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ON A RANDOM LINEAR PARABOLIC EQUATION
OF ANY EVEN ORDER

Introduction

In this paper we consider the random linear parabolic
equation

(0.1) Lu = |Z ak(x,t)Dl;u - D=0 1
[kj<2b

where b 1is a positive integer and a are complex random
functions defined in the strip H-= {(x,t):xe R%,t € <0,T>} .
Applying the same parametrix method as in [2], we construct
a fundamental solution of the equation (0.1). This enables us
to prove the existence of a solution of the Cauchy problem

(0.2) Lu = £(x,t), (x,t) ¢ H = R? x(0,T7>,

(0.3) u(x,0) = g(x), x ¢ R™,
where f and g are given complex random functions,

In paper [4] there were treated random linear parabolic
equations of the second order and there were obtained results
similar to the above-mentioned ones. We applied in [4] the
same parametrix method as in [3] (chapter 1) which required

1) Notation and definitions will be stated in Section 1.
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2 H.Ugowski

stronger assumptions concerning coeffic¢ients than those made
in the present paper gpecialized to the case b = 1,

1. Preliminaries

Let (2,%, P) be a probabilistic space, where P 1is
a complete probability measure. By LP(R) (1< pgoe) we
denote the Banach space of all complex random variables f£(w)
defined on (R, ¥, P) with finite norm

1
||1E’||p = ulf(w)!pP(du)] P, if 1¢p<oo; |lg]| = %{23' sup If(w)

The 1imit, continuity and partial derivatives of & random
function u ¢ A —1L (Q), A C Rn, are understood in the ®trong
sense and they are called respectively the L_-limit, L ~con-
tinuity and L -~derivatives of u. By Ck(A,Lp(.Q.)), ke N, =
= J{O,‘l,E‘,...}, we denote the set of all random functions
u: A—L (Q) which are L -continuous in A together with
all their Lp-derivatives D;u, la|] ¢ k, where

o = (d.1,...,an) € Ng, Ial= d1 + ee0 + &

n’
(1.1)
a a
Da = D 1 D no_ alal
x X, ec X, °T1 -.C‘n ¢
9x1' cee axn'

We abbreviate c°(A,Lp(g)) = C(A,LP(Q)). Let us denote

-~

C“(A,LP(Q)) =M Ck(A,Lp(Q)). This enables us to introduce
=1 )

the set S(Rn,Lp(.Q)) of all functions ue C™ (Rn,Lp(SZH

such that for any multi-indexes a , ﬁeNg we have

o (21
n

sup *pPu(x )] < oo , 2% = x, ' ... X,
X p 1

n
xeR?

For a function u e S(Rn,Lp(Q.)) there is defined the Fourier
transform
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Random linear parabolic equation 3

n
ﬁ(g) =j e'i(x’g’u(x)dx 2), fGRn, (xy8) = Z x;jgj’
r® J=

The following lemmas will be needed.
Lemma 1.1. If uce S(Rn,Lp(Q.)), then ﬁeS(Rn,Lp(.Q.))
and

ul(x) = (21r)"“f ﬁ(E)ei(x'f’dg .
.
The proof is the same as that for nonrandom functions.
Lemma 1.2, If hecl(<a, p> L (2)), then the-
re exists a number #€ <o, B> such that ||h?ﬁ)-h(a)||p<
n' (g jp-al. '

Proof., We have

b
n(p) - h(a) = jn’ (x)ax.
xQ

Hence it follows from the integral mean value theorem that

p
Jacp)-ntal, s! | 0 (o] jox = (p-a) o, -

Lemma 1.3, Let A CR™ be a convex domain. If
u e C1(A,Lp(m), then for any points o, Pea, a#p, there
exists a point J 1lying on the segment af such that

n
3=1

2] Throughout this paper the proper and improper integrals
of Lp-continuous random functions are taken in the strong Rie-
n sense (Lp-integrals). Definitions and lemmas of paper
Tﬁf concerning Ep-integrals of real random functions hold true
also for complex ones., iloreover, the measurability of random

functions, assumed in Eﬂ, is supsrfluous,
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4 H.Ugowski

Proof . The random function v(7) = u({1-2)a+7h),
7e < 0,1>, belongs to C'(< 0,1> ,1,(2)) and its L -deri-
vative is defined by formula

n
(1.3) vi(z) = Z (ﬂj—aj)%j(out(ﬁ-“)).
J=1

In view of Lemma 1,2, there is a number ©¢_e€ < 0,1> such
that ,”v(1)-v(0)"p < llv’('(o)”p which implies, by (1.3), the
inequality (1.2) with 3"=a+'to({5-a).
Finally we introduce the following definition.
Definition 1.1, The operator. L (defined
by (0.1)) is called uniformly parabolic if

3)
(1.3 Re S o lx,t)(16) < -5[6]%°, (x,t)eH, 6cRr

fkl =2b

n 1
§ >0 being a constant and |6] = > |63|2 2,
3=1

2. An equation with random coefficients depending only
on %
We consider the equation

roo_ k _
(2.1) L'u= E ak(t)Dxu - Diu = 0O,
1ki<2b

Theorem 2.1, If a € C(<0,7>,Lo(R)) and
the operator L' is uniformly parabolic (Definition 1.1},
then there exists a complex random function 2Z(x,t,§,7) de~
fined in the set

(2.2) by = {(x,,5,7): x,Ee B®, 0¢7 < tg T}

3) Note that ak(x,t) sre random functions, Therefore ine-
guality (1.3) holds for (x,t) €H, 6 ¢ RR, weﬂx’t, where
P(Qx’t) = 1.
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Random linear parabolic equation 5

and possessing the following properties:

1° Z2 e c(A ,Loo(Q)) and we have
o]

———gb solx-glb'

(2.3) | 2(x,t,§, )|, < Blt-T) “° exp |- v
U 2b " 1 .
where b = b7 b = o1 and B.6°:> 0 are some constants;

2% there exist L -derivatives Diz € C(AO,Lgc(Q)),
m € Ng and we have the estimate

3T TR P L
2b -
(204) | D22 (x, 8,8, ) | o€ BRI (8-0) xP| = (g |

B{lm!) being a certain constant depending on |m|;
3% there exists an L o-derivative D,Z € C(Ao,Lm(Sz.)) which
fulfils the inequality

I ¢ 8. |x-¢ o'
(2.5) ILDtZ(x,t,g,t)" < B(t-17) eb exp |- —?l—“xép‘ s
el t-7

4° for fixed ¢eR®, ¢e<0,T) the function Z(x,%,%,?)
satisfies with respect to the variables x € Rn, te (v,7>
the equation (2.1);

5° for any function g € C(R",L,(2)), 1 < g ¢ e, which
is L -bounded (i.e. "g(x)"q & const., x € R?) we have

lim “' z(x,t,§,2)e(§)d} - g(xl||, = o,
t-r+0 g
QR
where the convergence is uniform with respect to x € =~
(4 ¢ R® veing a bounded domain).
The atove-mentioned function Z(x,t,},r) is called
fundemental solution of the egquation (2.1)47,

%)

4) In the definition of the fundamental solution it suf=-
fices to sssume that the condition 39 holds for I1mi ¢ 2b,
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6 J.Ugowski

troo0f. We use the seme method as in [2] (p.15-20,
34}, Wamel; let us introduce the function

t
(2.6) C(t,7,6] = exp | > (16)F [ 2, (pIop
fkl< 20 4

defined in the =zet aq = {(t,z,d): Ogrgtg T, 6eRn}.
Cobviously ('€ C(A1,L°o(9}) and there exists Lo -derivative
-t € ClagyL (@) given by formula

(2.7) Gy (t,7,6) = [ > (16)X ak(t)] «(t,7,6).

lkl¢2b
note that
(2.8) ||ak(t)||°° < By, t € <0,T>,
31 > U being some constant. In view of (2.6), (2.8) and
(1.3),we have

(2.9)

G(t,7,6) || < B, exp [-51612°(t-0)] 1in a, (6 6(0,8)).

It follows from (2.7)-(2.9) that

' 2b 2b
(2.10) ||cy(t,2,6)]|ea < B5(1642%41)0xp [- 5, l6] (¢-%)] in A,.
Now let us introduce the function
(2.11). 6(x,t,t) = (2m7" o1 (X:6)o(¢ ¢, 6)a6
e
defined in the set

(2.12) A2={(x,t,r):xeRn,0s‘2’<t<T}.
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Random linear parabolic equation 7

In virtue of the estimate (2.9) and of Lemma 4.6 of [4], the
integral (2.11) is uniformly Le..-~convergent for x € 4,

t-7> h, where 4 C R® is a bounded domain and h € (0,T)
is a constant. Thus, by Lemma 4.7 of [4], G € C(hy,LeatR)).
Similarly, the estimates (2.8), (2.9) and Leama 4.9 of [4]
imply the existence of Leo-derivatives DIG,D.G e (4,,Le(Q)),
m € I-I:;l given by formulas

(2.13) tle(x,t,7) = (2m)™® f (16)8e1(x:6)q (4 ¢, 6)a6,
Rn

(2.14)  Dy6lx,t,2) = (2078 [ o2 (%:6lq, (4,7,6)a6.
RO
Wle have proved that for the function
(2.15) z(x,t,$,7) = G(x-§,t,7),(x,t,§,7) € Ay,

hold the assertions 1°-3° except the estimates (2.3)-(2.5).
The relations (2.,11), (2.13)-(2.15) and (2.7) imply the asser-
tion 4°,

In order to derive the estimate (2.3) we use the inequa-
lity

(2.16) [a(t,r,6+10)| < B, exp[(-6'1 |6|2b+d°|9.|2b)(t_ﬂ] ’

0gr<t«gT, 6, g‘eRn, o, > O being some constant, Intro-
ducing the variables

1
(t-t)—ﬁs,

63 = p.’i J = 11000,1’1

in the integrel (2.11) we obtain
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8 H.Ugowski

(2.17) G{x,t,7) =

11]-n
Ty 4 )
= |:2?r(t-r)‘] j -;G,Z.m/z—b) exp &(\t {)1/2b "5]
P

The integrand of the last integral is, under fixed x,t,7,

an Loy -analytic function of the complex variables ﬁ1+1q1,...,
pn+iqn Let n= (q1,...,qn € R" bve a fix ed point. Changing
the integral in (2.17) into the iterated one’ , applying suc=-
cessively the Cauchy integral thecorem (cee [ ], p.226) and
using the estimate (2.16) we obtain

_fl-n
g ) 2b . _L.’Z;i i ——Z755 pri
(J(x,ty f[) = [ﬁﬂ(t— 'l’) } J:n ‘-‘;G‘?' (t—‘;)" 2—b> exp I}-Q 4 ()J;/Zb ’ﬁ"’l Q)ildﬁ.

Hence it follows from (2.16) that

n
ernlotest e 356807 el (o ™

Setting
( A -
Qj = n,\sgn xj xj -7 » 06> 0, J =1,ee0y9n,

we find that

2b
(2.19) <——'—)T72—b,f[> + dolql < T‘II;_%F‘

b+
where 82 =0 - %0 bq 2 >0 for sufficiently small p, > O.

Now, the estimate (2 3) results from (2.18), (2.19) and (2.15).

( 5) We use the estimate (2.9) and Pubini’s theorem [1]
p.193).
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froceeding in a similar way and using (2.13), we outain
the estimate (2.4). The estimate (2.5) is an immediate conse-
quence of (2.4) and of the eguality

.{.Z(X,t,i,f) = E am(t)D;?‘!-a(X,t,g,fl)o
lm1 €20

In order ito prove the assertion 5% let uz denote

(2,201 %, = {5 t)y-x| < a}, Ky = {§:| £ x| > a}, a > 0,

“e have

(2.21) f 2(x,t,8,7) g(§idy - g(x) = I+ I, + I,
Rn

irhere

z(x,t,§,7) [a() - alx)] &%,

H
[}
e

I, = f' z(x,t,%,2) [a(}) - g(x)] %,

g(x) f z{x,t,%,7) d% - 1}.
R0

Let A CR® be an arbitrary bounded domain and let &> C.
sccording to the uniform L_-continuity of g in any bounded
domain and the estimate (2.3), there exists an a > 0O such
that for any x e 4, 0 < T <t & T we have

(2.22) "I1||q Sf "Z(X,t,?»,f)“oo“g('s') - g(x)“qdi < % .

Kq

For the above a there exists, by (2.3), an h, such that
for xe A, O <t <r+ho holds the inequality
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10 H.Ugowski

(2.23) |L,)q < [ l2tx,t.8,2], [Ilg(§)||q+"g(x)“q]d§ <5,
KI
a

The estimate (2.9) guarantees the existence of the Fourier
transform

CGlt,T,%) =f el ¥g (s z,x)ax, 0¢r< t< T, feRY,
Rn

vhence, by Lemma 1.1, we have

Glt,T,x) = (21r)-nf ei(x’g)é(t,'z,g)ﬁ, 0T <t <T, xeR™,
BR

The above equality implies that

(2.24) ¢(t,7,0) = (2sr)‘nf Q(4,7,%)d% =
Rn

= (2m™ [ Q(e,0,%-x)ay = [ 2lx,t,F, vhag.

R RY
Taking into considerations the relations
t t
2(t,7,0) = exp jao(ﬁ)dﬂ , Re fao(p)dﬁ < BT,
(4 4
) | 24 22| a :
(2.25) e  =~e °| &2 |z1 - z2|, Rezq, Rez,<a,
we conclude that
B1T
(2.26) la(t,7,0) = 1]eo < 20 ' (t-1),

It follows from (2.24) and (2.26) the ineguality

(2.27) ||I3||q < % , x eRY 0<t-T<¢h,
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Random linear parabolic equation 1

provided h1 > 0 is sufficiently small. Now the aasertion 5°
is a consequence of relations (2.21)-(2.23) and (2.27). This
completes the proof.

3. An equation with parameter
In this section we shall consider the equation

(3.1) Lou = E ak(y,t)D:u - Diu =0
Ikl =2b

with the parameter Jy ¢ R", The following assumptions will
be needed.

(3.I) The coefficients G |k| = 2b, are complex ran-
dom functions Le-bounded in H and L-=continuous in
te ¢0,T> uniformly with respect to y & R" 6),

(3.1I) There are constants o € (0,1) and. M, > O such
that

||ak(y.t)-ak(y’.t)||,° <ulyy]*, te <o0,r>, 3,3'¢ R

(3.III) The operator L, 1is uniformly parabolic (Defini~

tion 1.1 )o
As in Section 2, we introduce the function

1
(3.2) Q(t,0,3,8) = exp { >  (16)* [ ay(y,plab,
Ikl =2b 7

defined in the set A3 = {(t,'c,y,ﬁ): ¥, 6 eRn, Ostét4T}.
Clearly Q € C(A3,L°.(9.)) and there exists L. -derivative
Q € C(AB,L.,.(Q.)) given by formula

(3.3) Q(t,5,3,6) = [Z (iﬁ)kak(y,b)]Q(t,T,y,6).
Ik =2b

6) I.e. for any te < 0,T> we have

+At )~ =
A%Eg "ak(y,t At) ak(y,t)"m o,
where the convergence is uniform with respect to 3y e RY.
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12 H.Ugowski

For the function (3.2) remain valid the estimates (2.9),
(2.10) and (2.16). The function

(3.4) Go(x,t,y,z) = (2m)™® f ei(x’d)Q(t,Z,y,G)dﬁ
B2
is Le-continuous in 4 (defined by (2.2)). Moreover, there

exist Le-derivatives DIG , DyG_ € C(A ,Lee(R)), m & Ny,

given by formulas

(2%)"“[ (i5)mei(x’5)Q‘(t,t,y,ﬁ)dﬁ,
Rn

(3.5) D6 (x,t,3,7)

(2n)7 [ ot (x:Blq (¢,0,5,6)06.
Rn

(3.6) D6 (x,t,y,7)

We have the estimates

b+ jm , ’
(3.7) || 286, (x,,3,7) | <] m])(t-2) L [- Dl t)b} ,

r '
\ 25" 5'1x1°

Now let us consider the difference

AQ = G(t,7,7,6+19)-G(t,2,2,6+i9), y,2,6, feR", OgT<ts<T.

In view of assumptions (3.I) and (3.III), we have

t
(3,90 Re > (1a)* [ayly,plep < (-8 161% +a, [5]7°) (¢-2)
fkl =2b (4

for s = 6+if, 7,6,7 € R®, 0 <T<t<T (6, € (0,0), o, > 0).
sssumption (3.,II) implies that
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Random linear parabolic equation 13

t
(3.10) > (sl [ [ayly,p)-ay(z, Bl e8] <
tkl =2b 4

. 2b 2b &
< (18] 22+ |31%°) [ 2| *(t-2).

It follows from (3.9), (3.10) and (2.25) that

| AQlao < 1y fy=2]% exp [(~5] [6[P+ay 417" (- 0)]

where 0< 5{< 5,5 aé> o . Hence, arguing as in the proof of
(2.3), we obtain the estimate

(3.11) "DﬁGo(x,t,y,T) - D;':Go(,x,t,z,z)”°° <
_n+!m| 5'|x b’
o
<il'(|m|))y-2] (t-7) exp | - —2—_1TF .

e introduce the following assumption,

(3.IV) The random functicn f € C(5,I.(R)), 1<cgoo,
is L_-bounded and satisfies for x € K® a local Hdlder con-
dition in the L -sense with exponent o« , uniform with respect
to t €<0,T> ,‘ i.e. for any bounded domain . C R" there
is a constant > 0 such that

(3.12) | £lx,00-20x' 8], < ulx='|", x,% e o, t € <O,T>.

Theorem 3.1. 1If assumptions (3.I)-(3.IV) are
satisfied, then the function
%

(3.13) B(xyt) = [ f 6 (x=8,4,8, 0f(5, viagar

o KR

has the following properties:
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14 H.Ugowski

19 it is Lq-continuous in Ho and

(3.14) (i "W(x,t)uq =0

uniformly with respect to x € 4 (A CR® being a bounded
domain);

2° there exist L,-derivates DX € C(Hy, L, (2)), 1ml ¢2b=1,
defined by formula

t
(3.15)  of(x,t) = [ [ ol (x-§,t,8,0)e(5,0)d8dc;
o RR
3% there exist Lq-derivates D?W, D,¥ € C(Ho,Lq(Q)),
[m| = 2b, given by formulas

(3.16)  DZ(x,t) f dr f DRG, (x-§,,%, )£ (}, v)ak,

t
(3.17) DyW(x,t) = ! dr f DtGO(x~§,t,§,z)f(§,t)d§ + £(x,t).
) RR

Proof . The assertions 1° and 2° follow from (3.7)
and Remark 4.9 of [4} In order to prove 3° we introduce the
function

(3.18) J(x,,7) =j G, (x~F,t,§, O)E(F, v)at.
.
Taking into considerations the estimate (3.7) with |m]| =
and Lemmas 4.6 and 4.7 of [4], we find that J € C(A2,Lq(9)),
A, being defined by (2.12). The estimates (3.7), (3.8) and

Lemma 4.8 of [4] imply the existence of Lq—derivativea DmJ,
DiJ € C(A2,L (2)) given by formulas

(3.19) D(x,t,7) = [ 0BG, (x-F,8,8, OIE(E, T)at,
R® |
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Random linear parabolic equation 15

(3.20) Dy (xyt, 1) = [ Dy0 (x-f,8,8, )25, 2idg.
g
Tirite the function (3.19) with |m| = 2b in the form

(3.21) DRI (x,%,7) = I, + I, + I,

where

-
t

{ o (x-§,%,8,7) [£(§,7)-f(x, )],
Ky

-
f

f{flD;‘Go(x-f,t,f,'t)[f(g,t)-f(x.z)]df,
!

I, = £(x,1) f DR, (x-§,t,%,T)dE
Rn
and K,, Ky are defined by (2.20).

Let A C R® be an arbitrary bounded domain, The estimate
(3.7) and the ineqguality (3.12) yield

a
(3.22) "11"q < Ms(t -7) *2n , X6 A, 0gT<t<T,

The Lq-boundedness of f and the estimate (3.7) imply that

1

3%

(3.23) ||12||q sMs(t-t)- in A

2.

Applying Green'’s theorem for functions with values in Banach
space and the estimate (3.7), we obtain

(3.24) [ ¥, (x-{,t,5,z)af = DI f D, G (x~¢,t,5,z)df =
RB RR J

= -D;" f ’DSJGO(X-f,t,y,t)dg = 0,

n
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16 H,Ugowski

WheI‘e m’= (ml,ouo’ml), m = (m ,.--,m )’ ml #m (k#j))
1 n m' 1 m n k k
ms = mj-1, 1<J,k¢n and D, D, are defined by (1.1). So

we have
I, = £x,7) | [Dgco(x-g,t,g,z) - Dgeo(x-g,t,y,z)|7=x]dg,
Rn

which implies, by (3.11), the inequality

o

(3.25) "13“q < M7(t-z1-1+55 in A,

It follows from relations (3,21)-(3.23) and (3.25) that

a
-1+

(3.26) ngJm,erQSI%tuz) 26 cea, 0OgT<t<T,
M,> O being a constant depending on the domain 4. Hence,
by Remark 4.9 of [4], there exist Lq-derivatives D;'W €
€ C(Ho,Lq(ﬂ)) given by formula

t
(3.27) D% (x,t) = f DB (x,t,2)d7, |a] = 2b,

)

which implies (3.16).
In order to prove {3.17) observe that

DIx,t,e) = S [ [ep(6, me(y, 0]00, (x-5,1,§, 2)ag.
im| =2b RR

Since the functions a (§,?)£(§,?), |m| = 2b, satisfy assump-
tion (3.IV), therefore it follows from the proof of (3.26)
that

~1+5%
(3.28) | Dydlx,5, 0], <My(t-0) 2, xen, O<T<taT
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Hence, by Remark 4.9 of [4], the integral
1
(3.29) [ pystx,t,viar
o)
is uniformly L,-convergent for x € 4, t € < h,,T> (hO e (0,7))
and consequentiy the function {(3.29) is LG-continuous in I
Now let us introduce the function

o

t-h
Ty(x,t) = f J(x,t,7)d%, x € 4, t € <h,T> (0 < h <7Dl
0

There exists Lq—derivative

t-h
DyFp (x,t) = [ Dydlx,t,vde + 3(x,t,t-hi.
0
Take an arbitrary sequence {hml, 0<hy<hy (ho e (0,7)
being an arbitrary fixed number) such that hm—--ho as m -=oo,

Then the sequence
t-hm

f D,J(x,t,7)dr

0
is uniformly L_ ~convergent to the integral (3.29) for =x ¢ 4,
te <« ho,T> « Further we have

(3.30) J(x,t,8-n ) - £lx,t) = I3 + I, + Iy + 1;,

where

I, = f G, (x=£,t,%,t-h) [£(§,4-h)) - £(x,8-n )] dt,
K
]

I, = f’ G, (x-§,8,8 =) [£(3,4-by) - £(x,t-ny)] d},
K
:
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18 H.Ugowski

I,3 = f(x,t-hm) [j Go(x'fstvgvt"hm)dg - 1]9
Rn

!

I = flx,t=h ) - £lx,t)

and K,, K4 are defined by (2,20). Evaluating the norms
"I:]."q {(j=1,2) 1ike as "Ij"q (see (3.22) and (3.23)]),we
conclude that for j = 1,2

(3.31) lim "1'3"q =0

m—.oo

uniformly with respect to x e 4, t € (ho,T) +« Obviously
(3.31) holds for j = 4, too. The validity of (3.31) for
j = 3 1is a consequence of the relation

(3.32) m%ifolﬁﬁ Gy (x=%,t,§,8=ny)af - 1] = 07!,
So we have

lim "J(x,t,t-hm) - f(x,t)”q =0

M ~=oo
uniformly with respect to x € A, te€ < ho,T> and consequent-
ly the sequence thh (x,t)} is uniformly Lq-convergent to
m
the function

t
[ ryaix,t, 060 + 2(x, 60, x e 4, te<h,T>.
0

i This relation can be proved by the similar considera-
tions as those for relations (2.24), (2.26) end (2.27).
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Hence, in virtue of the uniform L _-convergence of the sequen-
ce {wh (x,t)} to the function W(x,t) in 4 x< h ,T >, the-
m

re exists Lq-derivative

8
(3.33) DyW(x,t) = f DI (x,t,7)d7 + £(x,t), (x,t)eH,,
(o]

which is Lq-continuous in H,. This completes the proof.

4, A fundamental solution

In this section we discuss the existence of a fundamental
solution of equation (0.1). The following assumption will be
additionally needed.

(4.I) The coefficients a,, |k|<2b-1 satisfy assumptions
(3.1) and (3.II), where the norm ||| in (3.,II) is replaced
By Nellyy (1<p <eels

Theorem 4.1, If assumptions (3.I)-(3.III) and
(4.I) are fulfilled, then there exists a complex random func-
tion Z(x,t,€,7) such that:

1° it has the properties 1°, 2° for |m|<2b-1 and 5°
from Theorem 2.1;

2% there exist L_-derivatives D:Z, D,Z € C(AO,LP(Q)),
| m| = 2b, which fulfil the inequalities

bl
(4.1) ||D$Z|P’ IDtZ”ps B(t"f)_z_g—1 exp | - 5%!52—)%_ .

3° 72(x,t,%,7) has the property 4° from Theorem 2.1 with
respect to the equation (0.1).

The above-mentioned function Z(x,t,f,t) is called a fun~-
damental solution of equation (0.1).

Proof. We shall prove that

(4.2)  2(x,%,§,7) = G (x=§,t,%,2) +
t
* j f 6o (x=3,t,5,p)¢(5,B,§,7)dydps
r r"
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where G, is defined by (3.4) and ¢ is a solution of the
integral equation

t
(4.3) olx,8,8,0) =K(x,t,8,2) + f [ K(x,t,7,p)9(7,8,F,v)dydp
r R?

with

(404) K(x’tgggz) = E D:Go(x-f,t,g,t)-DtGo(X-f,t,f,?).
Ikl €£2b

We have

K(x,,8,2) = S 2 [a(xt) - a(§, 0] pkog (xm, 8,8, 0) +
|k|=2b

+ EE ak(x,t)DgGo(x-S,t,g,t).
[k|<2b-1
This implies, by (3.7) and (3.II), the estimate

_n+2b- , Y
(4.5) x(x,t,%,2) o € C4(t-2) 2> oxp [_. 5')x-¢] }_

(t-7)°"

Now consider the seriles

(4.6) ‘f’(x’tQS’z) = i Km(th’g’t)’

m=1

where

K1 (x,t.E.T) = K(X,t,E,Z),
%
Kpeq (Xsts8s ) =.[j' K(x,t,5,B)K (7,855, 1)4ydB, m=1,2,...
¢t R
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For the norms IKmI°° one can obtain the estimates analogous
to those of [3] (pe254). Hence, it follows the uniform L eo-con-
vergence of the series (4.6) for x,§{ € R®, t-t> h (he (0,T)
being a constant). Since K, € C(Ao,Loo(Q)), therefore also
- C(AO,L;°(Q)). Moreover, we have

b= ' b
_a+gb-a e I_ 5, | x|
xp | - _—Z——_T;

(4.7) [ otx,t,5,2) || o <Cy(t-2) T

Taking into account the estimates of the norms ” K, "n,
(4.5), (4.,7) and the theorem on termwise integration of
functional series,one can find that the function (4.6) is a
solution of the equation (4.3).

Now we shall consider the difference

(4.8) Ag = @(x,t,5,7) - plx',t,§,7)

under the condition

(4.9) Ix - x} %P ¢ t-r.

For this purpose we first evaluate the differsnce

(4.10) AKX = Kx,t,3, 1) = K(x',t,§,7) = Fi+Fp+F34F,,
where
Py = > [a(x,t)-a (x',¢)]D56 (x-§,t,¥,7),
il =2b
F, = % [y (X, 8) -2, (¥, 1)] [DI;GO(x-f,t,g,'Z) -

X6 (x'=1,%,%, 7],
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i

= Ryixiti-a(x', t] Do, (x-8,t,3,7),

Ikl < 20=1

i
KN
i}

ak(x',t)[DEGO(x-E,t,E,Z)-DEGO(X'—i,t,E,ti].
k] ¢2b-1

Using Lemma 1,2, the estimate (3.7) and the condition (4.9),
we get for some pe <-1,1> the inequality

(4.11) _"DﬁGo(x-g,t,g,z)-Dgao(x'-f,t,f,z)”,a <

n+ [k +1 ;
- b
<clle]) x=| (t-7) 2b 8|x—§+9(x—%”)| <
(t-7)
-rilﬁj.ﬂ_ sf'x_glbl
<o’ (k[ )x-x] (t-1) 2°  exp -%—T)W— ,

where C(|k|), C'(|k|) are positive constants depending on
x| and ﬁé € (0, 8'). Hence, by assumption (3.II), we get

/

_n+2b-p AT

s 4
n 1 T 5n
(4.12) |F2] & C3lx==x'] (t-t) 2b  exp grraen:a

where 0<a, <0, &, = 0L~ 0y, O < 53<5é. Similarly, the
estimates (4.11), (3.7) and assumptions (3.II}, (4.I) imply
the estimates of the norms “F3" , "Fj"°° (j=1,4) of the
form (4.12). Therefore, by (4.10), we obtain, under the con-
dition {(4.9), the estimate

n+2b--a2 b
= * -~ 51 had
(4.13]) "AK"p < C4|x-x’| (t-17) exp |- —L(msrr

In view of the estimates (4.7), (4.12) and by Lemma 7
([3]s p.253),the function
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{
W(x,t,§,2) = ” K(xst,3,ple(7,p.g, v)dydp

r R®
satisfies, under the conditidn (4.9}, the inequality of the
form (4.13) with C, and 53 replaced by some constants
Cg> O and 54 € (0,6'3'), respectively. Hence, if (4.9)
holds, then with the aid of (4.3), (4.8) and {4.13) we con-
clude that for the norm "Z&q"p remains valid the estimate
(4.13) with C, and §; replaced by C.> O and 5;, res-

4 3
pectively,
Now we shall consider the function
t
(4.14)  Vix,t,8,0 = [ [ e (x-3,%,5,8)¢(3.8.5, v)ayap.
7 RP

According to the estimates (3.7) and (4.7), Lemma 7 of [3]
and Remark 4,9 of [4], we have Ve C(4 ,Lw(Q)) and for
[m| ¢ 2b-1 there exist L..-derivatives DIV & C(A ,L(8))
given by formula

t

(4.15)  DIV(x,t,§,7) = ff DQGo(x-y,t,y,m(p(y,ﬁ,s,z)dydﬂ.
¢ R

Moreover, these derivatives satisfy the inequalities

- %
arip=x 55 Jx-§

(4.16) “Di?(x.t,E,T)“u,$C7(t'T) 8xp | - (t-1)

In order +to prove the existence of derivatives ng,
|m| = 2b, and DV we introduce the function

(4.17) J(x,t,8,§,7) =f G, (x-y,t,7.f)¢(3,p,¥, vldy

Rn
in the set A, = {(x,8,6,§,¥)ix, { ¢ BY, 0¢7<p<t<T}. Like
as for the function (4.14) we have J € C(A4,Loo(9)) and
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there exist Le..-derivatives D?J € C(A4,L°°(QJ} defined by
formula

(4.18)  DR3(x,8,p,8,0) = [ DRG,(x-3,%,5,8)¢(3,B,%, D)ay.
-

R
Jloreover, for |m| = 2b holds the inequality
0 -1+§°‘5 -%-—1 5'6|x-§| v’
(4.19) |‘DXJ““,4 Cs(ﬁ-Z) (t-17) e —'——7;:;55“

for x, e Rn, 0gr<t«T, t<ﬁ<£'§—fs t1.

In virtue of (4.19) and Remark 4.9 of [4],the function
¥
vy (x,t,8,0) = [ 30x,t,B,§,7idp
T
possesses L wo-derivatives ng1 € C(AO,Lw“Z)), || = 2%,
given by formule

t,

D$V1(X;t,§,f) = j DEJ(X’t’p)§’Z)dﬁ
4

and there is satisfied the inequality

/
n+2b=-a Sélx-flb

"D;"V,]"wgcg(t-'t}- 2 exp -_(—'l:_-—'t’)T

It remaeins to prove the existence of derivatives D$V2’
|m| = 2b, of the function

n
Vol t,§,T) = f 3(x,t,B,8,7)dp.
%
]

For this purpose let us denote

A ={(x,t,{5,‘§,z) : x,§eRY, 0¢T <t <T, %, <{b<t},

5
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(4.20) 34 = {3 : } { :;—;:lg-o > a}.g> n,

vm

Now we write the derivatives I, |m| = 2%, in ths zet sy

in the following form )
M. - - <

(4.21) Dyd = Jy +d, + Jy + 3y,

where

J,1 =j DEGO(K'J’tﬂ/;b)I:(f(:”p,gvz)

-

]

-
s~
Wy

-
<

=

o)

N
I

= [' DQGO(X-y,t,y,P)¢(3,ﬁ,E,z)dv.

Iy = -¢(x,p,t,7) f D x-J, 7y pid7,
'a
J4 = (X,ﬁ,g;f) f C (4” =7y5,7, f”"”
and a =p-¢, Inview of (3.24), ws have

7(3( ﬁ E f)f li x-y‘l 1»Jy b)"b G ( -ZY.T',Z-(??)

z=x]dy'

Hence, using estimates (3.11) and (4.7),it follows that

n+§§ -a -2 5 Ix-§|y
(4.22) ||d4||,,°<°1o(t"” (t-p} exp|- (t-!)b" .

The estimates (3.7) and (4.13) for ¢ imply, by Lemma 7 of
[3], the inequality

_n+2b-a 14l 5'|x_§|8
(0.23)  [3q]|, € Cppft=0) 2 (4-p) ﬁexp-—zt.—z)—@r
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Taking into account the estimates (3.7), (4.7) and the abo-
ve-mentioned Lemma 7 we find that

: =1+ =1 5. |x-¢ )
(4.24) |3, ] & Cyp(t-p) 2b(t ?) 25 exp |- _?'!;_)—lb__]
oo "'Z

k=2,3.

relations (4,21)-(4.24) immediately imply, for Im| = 2b, the
estimate

o 5'|x-§|b
2b 2b 9 .

So, by Remark 4.9 of [4], there exist Ly-derivatives DYV, €
€ C(AO,LP(Q)) given by formula

t
D$V2(X,t,§,'f) = f D;.:J(x,tvﬁyg!z’dﬁ

%

and there holds the estimate

_n+§g-a 5llx-§|b
(4.25) UD 2"p 14(t-7:) exp ——(T-?)-Fr

Thus we have proved the existence of L_-derivatives
DQV € C(AO,LD(Q)), Im| = 2b, defined by formula

(4.26) DRV (x,t,§,¢) = f D29 (x,t,p,%,v)dp.

T
iioreover, for ”Dm HP remains valid the estimate (4.25)
(with possibly other constants 014 and 5 ) and the integrel
(4.26) is uniformly Lp-convergent in the set

l‘\b = {(x,t,i,‘[) H x,ge ﬂn, t—'l'? 3n > 0}.
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Similarly to D;J there exists L -derivative D.J ¢
€ C(Ao,Lp(Q)). Observing that

DyI(x,%,8,%,0)= > | [ DR6 (x-3,t,3,8) [e,(3,0)¢(3,8,5,7]] &y
|m|=2b'Rn

and using the above considerations,we conclude the uniform
Lp-convergence of the integral

£
(4.27) f Dy (x,t,p,§,7)dp
4

in the set Ag. Moreover, for the norm "'“p of the inte-
gral (4.27} holds the estimate (4.25) in the set Age
Like in the proof of Theorem 3.1 we introduce the function

t-h
Vp(x,t,8,0) = [ 3(x,t,8,5,2)dp in Age
T+h

This function possesses L -derivative

t-h
DV, (%,8,8,7) = [ D.I(x,t,p,§,2)dp + d(x,t,t-0,%,7).
7+h

Take an arbitrary sequence hpty O < hm < h, tending to
zero as m-e-o, Then the sequénce

t-hm

[ patx,t,8%,7008
Z+hm

is uniformly Lp—convergent to the integral (4.27) in the set
hge e write the expression J(x,t,t-hm,i,r) - ¢plx,t,§,7)
in the form similar to (3.30) with K, and K; replaced

by &, and by (defined by (4.20)), respectively. Next,
using the estimates (3.7) (for |m| = 0J, (4.13) (for ¢ ),
(4.7) and relation (3.32),we #ind that
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1n 9 (=%, t-hp0 8, T = @ (x,8, 8,7}, = O

uniformly with respect to x, € A and t-T3> 3h (A C g™
being a bounded domain). From the above considerations it

follows the existence of Lp—derivative DV e C(AO,LP(Q)) gi~
ven by formula

t
(4028) DtV(x’tgggfl) = Zj: Dt‘] (x9t9p9§"c)dﬂ + ‘F(x,t’EQ'z)‘

'his implies the estimate of the form (4.25) for the norm
“DtV b So we have proved assertion 2°, assertion 3° follows
immediately from relations (4.28), (4.26), (4.17), (4.18]),
(4.14), {4.15) and (4.2)-(4.4).

It remains to prove the property 5% of Theorem 2,1 with
respect to the equation (0.1). For this purpose it suffices
to observe that

| 2,8, 0e(50dt = [ 6 (x-£,t,5, 2lg(Eias +
QR rP

+ [ vz, 5,8, Dal§ay
L]
and next to apply assertion 5° of Theorem 2.1 (for function

Z2(x,t,5,7) = Go(x-g,t,g,z)) and the estimate (4.16) with
Iml = O,

5. The Cauchy problem

In this section the fundamental solution Z(x,t,%,t) con-
structed in the previous section will be used in proving
of the existence of a solution of the Cauchy problem (0.2),
(0.3

"heorem 5.1. Let assumptions (3.1)-(3.1Iv},
(4.1) be satisfied and suppose that a function-g,eC(Rn,Lq(Q))

is L -bounded, where P p'1 + q'1 < 1. ‘then the iunction
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(5.1) u(x,t):f Z(x,t,§,0)a(§)d} - ff (x,t,§, 00}, t)didz
Rn

has the following properties:

1° u e C(H,L_(Q)) and for |k| ¢2b-1 there exist L -de=
rivatives DXu e C(H, Ly(R));

2° there exlst L, -derivatlves Diu, [kl = 2b and Liu
which are Lr-contlnuous in n

% u(x,t) is a solution of the problem (0.2), (0.3).

fFroof., The method of proving is similar to that
applied in the proof of Theorem 3.1 of [4]. in view of the
estimate (2.3) the function

(5.2) u, (x,t) =f Z(x,t,%,0)a(3 4}

Hn

is L -continuous in Age Using assertion 59 of ‘theorem 2,1

(with respect to the equation (U.1/j and setting additionally
(5.3) uq(x,0) = glxi, x ¢ g%,

we conclude that u, e Cim,L (R)/. =y (2.4) for |m|<20-1,
there exist Lq-derivatives D%u1 € C(no,Lq\Q); given by for-

mula

(5.4)  Dyu,(x,t) =f V9% (x,t,8,0i8(5)d}, |m| ¢ 20-1,

RI.l

Similarly, the estimates (4.1, imply the existence of br-de-

. . ..m . ; -
rivatives D u,, Louy € L(HQ,Lf(&I:, |m| = 2b, where L$u1
are defined by (5.4} and

(5.5) By (x,80 = [ Loaix,s,8,008(§)65.

w2
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vYeking into considerations formulas (5.2), (5.4), (5.5) and
assertion 3° of wheorem 4,1, we find that

(5.6 Lug(x,81 = 0, (x,%) € H_.

iiow let us denote

%
(5.7) u,(x,t) = ff 4(x,t, 8, TIE(E, TIdYdT.

0 Rn
rhe estimate (2.,3) implies that u, € C(Ho,Lq(Q.// and

iim ”uz(x,t)"q = 0 uniformiy with respect to x e k™. Hence,
=0
setting aaditionally

(5.8) u,(x,0) =0, x¢ r?,

we conclude that u, € C(H,L, (Q/. By (2.3) with im| ¢ 2b-1,

'y s m - - . .
there exist Lq-derivatlves Dxu2 € C(nOJLq(QI) given by for-
mula

t
(5.9) D:uz(x,t) = f j Dizfx,t,g,z)f(i,t)d§ , I1m| £2b-1,
o pn

In order to show the sxistence of derivatives D:u2 for
im{ = 2b and Dtuz we write

(5.10) uy(x,t) = Wix,t) + W, (x,t),
where
1
(5.11) Wylx,t) = [ [ eg(x=f,1,8,0i8, (5, vagar,
0 Rn
%
(5.12) £q0x,%) =_“’ o(x,t,5, 1)2(F, Tiagar
0 Rn
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and W(x,t) is defined by (3.13). It results from (4.7) that
£, € C(H,Lq(ﬁ)). Taking into account (3.IV), {(4.7) and the
estimate

n+2b-a2 o N
& - " i -1_
o], ¢ ¢ -] Uiy 2 lexp l:_ MF] + exp [_ 5"|x ]

(t-1) (t-1)"

following from (4.7) and (4.13) (with K = ¢), we obtain
" %
”f1(x,t) - f1(x’,t)“r < ¢"|x-x' , X,x'6 A, t € <0,T>,

4 c R being any bounded domain,.
Hence, by (5.10), (5.11) and by Theorem 2,1, there exist

. . m - \ _ N
Lr-derlvatlves Dxu2’ Dtu2 € C(HO,LP(Q)), jmt = 2b, given by
formulas

(5.13) Duy = f ar | DG (x-§,t,§,2) [£(§, 008, (§,2)] a8,

(5.14) Dyu, o

R

ar f D4G, (x=§,t,%,2) [£(§,2)+£, (§, 1] a} +
R

+ £(x,8) + £1(x,t).

Combining (5.7), (5.9), (5.13), (5.14), (4.2)-(4.4) and (5.12)
we conclude that

(5615) Lu2(x,t) = -f(x,t), (x,t) € Ho;

Relations (506), (5015), (502), (507), (501)’ (503) and (5oBJ
immediately imply essertion 3%, 1his completes the proof.
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