29) for $x \in A$, $t \in [h_0, T]$. Further we have

$$(3.30) \quad J(x, t, t-h_m) - f(x, t) = I'_1 + I'_2 + I'_3 + I'_4,$$

where

$$I'_1 = \int_{K_1} G_0(x-\xi, t, \xi, t-h_m) [f(\xi, t-h_m) - f(x, t-h_m)] d\xi,$$

$$I'_2 = \int_{K'_1} G_0(x-\xi, t, \xi, t-h_m) [f(\xi, t-h_m) - f(x, t-h_m)] d\xi,$$

$$I'_3 = f(x, t-h_m) \left[\int_{\mathbb{R}^n} G_0(x-\xi, t, \xi, t-h_m) d\xi - 1 \right],$$

$$I'_4 = f(x, t-h_m) - f(x, t)$$

and K_1, K'_1 are defined by (2.20). Evaluating the norms $\|I'_j\|_q$ ($j=1,2$) like as $\|I_j\|_q$ (see (3.22) and (3.23)), we conclude that for $j = 1, 2$

$$(3.31) \quad \lim_{m \rightarrow \infty} \|I'_j\|_q = 0$$

uniformly with respect to $x \in A$, $t \in (h_0, T)$. Obviously (3.31) holds for $j = 4$, too. The validity of (3.31) for $j = 3$ is a consequence of the relation

$$(3.32) \quad \lim_{m \rightarrow \infty} \left\| \int_{\mathbb{R}^n} G_0(x-\xi, t, \xi, t-h_m) d\xi - 1 \right\|_{\infty} = 0^7.$$

So we have

$$\lim_{m \rightarrow \infty} \|J(x, t, t-h_m) - f(x, t)\|_q = 0$$

uniformly with respect to $x \in A$, $t \in (h_0, T)$ and consequently the sequence $\{D_t^{\frac{1}{2}} h_m(x, t)\}$ is uniformly L_q -convergent to the function

$$\int_0^t I_t J(x, t, \tau) d\tau + f(x, t), \quad x \in A, \quad t \in (h_0, T).$$

⁷⁾ This relation can be proved by the similar considerations as those for relations (2.24), (2.26) and (2.27).

Hence, in virtue of the uniform L_q -convergence of the sequence $\{W_{h_m}(x, t)\}$ to the function $W(x, t)$ in $A \times [h_0, T]$, there exists L_q -derivative

$$(3.33) \quad D_t W(x, t) = \int_0^t D_t J(x, t, \tau) d\tau + f(x, t), \quad (x, t) \in H_0,$$

which is L_q -continuous in H_0 . This completes the proof.

4. A fundamental solution

In this section we discuss the existence of a fundamental solution of equation (0.1). The following assumption will be additionally needed.

(4.I) The coefficients a_k , $|k| \leq 2b-1$ satisfy assumptions (3.I) and (3.II), where the norm $\|\cdot\|_\infty$ in (3.II) is replaced by $\|\cdot\|_p$, ($1 \leq p \leq \infty$).

Theorem 4.1. If assumptions (3.I)-(3.III) and (4.I) are fulfilled, then there exists a complex random function $Z(x, t, \xi, \tau)$ such that:

1° it has the properties 1°, 2° for $|m| \leq 2b-1$ and 5° from Theorem 2.1;

2° there exist L_p -derivatives $D_x^m Z$, $D_t Z \in C(A_0, L_p(\Omega))$, $|m| = 2b$, which fulfil the inequalities

$$(4.1) \quad \|D_x^m Z\|_p, \|D_t Z\|_p \leq B(t-\tau)^{-\frac{n}{2b-1}} \exp \left[- \frac{\delta_0 \|x-\xi\|^{b'}}{(t-\tau)^{b'}} \right];$$

3° $Z(x, t, \xi, \tau)$ has the property 4° from Theorem 2.1 with respect to the equation (0.1).

The above-mentioned function $Z(x, t, \xi, \tau)$ is called a fundamental solution of equation (0.1).

Proof. We shall prove that

$$(4.2) \quad Z(x, t, \xi, \tau) = G_0(x-\xi, t, \xi, \tau) + \int\limits_{\tau}^t \int\limits_{R^n} G_0(x-y, t, y, \beta) \varphi(y, \beta, \xi, \tau) dy d\beta,$$

where G_0 is defined by (3.4) and φ is a solution of the integral equation

$$(4.3) \quad \varphi(x, t, \xi, \tau) = K(x, t, \xi, \tau) + \int_{\tau}^t \int_{\mathbb{R}^n} K(x, t, y, \beta) \varphi(y, \beta, \xi, \tau) dy d\beta$$

with

$$(4.4) \quad K(x, t, \xi, \tau) = \sum_{|k| \leq 2b} D_x^k G_0(x - \xi, t, \xi, \tau) - D_t^k G_0(x - \xi, t, \xi, \tau).$$

We have

$$\begin{aligned} K(x, t, \xi, \tau) &= \sum_{|k|=2b} \left[a_k(x, t) - a_k(\xi, \tau) \right] D_x^k G_0(x - \xi, t, \xi, \tau) + \\ &+ \sum_{|k|=2b-1} a_k(x, t) D_x^k G_0(x - \xi, t, \xi, \tau). \end{aligned}$$

This implies, by (3.7) and (3.II), the estimate

$$(4.5) \quad \|K(x, t, \xi, \tau)\|_{\infty} \leq C_1(t - \tau)^{-\frac{n+2b-\alpha}{2b}} \exp \left[- \frac{\delta' \|x - \xi\|^{b'}}{(t - \tau)^{b''}} \right].$$

Now consider the series

$$(4.6) \quad \varphi(x, t, \xi, \tau) = \sum_{m=1}^{\infty} K_m(x, t, \xi, \tau),$$

where

$$\begin{aligned} K_1(x, t, \xi, \tau) &= K(x, t, \xi, \tau), \\ K_{m+1}(x, t, \xi, \tau) &= \int_{\tau}^t \int_{\mathbb{R}^n} K(x, t, y, \beta) K_m(y, \beta, \xi, \tau) dy d\beta, \quad m=1, 2, \dots \end{aligned}$$

For the norms $\|K_m\|_\infty$ one can obtain the estimates analogous to those of [3] (p.254). Hence, it follows the uniform L_∞ -convergence of the series (4.6) for $x, \xi \in \mathbb{R}^n$, $t-\tau \geq h$ ($h \in (0, T)$ being a constant). Since $K_m \in C(A_0, L_\infty(\Omega))$, therefore also $\varphi \in C(A_0, L_\infty(\Omega))$. Moreover, we have

$$(4.7) \quad \|\varphi(x, t, \xi, \tau)\|_\infty \leq C_2(t-\tau)^{-\frac{n+2b-\alpha}{2b}} \exp \left[- \frac{\delta'_1 |x-\xi|^{b'}}{(t-\tau)^{b''}} \right].$$

Taking into account the estimates of the norms $\|K_m\|_\infty$, (4.5), (4.7) and the theorem on termwise integration of functional series, one can find that the function (4.6) is a solution of the equation (4.3).

Now we shall consider the difference

$$(4.8) \quad \Delta \varphi = \varphi(x, t, \xi, \tau) - \varphi(x', t, \xi, \tau)$$

under the condition

$$(4.9) \quad |x - x'|^{2b} \leq t-\tau.$$

For this purpose we first evaluate the difference

$$(4.10) \quad \Delta K = K(x, t, \xi, \tau) - K(x', t, \xi, \tau) = F_1 + F_2 + F_3 + F_4,$$

where

$$F_1 = \sum_{|k|=2b} [a_k(x, t) - a_k(x', t)] D_x^k G_0(x-\xi, t, \xi, \tau),$$

$$F_2 = \sum_{|k|=2b} [a_k(x, t) - a_k(\xi, t)] [D_x^k G_0(x-\xi, t, \xi, \tau) - D_x^k G_0(x'-\xi, t, \xi, \tau)],$$

$$F_3 = \sum_{|k| \leq 2b-1} [a_k(x, t) - a_k(x', t)] D_x^k G_0(x - \xi, t, \xi, \tau),$$

$$F_4 = \sum_{|k| \leq 2b-1} a_k(x', t) [D_x^k G_0(x - \xi, t, \xi, \tau) - D_x^k G_0(x' - \xi, t, \xi, \tau)].$$

Using Lemma 1.3, the estimate (3.7) and the condition (4.9), we get for some $\theta \in (-1, 1)$ the inequality

$$(4.11) \quad \begin{aligned} & \|D_x^k G_0(x - \xi, t, \xi, \tau) - D_x^k G_0(x' - \xi, t, \xi, \tau)\|_{\infty} \leq \\ & \leq C(|k|) \|x - x'\| (t - \tau)^{-\frac{n+|k|+1}{2b}} \exp \left[- \frac{\delta \|x - \xi + \theta(x - x')\|^{b'}}{(t - \tau)^{b''}} \right] \leq \\ & \leq C'(|k|) \|x - x'\| (t - \tau)^{-\frac{n+|k|+1}{2b}} \exp \left[- \frac{\delta'_2 \|x - \xi\|^{b'}}{(t - \tau)^{b''}} \right], \end{aligned}$$

where $C(|k|)$, $C'(|k|)$ are positive constants depending on $|k|$ and $\delta'_2 \in (0, \delta')$. Hence, by assumption (3.II), we get

$$(4.12) \quad \|F_2\|_{\infty} \leq C_3 \|x - x'\|^{\alpha_1} (t - \tau)^{-\frac{n+2b-\alpha_2}{2b}} \exp \left[- \frac{\delta'_3 \|x - \xi\|^{b'}}{(t - \tau)^{b''}} \right],$$

where $0 < \alpha_1 < \alpha$, $\alpha_2 = \alpha - \alpha_1$, $0 < \delta'_3 < \delta'_2$. Similarly, the estimates (4.11), (3.7) and assumptions (3.II), (4.I) imply the estimates of the norms $\|F_3\|_p$, $\|F_j\|_{\infty}$ ($j=1, 4$) of the form (4.12). Therefore, by (4.10), we obtain, under the condition (4.9), the estimate

$$(4.13) \quad \|\Delta K\|_p \leq C_4 \|x - x'\|^{\alpha_1} (t - \tau)^{-\frac{n+2b-\alpha_2}{2b}} \exp \left[- \frac{\delta'_3 \|x - \xi\|^{b'}}{(t - \tau)^{b''}} \right].$$

In view of the estimates (4.7), (4.12) and by Lemma 7 ([3], p.253), the function

$$w(x, t, \xi, \tau) = \int_{\tau}^t \int_{\mathbb{R}^n} K(x, t, y, \beta) \varphi(y, \beta, \xi, \tau) dy d\beta$$

satisfies, under the condition (4.9), the inequality of the form (4.13) with C_4 and δ'_3 replaced by some constants $C_5 > 0$ and $\delta'_4 \in (0, \delta'_3)$, respectively. Hence, if (4.9) holds, then with the aid of (4.3), (4.8) and (4.13) we conclude that for the norm $\|\Delta \varphi\|_p$ remains valid the estimate (4.13) with C_4 and δ'_3 replaced by $C_6 > 0$ and δ'_4 , respectively.

Now we shall consider the function

$$(4.14) \quad V(x, t, \xi, \tau) = \int_{\tau}^t \int_{\mathbb{R}^n} G_0(x-y, t, y, \beta) \varphi(y, \beta, \xi, \tau) dy d\beta.$$

According to the estimates (3.7) and (4.7), Lemma 7 of [3] and Remark 4.9 of [4], we have $V \in C(A_0, L_\infty(\Omega))$ and for $|m| \leq 2b-1$ there exist L_∞ -derivatives $D_x^m V \in C(A_0, L_\infty(\Omega))$ given by formula

$$(4.15) \quad D_x^m V(x, t, \xi, \tau) = \int_{\tau}^t \int_{\mathbb{R}^n} D_x^m G_0(x-y, t, y, \beta) \varphi(y, \beta, \xi, \tau) dy d\beta.$$

Moreover, these derivatives satisfy the inequalities

$$(4.16) \quad \|D_x^m V(x, t, \xi, \tau)\|_\infty \leq C_7 (t-\tau)^{\frac{n+|m|-1}{2b}} \exp \left[- \frac{\delta'_5 |x-\xi|^{b'}}{(t-\tau)^{b'}} \right].$$

In order to prove the existence of derivatives $D_x^m V$, $|m| = 2b$, and $D_t V$ we introduce the function

$$(4.17) \quad J(x, t, \beta, \xi, \tau) = \int_{\mathbb{R}^n} G_0(x-y, t, y, \beta) \varphi(y, \beta, \xi, \tau) dy$$

in the set $A_4 = \{(x, t, \beta, \xi, \tau) : x, \xi \in \mathbb{R}^n, 0 \leq \tau < \beta < t \leq T\}$. Like as for the function (4.14) we have $J \in C(A_4, L_\infty(\Omega))$ and

there exist L_∞ -derivatives $D_x^m J \in C(A_4, L_\infty(\Omega))$ defined by formula

$$(4.18) \quad D_x^m J(x, t, \beta, \xi, \tau) = \int_{\mathbb{R}^n} D_x^m G_0(x-y, t, y, \beta) \varphi(y, \beta, \xi, \tau) dy.$$

Moreover, for $|m| = 2b$ holds the inequality

$$(4.19) \quad \|D_x^m J\|_\infty \leq c_8 (\beta - \tau)^{-1 + \frac{\alpha}{2b}} (t - \tau)^{\frac{n}{2b} - 1} \exp \left[- \frac{\delta'_6 |x - \xi|^{b'}}{(t - \tau)^{b''}} \right]$$

for $x, \xi \in \mathbb{R}^n$, $0 \leq \tau < t \leq T$, $\tau < \beta < \frac{t+\tau}{2} \equiv t_1$.

In virtue of (4.19) and Remark 4.9 of [4], the function

$$V_1(x, t, \xi, \tau) = \int_{\tau}^{t_1} J(x, t, \beta, \xi, \tau) d\beta$$

possesses L_∞ -derivatives $D_x^m V_1 \in C(A_0, L_\infty(\Omega))$, $|m| = 2b$, given by formula

$$D_x^m V_1(x, t, \xi, \tau) = \int_{\tau}^{t_1} D_x^m J(x, t, \beta, \xi, \tau) d\beta$$

and there is satisfied the inequality

$$\|D_x^m V_1\|_\infty \leq c_9 (t - \tau)^{\frac{n+2b-\alpha}{2b}} \exp \left[- \frac{\delta'_6 |x - \xi|^{b'}}{(t - \tau)^{b''}} \right].$$

It remains to prove the existence of derivatives $D_x^m V_2$, $|m| = 2b$, of the function

$$V_2(x, t, \xi, \tau) = \int_{t_1}^t J(x, t, \beta, \xi, \tau) d\beta.$$

For this purpose let us denote

$$A_5 = \{(x, t, \beta, \xi, \tau) : x, \xi \in \mathbb{R}^n, 0 \leq \tau < t \leq T, t_1 < \beta < t\},$$

$$(4.20) \quad \mathbb{D}_a = \{y : |y-x|^{2b} \leq a\}, \quad \mathbb{D}'_a = \{y : |y-x|^{2b} > a\}, \quad a > 0.$$

Now we write the derivatives $D_x^m J$, $|m| = 2b$, in the set \mathbb{D}_a , in the following form

$$(4.21) \quad D_x^m J = J_1 + J_2 + J_3 + J_4,$$

where

$$J_1 = \int_{\mathbb{D}_a} D_x^m G_0(x-y, t, y, \beta) [\varphi(y, \beta, \xi, \tau) - \varphi(x, \beta, \xi, \tau)] dy,$$

$$J_2 = \int_{\mathbb{D}'_a} D_x^m G_0(x-y, t, y, \beta) \varphi(y, \beta, \xi, \tau) dy,$$

$$J_3 = -\varphi(x, \beta, \xi, \tau) \int_{\mathbb{D}'_a} D_x^m G_0(x-y, t, y, \beta) dy,$$

$$J_4 = \varphi(x, \beta, \xi, \tau) \int_{\mathbb{R}^n} D_x^m G_0(x-y, t, y, \beta) dy$$

and $a = \beta - \tau$. In view of (3.24), we have

$$J_4 = \varphi(x, \beta, \xi, \tau) \int_{\mathbb{R}^n} \left[D_x^m G_0(x-y, t, y, \beta) - D_x^m G_0(x-y, t, z, \beta) \Big|_{z=x} \right] dy.$$

Hence, using estimates (3.11) and (4.7), it follows that

$$(4.22) \quad \|J_4\|_\infty \leq c_{10} (t-\tau)^{-\frac{n+2b-\alpha}{2b}} (t-\beta)^{-1+\frac{\alpha}{2b}} \exp \left[-\frac{\delta_1 |x-\xi|^{b'}}{(t-\tau)^{b''}} \right].$$

The estimates (3.7) and (4.13) for φ imply, by Lemma 7 of [3], the inequality

$$(4.23) \quad \|J_1\|_p \leq c_{11} (t-\tau)^{-\frac{n+2b-\alpha}{2b}} (t-\beta)^{-1+\frac{\alpha}{2b}} \exp \left[-\frac{\delta_7' |x-\xi|^{b'}}{(t-\tau)^{b''}} \right].$$

Taking into account the estimates (3.7), (4.7) and the above-mentioned Lemma 7 we find that

$$(4.24) \quad \|J_k\|_{\infty} \leq C_{12}(t-\beta)^{-1+\frac{\alpha}{2b}}(t-\tau)^{-\frac{n}{2b}-1} \exp \left[-\frac{\delta'_8|x-\xi|^{b'}}{(t-\tau)^{b''}} \right],$$

$k=2,3.$

Relations (4.21)-(4.24) immediately imply, for $|m|=2b$, the estimate

$$\|D_x^m J\|_p \leq C_{13}(t-\beta)^{-1+\frac{\alpha}{2b}}(t-\tau)^{-\frac{n}{2b}-1} \exp \left[-\frac{\delta'_9|x-\xi|^{b'}}{(t-\tau)^{b''}} \right] \quad \text{in } A_5.$$

So, by Remark 4.9 of [4], there exist L_p -derivatives $D_x^m V_2 \in C(A_0, L_p(\Omega))$ given by formula

$$D_x^m V_2(x, t, \xi, \tau) = \int_{t_1}^t D_x^m J(x, t, \beta, \xi, \tau) d\beta$$

and there holds the estimate

$$(4.25) \quad \|D_x^m V_2\|_p \leq C_{14}(t-\tau)^{-\frac{n+2b-\alpha}{2b}} \exp \left[-\frac{\delta'_9|x-\xi|^{b'}}{(t-\tau)^{b''}} \right].$$

Thus we have proved the existence of L_p -derivatives $D_x^m V \in C(A_0, L_p(\Omega))$, $|m|=2b$, defined by formula

$$(4.26) \quad D_x^m V(x, t, \xi, \tau) = \int_t^t D_x^m J(x, t, \beta, \xi, \tau) d\beta.$$

Moreover, for $\|D_x^m V\|_p$ remains valid the estimate (4.25) (with possibly other constants C_{14} and δ'_9) and the integral (4.26) is uniformly L_p -convergent in the set

$$A_6 = \{(x, t, \xi, \tau) : x, \xi \in \mathbb{R}^n, t-\tau \geq 3h > 0\}.$$

Similarly to $D_x^m J$ there exists L_p -derivative $D_t^m J \in C(A_0, L_p(\Omega))$. Observing that

$$D_t^m J(x, t, \beta, \xi, \tau) = \sum_{|m|=2b} \int_{\mathbb{R}^n} D_x^m G_0(x-y, t, y, \beta) [a_m(y, \beta) \varphi(y, \beta, \xi, \tau)] dy$$

and using the above considerations, we conclude the uniform L_p -convergence of the integral

$$(4.27) \quad \int_t^t D_t^m J(x, t, \beta, \xi, \tau) d\beta$$

in the set A_6 . Moreover, for the norm $\|\cdot\|_p$ of the integral (4.27) holds the estimate (4.25) in the set A_0 .

Like in the proof of Theorem 3.1 we introduce the function

$$v_h(x, t, \xi, \tau) = \int_{\tau+h}^{t-h} J(x, t, \beta, \xi, \tau) d\beta \quad \text{in } A_6.$$

This function possesses L_∞ -derivative

$$D_t v_h(x, t, \xi, \tau) = \int_{\tau+h}^{t-h} D_t J(x, t, \beta, \xi, \tau) d\beta + J(x, t, t-h, \xi, \tau).$$

Take an arbitrary sequence $\{h_m\}$, $0 < h_m < h$, tending to zero as $m \rightarrow \infty$. Then the sequence

$$\left\{ \int_{\tau+h_m}^{t-h_m} D_t J(x, t, \beta, \xi, \tau) d\beta \right\}$$

is uniformly L_p -convergent to the integral (4.27) in the set A_6 . We write the expression $J(x, t, t-h_m, \xi, \tau) - \varphi(x, t, \xi, \tau)$ in the form similar to (3.30) with K_1 and K_1' replaced by E_h and E_h' (defined by (4.20)), respectively. Next, using the estimates (3.7) (for $|m| = 0$), (4.13) (for φ), (4.7) and relation (3.32), we find that

$$\lim_{m \rightarrow \infty} \|J(x, t, t-h_m, \xi, \tau) - \varphi(x, t, \xi, \tau)\|_p = 0$$

uniformly with respect to $x, \xi \in A$ and $t-\tau \geq 3h$ ($A \subset \mathbb{R}^n$ being a bounded domain). From the above considerations it follows the existence of L_p -derivative $D_t V \in C(A_0, L_p(\Omega))$ given by formula

$$(4.28) \quad D_t V(x, t, \xi, \tau) = \int_{\tau}^t D_t J(x, t, \beta, \xi, \tau) d\beta + \varphi(x, t, \xi, \tau).$$

This implies the estimate of the form (4.25) for the norm $\|D_t V\|_p$. So we have proved assertion 2^0 . Assertion 3^0 follows immediately from relations (4.28), (4.26), (4.17), (4.18), (4.14), (4.15) and (4.2)-(4.4).

It remains to prove the property 5^0 of Theorem 2.1 with respect to the equation (0.1). For this purpose it suffices to observe that

$$\begin{aligned} \int_{\mathbb{R}^n} Z(x, t, \xi, \tau) g(\xi) d\xi &= \int_{\mathbb{R}^n} G_0(x-\xi, t, \xi, \tau) g(\xi) d\xi + \\ &+ \int_{\mathbb{R}^n} V(x, t, \xi, \tau) g(\xi) d\xi \end{aligned}$$

and next to apply assertion 5^0 of Theorem 2.1 (for function $Z(x, t, \xi, \tau) = G_0(x-\xi, t, \xi, \tau)$) and the estimate (4.16) with $|m| = 0$.

5. The Cauchy problem

In this section the fundamental solution $Z(x, t, \xi, \tau)$ constructed in the previous section will be used in proving of the existence of a solution of the Cauchy problem (0.2), (0.3).

Theorem 5.1. Let assumptions (3.I)-(3.IV), (4.1) be satisfied and suppose that a function $g \in C(\mathbb{R}^n, L_q(\Omega))$ is L_q -bounded, where $r^{-1} = p^{-1} + q^{-1} \leq 1$. Then the function

$$(5.1) \quad u(x, t) = \int_{\mathbb{R}^n} z(x, t, \xi, 0) g(\xi) d\xi - \int_0^t \int_{\mathbb{R}^n} z(x, t, \xi, \tau) f(\xi, \tau) d\xi d\tau$$

has the following properties:

1° $u \in C(H, L_q(\Omega))$ and for $|k| \leq 2b-1$ there exist L_ξ -derivatives $D_x^k u \in C(H_0, L_q(\Omega))$;

2° there exist L_r -derivatives $D_x^k u$, $|k| = 2b$ and $D_t u$ which are L_r -continuous in H_0 ;

3° $u(x, t)$ is a solution of the problem (0.2), (0.3).

P r o o f . The method of proving is similar to that applied in the proof of Theorem 3.1 of [4]. In view of the estimate (2.3) the function

$$(5.2) \quad u_1(x, t) = \int_{\mathbb{R}^n} z(x, t, \xi, 0) g(\xi) d\xi$$

is L_q -continuous in H_0 . Using assertion 3° of Theorem 2.1 (with respect to the equation (0.1)) and setting additionally

$$(5.3) \quad u_1(x, 0) = g(x), \quad x \in \mathbb{R}^n,$$

we conclude that $u_1 \in C(H, L_q(\Omega))$. By (2.4) for $|m| \leq 2b-1$, there exist L_q -derivatives $D_x^m u_1 \in C(H_0, L_q(\Omega))$ given by formula

$$(5.4) \quad D_x^m u_1(x, t) = \int_{\mathbb{R}^n} D_x^m z(x, t, \xi, 0) g(\xi) d\xi, \quad |m| \leq 2b-1.$$

Similarly, the estimates (4.1) imply the existence of L_r -derivatives $D_x^m u_1, D_t u_1 \in C(H_0, L_r(\Omega))$, $|m| = 2b$, where $D_x^m u_1$ are defined by (5.4) and

$$(5.5) \quad D_t u_1(x, t) = \int_{\mathbb{R}^n} D_t z(x, t, \xi, 0) g(\xi) d\xi.$$

Taking into considerations formulas (5.2), (5.4), (5.5) and assertion 3⁰ of Theorem 4.1, we find that

$$(5.6) \quad Lu_1(x, t) = 0, \quad (x, t) \in H_0.$$

Now let us denote

$$(5.7) \quad u_2(x, t) = \int_0^t \int_{R^n} Z(x, t, \xi, \tau) f(\xi, \tau) d\xi d\tau.$$

The estimate (2.3) implies that $u_2 \in C(H_0, L_q(\Omega))$ and $\lim_{t \rightarrow 0} \|u_2(x, t)\|_q = 0$ uniformly with respect to $x \in R^n$. Hence, setting additionally

$$(5.8) \quad u_2(x, 0) = 0, \quad x \in R^n,$$

we conclude that $u_2 \in C(H, L_q(\Omega))$. By (2.3) with $|m| \leq 2b-1$, there exist L_q -derivatives $D_x^m u_2 \in C(H_0, L_q(\Omega))$ given by formula

$$(5.9) \quad D_x^m u_2(x, t) = \int_0^t \int_{R^n} D_x^m Z(x, t, \xi, \tau) f(\xi, \tau) d\xi, \quad |m| \leq 2b-1.$$

In order to show the existence of derivatives $D_x^m u_2$ for $|m| = 2b$ and $D_t u_2$ we write

$$(5.10) \quad u_2(x, t) = w(x, t) + w_1(x, t),$$

where

$$(5.11) \quad w_1(x, t) = \int_0^t \int_{R^n} G_0(x - \xi, t, \xi, \tau) f_1(\xi, \tau) d\xi d\tau,$$

$$(5.12) \quad f_1(x, t) = \int_0^t \int_{R^n} \varphi(x, t, \xi, \tau) f(\xi, \tau) d\xi d\tau$$

and $W(x, t)$ is defined by (3.13). It results from (4.7) that $f_1 \in C(H, L_q(\Omega))$. Taking into account (3.IV), (4.7) and the estimate

$$\|\Delta \varphi\|_p \leq C' \|x-x'\|^{-\frac{\alpha_1}{2b}} \left\{ \exp \left[- \frac{\delta'' \|x-\xi\|^{b'}}{(t-\tau)^{b''}} \right] + \exp \left[- \frac{\delta'' \|x'-\xi\|^{b'}}{(t-\tau)^{b''}} \right] \right\}$$

following from (4.7) and (4.13) (with $K = \varphi$), we obtain

$$\|f_1(x, t) - f_1(x', t)\|_p \leq C'' \|x-x'\|^{-\frac{\alpha_1}{2b}}, \quad x, x' \in A, \quad t \in \langle 0, T \rangle,$$

$A \subset \mathbb{R}^n$ being any bounded domain.

Hence, by (5.10), (5.11) and by Theorem 2.1, there exist L_R -derivatives $D_x^m u_2, D_t u_2 \in C(H_0, L_R(\Omega))$, $|m| = 2b$, given by formulas

$$(5.13) \quad D_x^m u_2 = \int_0^t d\tau \int_{\mathbb{R}^n} D_t G_0(x-\xi, t, \xi, \tau) [f(\xi, \tau) + f_1(\xi, \tau)] d\xi,$$

$$(5.14) \quad D_t u_2 = \int_0^t d\tau \int_{\mathbb{R}^n} D_t G_0(x-\xi, t, \xi, \tau) [f(\xi, \tau) + f_1(\xi, \tau)] d\xi +$$

$$+ f(x, t) + f_1(x, t).$$

Combining (5.7), (5.9), (5.13), (5.14), (4.2)-(4.4) and (5.12) we conclude that

$$(5.15) \quad L u_2(x, t) = -f(x, t), \quad (x, t) \in H_0.$$

Relations (5.6), (5.15), (5.2), (5.7), (5.1), (5.3) and (5.8) immediately imply assertion 3⁰. This completes the proof.

REFERENCES

[1] N. Dunford, J.T. Schwartz: Linear operators, Part I, New York, London 1958.

- [2] S.D. E i d e l m a n : Parabolic systems, Moskwa, 1964.
(Russian).
- [3] A. F r i e d m a n : Partial differential equations of
parabolic type, Englewood Cliffs 1964.
- [4] H. U g o w s k i : On a random linear parabolic equa-
tion, Demonstratio Math. 11(1978) 465-498.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY, GDANSK

Received May 24, 1978.