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ON NULL GEODESIC COLLINEATION
IN CONFORMALLY 2-RECURRENT RIEMANNIAN MANIFOLDS

1. Introduction

4 non-flat n-dimensional (n > 2) Riemannian manifold is
said to be of recurrent curvature D1] (briefly, a recurrent
manifold) if its curvature tensor satisfies the condition

Byijr,1 = ©1%nigx

for some non-zero vector field c¢;, where the comma indica-
tes covariant differentiation with respect to the metric of
the manifold.

As a generalization of the concept of a recurrent mani-
fold, Lichnerowicz EO] initiated investigations of n~dimensio-
nal (n > 2) Riemannian manifolds whose curvature tensors
gatisfy relation of the form

Bpijk,1n = 31ofhijk®

Non~-flat manifolds of such type (i.e. satisfying the above
relation for some tensor aij) are called second order re~
current or, briefly, 2-recurrent manifolds. Roter proved [7]
that the recurrence tensor aij of a 2-recurrent manifold is
necessarily symmetric,

According to Adatl and liyazawa [1] an n-dimensional
(n> 3) Riemannian manifold is said to be conformally recur-
rent if its Weyl conformal curvature tensor
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h
h A h h R,. )
(1) ¢y = RhiJk - 55 (8 R0 ey R +OLR, s~ 6370 ¥

R h h
* Ta-t){n-2] Ok &1y = ¥y 8y

satisfies the relation

h h
(2) ®13k,1 = F1 C g

for some non-zero vector field {1.

In this paper we consider n-dimensional (n > 3) analytic
Riemannian manifolds M whose Weyl conformal curvature ten-
sor satisfies the condition

Ch

h
(3) 15%,1m = P1m © 13k

for some non-zero tensor field ¢,

The manifolds of this type are called conformally 2-re-
current,

We assume that

(4) Pim = Pm1s
(5) chijk #0 (for at least one point of M),

Grycak has proved [3] that every anelytic Riemannian manifold
of dimension n > 4 satisfles C 1k,1m = Chijk,ml if and
only if Rhijk,lm = Rhijk,ml'

It is immediate that every recurrent or 2-recurrent, as
well as every conformally recurrent Riemannian manifold satis-
fies the condition (3) and if the recurrence vector in (2) is
locslly a gradient then the 2-recurrence tensor in (3) is sym=-
metric,

According to Katzin and Levine, a vector field v on
a Riemannian manifold is said to be a null geodesic colline-
ation if

- 430 -



On null geodesic collineation 3

vagj - g™ 813 ,ps

where Q 1s a certain function, and Lv denotes the Lie de-
rivative with respect to v (for geometrical interpretation,
see [9]).

The purpose of this paper is to prove that null geodesic
collineations in enalytic conformally 2-recurrent Riemannian
manifolds satisfying (4), (5) are necessarily affine.

Throughout this paper, by a manifold we shall mean a con-
nected and paracompact Hausdorff manifold. The Riemannian
metrics involved need not be positive definite.

2. Preliminary results

We shall use two theoreme due to Grycak,

Theorem A, ([4], Theorem 1), Let M be an
n~dimensional (n > 3) Riemannian manifold (not necessarily of
definite metric). If Bhijk is a generalized curvature ten-
sor on M satisfying

Bpijk,1m = Bpijk,m1?
and Pi is a vector field on M having the property
Ve Biji = P 845 = Py 8By

for a suitably chosen vector field Vi then

1
Fn (Blijk - ala-17 5 (815 81y - &y 513?) =0y

_ rs _ij

where S = Brijs 4 g v,
Theorem B. ([5], Theorem 1). If By
generalized curvature tensor on a Riemannian manifold

(dim M = n > 3) sucn that

£3 e
@
m

Bpiji,1m = Batjx,mi
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and aij’ bij are cymmetric tensor fields satisfying

8i3,1m ~ 2i5,m1 = Pim 815 * Pjm 811 ~ P11 &jm ~ Pj1 &im

then

b S =
(blm “n g1m) (Bhijk = ATn=1T (8nk 8ij = Bhj gik?) =0,
] _ TS _p9 _ rs
yhere S =g = g Brpqs’ b = brs g .
Roter [8] proved that null geodesic collineations in gene-
ral Riemannian manifolds satisfy the following relations

T " r . T _
(6] apy Rpje + 8p5 Rppt + g gy = O
r _ T
(1) apy Ry =a, R,
(8) 8.4 = By 8ig + Ay Bpys

(9) aps 35k = 2ni ki = An,k 813 * A4,k Bhj = 4n,j Bik -

= A1,5 Bnk
where Ah = ghr Q s 85: =L &8s
o' Tij T v *ij
Furthermore Roter [8] has proved the following
Theorem C. IfanARS -space with Rij #0 ad-
mits & null geodesic collineation, them this collineation is
necessarily an affine one.
(A manifold is called almost Ricci-symmetric space or, brie-
fly, ARSn-space if its Ricci tensor satisfies the relation
Rij,k = Rik’j)o .
Lemma 1 If an analytic non-conformally flat Rie-
mannian manifold admits a null geodesic collineation and con~-
h _ nh -
dition C 1jk,lm = c ijk,ml holds, then the vector Aj sa
tisfies the relations
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(10) Al,m = % 81m’
(11) By =0,
(12) A, RF . =0, A RF =0,
(13) Ap RUygpy = - : Ryyjpr Ap Rg,1 = - 2 Rypr
(14) A Ry gie,p = - 22 Ryjgier A7 Ry p = - 22 Ryper
ATR = - B g, 4T Chijk,r = ~ 2 Chijke
rs

where B = Ar,s g .

Proof, Applying Theorem B for bij = Ai 3
: 37
a;: = ngij’ Byijk = chijk (the hypothesis are satisfied
in view of (9)), we obtain

B S -
(41 n = 7 81! (Chijk ~ ATn=17 (Bnk 815 = 8nj gik{) =0

and, since S = Crpqs g™ gP% = 0 and (5) holds, we have
(10).
Differentiating (10) covariantly, we have

B B, .
Ay,mk =~ 8im’ A1,xm = H 8lk

Making use of Riecl identity, we obtain

- r =1 -
Aymk = A1,em = = 1o 4r = 1 (Bx 81 = B,m 811!

whence

- o :
DAL R'ype = = By 8ip + B p 81k

Applying now Theorem A for v, = éﬁ-, Py = =By Bpigy =
’
= Cpijxe We obtain (11) and immediately (using the last equa-
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tion) (12). Differentiating (12) covariantly and substituting
(10) we easily obtain (13). Transvecting now the second Bian-
chi identity

Bpisk,1 * Bnixi,j * Bnizg,e = O

with Al and using (13), we immediately obtain (14)., This
completes the proof. ‘

Grycak has proved [5] that null geodesic collineations
in a Riemannian manifold satisfy the relation

r r r o
(15) 803 Chjk * ®py Cohit * ark Cohiy = Os

With help of this equation and Lemma 1, we prove the following
lemma.

Lemma 2, Every null geodesic collineation in con-
formally 2-recurrent Riemannian manifold with symmetric 2-re-
currence tensor satisfies the condition

(16) B [EgT (A 8yp = Ay &) — (B Ryp = 4y Rkh)] = 0,

Proof . Differentiating (15) twice covariantly and
using (10), (8) and (3), (15) we find

r r r
(17) 833 42 Chgie,m * 8im A2 C hjk,2 * 851 42 C hiki,m *
r r r
* 8im A Okl t k1 Ar Chij,m t Bkm Ar Chij,l t
*+ 45 (Cp50,m + Cmngk,2) + 435C1nki,m * Conks,1! *
B

*+ 8 (Copsym * Caniy,1) * 7 (811 Conjk * 8im Cinjk *

* 851 Conki *+ 8jm Cinkt * 8kl Cmniy * Gkm C1mij’ = O
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The contraction of this eccuation with gll gives

& i ,\I' 8 - Al S ; '(:\ -
AL Chsien*t8im 4 Crnr,s T 8km * C shr,s Y 4 Conjr,r t

= B(n-1)

sam,s ¥ T n Cmnjx = O

: S , _
+ Aj C xhm,s ~ Ay c~

This relation together with (14) and the eguation ([2], pa=-
ge 91)

} 1

S _n—3 -7 - - j
C%ijk,s = &< [(Rla,k Biy,3) = 2tn=ty (Rp 855 = R 5 gik']

leads immediately to the condition

,B(n=3) BeR(n-3)
hgk m *aln- 2) (gkm ih ~ &im kh *aln-17)(n- 2)(gkh.gjm -
n-3 n=3 N .
= 8km 8jn) * 45 52 Run n - Rumyn) = Ak 52 Ryn,nRy,n! +

_(_)_%_)_n- ___ll -
t 2n-17(n-27 *,m (hk Ehy ~ AJ ghk) ¥ thJ = 0.

It is easy to see that (1) and (13) give

r B B
A2 Chik,m = = 1 Cohjk ~ a(n=2) (8mk Bhj - 8mj Rnk!) +

B R :
* Ala-1)n-37 &mk 8nj ~ 8mj 8nx! - i (hy Bhj,m = %5 Rak,m!

Rm
* Ta=13 (037 (Ax Bny = 45 pyle
The last two equations lead to the relation
3B 3B BR
= Canjk = A(a-27 (8mk Bhj = &mj th) - E(A=1115=27 8nj &nx ~

= 8y ghj)'+““?T(A Rpk,m™x Bunj, m)*“ﬁTh o7(Ay Bpy=by Bpy) +

-3
+ (A RBypp = 45 Ryp py
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Transvecting now this equation with A® and using (1), (12),
(13) and (14), we obtain (16).

3. Main result
First we prove two lemmas., Using (1) and (12) we find

T B R
B A Chjx = n2 [H:T (A eyy = Ay eyc) = (A Rpy = 4y thﬂ‘

This relation together with (16) gives

r -—
B Ar C hik = 0.

Differentiating this equation twice covariantly and using
(10), (11), (3) and the above relation, we obtain

(18) B{C1pik,m * Conjk,1) = 0

Suppose that B # 0 (B = const). Then, differentiating the
equation

Cihjr,m * Cmngk,1 = ©

and substituting (3), we have

?mp clhjk + ?lp thjk =0
which, because of ?mp = ?pm’ evidently implies Clhjk = 0.
This result, together with (5) leads to a contradition. The~
refore, equation (18) implies B = O,

Yle have thus proved the following

Lemma 3. Every null geodesic collineation in a
conformally 2-recurrent Riemannian menifold with symmetric
2-recurrence tensor satisfies the following condition:

(19) B=A s _ o.
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Since B = 0, equation (17) can be written in the form
r r r Ir
811 A2 C hik,m* 8im Ar C hik,1* 831 Ar C hki,n* 8jm A Ch,at
r r
* 81 82 Chigm * Bk A Chig,1 * A1 Cmyk,m + Congi,1! ¢

+ 45(Cyps m * Conkes, 1) * AelConig,m + Canig,1) = O
Differentiating the last equation covariantly and using (3)
and the equation Ar 1= 0, we have
1
fop T1ingk * P1p Timngk = O»

where
r r r
(200 Tyjpgp = 83388 hyk * 8318:C nkt * B1kArC hig *

+ 430 h3x * 43%nkt * AcCiniye

Since this implies

Pmp = ¥pm

Pmp Tiingk = ©

and, since Pmp #0,

(21) Tilhjk = 0.

The contraction of (20) with gil gives Arcrhjk = 0,

The result can be formulated as follows:

Lemma 4, If a conformally 2-recurrent Riemannian
manifold with symmetric 2-recurrence tensor admits a null
geodeslic collineation, then the vector A‘_j satisfies condi-
tion

r -
(22) A CTpyx = O
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Now we can proceed to the main result of this paper.

Theorem, If an analytic non conformally flat con-
formaelly 2~recurrent Riemennian manifold with P1m = Pm1 ad-
mits a null geodesic collineation, then this collineation is
affine,

Proof. Going to prove that the parallel vector
field Ai vanishes, we assume on the contrary that Ai #0
everywhere. Equations (20), (21) and (22) imply

BiCingx * A5%1nki * AkCinsy = O-

Transvecting this egquation with Ai, we obtain ArArClhjk=0
and, because of (5),

(23) ALY = 0.

Relation (21) leads to the formula

(24) -t (A8 = AsByp) = (ARyp = AsRyp) = 0

k

whence, transvecting this with A and making use of (23)

and (12), we have

R A, A

jhe=0

which, by our assumption, implies

(25) R=0

It follows from (24) and (25) that

(26) ARsp = ARypo

This implies, by an elementary algebraic argument,

(27) Rij =€ h; Aj,
where e is an analytic function on 1.
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1t Rij = 0, then Chijk = Rhijk and our theorem follows
immediately from [6]. In the remaining case, we have e £ 0
on some open subset V,
Equation (27) immediately implies

(28) Rij,k = ckRij'

where ¢, = e k/e.
Relation (7) yields now

with

r
(29) Wy =8 A,

whence LI SAi for some function S. Therefors
r -
(30) ay R j = SRij

and, because of (25)

s
(31) arsR = 0,

Relation (9), equation Ai 3= © and Ricci identity give
?

r r
(32) 8B 14p * 24pR yjp = O
Contracting the last eguation with gkm and using (30), we
obtain
Tr s
(33) apgR 13" = SByye

It follows easily from (1), (30), (31) and (25) that

r S 1 \
(34) 2nsC 13" = 7oz (nS - alRy 4,

rs

r =
where a 8,8 e
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Differentiating (29) and using (8) and (23) we have ’wi 1
1
= AjAj. On the other hand, from wy = SA; and 4; ;=0
we have w1 1= S 1 i Comparing these equations, we obtain
4 s

(35) Al = S’lo

Differentiating (34) covariantly and using (35), (28), (8),
(9), (22), (34) and relation Ay g =0, we find

2oz PR 14 = (Bgop + ApogIRyy + logop + of m’ 7-7 Ry

which leads to

(36) Epyy = (n=2) (Bj0p + Apeq) + Ebyy,

where E = nS-a, blm = CqCp + °1,m‘
Relation Rij,lm = blmRij implies

Eb!
- —im - -
ECs gk, 1m = *Rnijk,1m ~ B2 ~ '813Rnk ~ 1iRhyt SRy ~ EnyRux)e

On the other hand eguations (36) and (2) imply

EChsgx,1m= (n=2) (Ay0 44107 )C)y 4o + BDY Ry 5y '_—__(513th

= 84fny + B8Ry ~ BpyRay)-

Comparing these relations and using (1) and (36), we obtain
(37) -BRpy g3, 1m = BP10fna gk = 42%0+4nC1) (81 5Rhk = 843 Pny +
+ 8pyRsy = &pyRyyle

Differentiating (32) twice covariantly and using (8), (9),
(37), (32) and (30), we have
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(A1ep + Ap°1”dkm31;1 + gy = 43 4Rp - dgRyp) =
= B(ARyi3m o+ AcRpsyn 1 * A4Ripyn,p * 41Rpkgm, 1!
where dij = aij - Sgij’
This equation can be written in the form
cp(gkmAIRia + 4, Alej - dij 1Byem dijlRim) +
+ cl(dkmA Rij + A3y Ry = 448 Ry - dijpRim) =
= B(ARy 3 4m,p * ABpijm,1 * A5R1kgm,p * A1Bpkjn,1)

and after substitution of (26), in the form

Ai[cp(dkmnlj - dijlm) + cl(dkapj - dijpm) - E(Rpm,1 +
* Biygm,p’] =

) = E(Ryy4p,1 +

= -Ak[c (a; R 13 dinlm) + cl(dimRpj - 43Ry
This. equation we can shortly write as follows

AsPokm1y = = AePpimlj

whence, by a standard calculation, we have

AiPpkmlj = 0.
Our assumption implies thus

= *®oicsn,1 * Prigm,p!-
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ki

Contracting now (28) with g and using (25) and the well
1

I‘ — —
known relation R ,jv =72 R'j, we obtain

(39) chI'j = Oo

By contraction of (38) with glp and substitution of (39),
we have

r -—
(40) ER kjm,> = 0.

If E =0, equation E 5= (n-2)Aj implies 4y = O,
?

J = - r
If R kjm,r = 0, we use well~known relation R Kjm,r

= Rkj n " ka j and apply Theorem C, Hence, in both cases

4
A3 = O, This contradition to our assumption shows our assert-
ion,.
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