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ON NULL GEODESIC COLLINEATION 
IN CONFORMALLY 2-RECURRENT RIEMANNIAN MANIFOLDS 

1. Introdaction 
A non-flat n-dimensional (n > 2) Riemannian manifold is 

said to be of recurrent curvature [11] (briefly, a recurrent 
manifold) if its curvature tensor satisfies the condition 

Rhijk,l = clRhi;)k 

for some non-zero vector field c^, where the comma indica-
tes covariant differentiation with respect to the metric of 
the manifold. 

As a generalization of the concept of a recurrent mani-
fold, Lichnerowioz [ioj initiated investigations of n-dimensio-
nal (n > 2) Riemannian manifolds whose curvature tensors 
satisfy relation of the form 

Rhijk,lm = almPhijk* 

Non-flat manifolds of such type (i.e. satisfying the above 
relation for some tensor a^^) are called second order re-
current or, briefly, 2-recurrent manifolds. Roter proved [7] 
that the recurrence tensor a ^ of a 2-recurrent manifold is 
necessarily symmetric. 

According to Adati and Miyazawa [1] an n-dimensional 
(n > 3) Riemannian manifold is said to be conformally recur-
rent if its Weyl conformal curvature tensor 
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2 M.Hotloé 

<1 > c hi J k - - ¿ 2 + 

+ (n-1)fn-2) {5k gij - 5d 6ik} 

satisfies the relation 

for some non-zero vector field jf̂ . 
In this paper we consider n-dimensional (n > 3) analytic 

Riemannian manifolds M whose Weyl conformai curvature ten-
sor satisfies the condition 

(3> ^^ijk,lm = fi» C\;)k' 

for some non-zero tensor field <p1m« 
The manifolds of this type are called conformally 2-re-

current. 
We assume that 

{ 4 ) flm" fml.' 

(5) ^ijk ^ 0 ^ f o r a t l a a s t 0118 o f M)« 

Grycak has proved [3̂  that every analytic Riemannian manifold 
of dimension n > 4 satisfies C*1, .. , = C*1. .. if and . h ijk.lm i;jk,ml 
only if R * . ^ ^ = 

It is immediate that every recurrent or 2-recurrent, as 
well as every conformally recurrent Riemannian manifold satis-
fies the condition (3) and if the recurrence vector in (2) is 
locally a gradient then the 2-recurrence tensor in (3) is sym-
metric. 

According to Katzin and Levine, a vector field v on 
a Riemannian manifold is said to be a null geodesic colline-
ation if 
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On null geodesic col l ineation 

V i a = g h r g i 3 

where Q i s a certain function, and Ly denotes the Lie de-
r ivat ive with respect to v (for geometrical interpretat ion, 
see [9 ] ) . 

The purpose of this paper i s to prove that nul l geodesic 
coll ineations in analyt ic conformally 2-recurrent Riemannian 
manifolds "satisfying (4) , (5) are necessari ly a f f ine . 

Throughout this paper, by a manifold we sha l l mean a con-
nected and paracompact Hausdorff manifold. The Riemannian 
metrics involved need not be positive def in i t e . 

2. Preliminary resu l t s 
We sha l l use two theorems due to Grycak. 
T h e o r e m A. ([4]» Theorem 1). Let M be an 

n-dimensional (n > 3) Riemannian manifold (not necessari ly of 
def ini te metric). If B^ijk a 6 e n e r a H Z 0 d curvature ten-
sor on M sa t i s fy ing 

Bhijk, lm = Bhi jk ,ml ' 

and P̂  i s a vector f i e ld on M having the property 

v r ^ i j k = Pk g i j " P j e ik» 

for a suitably chosen vector f i e l d v^, then 

ph ( B l i dk " nTnirT S ( g i j 6 l k " & ik S l j } ) = 

where S = B r i j a g r s g i ; i . 
T h e o r e m 3. ( [5 ] , Theorem 1). If i s a 

generalized curvature tensor on a Riemannian manifold 25 
(dim M = n ^ 3) sucn that 

Bhijk, lm = Bhijk,ml• 
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4 M.Hotlos 

and a^, b ^ are symmetric tensor fields satisfying 

aij,1m " aij,ml = bim glj + bjm «11 ~ bil gjm " bjl gim 

then 

(blm ~ n glm) (Bhijk ~ n{n-1) (ghk gij " ghj Sik)) = 

where S = g r s gpq B , b = b grs. 6 6 rpqs' rs 6 ' 
Roter [8j proved that null geodesic collineations in gene-

ral Riemannian manifolds satisfy the following relations 

( 6 ) ari Rrhjk + arj ^hki + ark ®"hij = 

(7) a p i R r
k = a p k R ^ , 

( 8 ) ahi,j = Ah + Ai ghd' 

ahi,jk " ahi,kj = Ah,k sij + Ai,k ghj " Ah,j sik " 

" Ai,d ghk' 

where Ah = g ^ Q ^ , a ^ = Ly g... 
Furthermore Roter [§] has proved the following 
T h e o r e m C. If an ARSn-space with Ri;. ^ 0 ad-

mits a null geodesic collineation, then this collineation is 
necessarily an affine one. 
(A manifold is called almost Ricci-symmetric space or, brie-
fly, ARSQ-space if its Ricci tensor satisfies the relation 
Rij,k = ^ k , ^ ' 

L d m m a 1. If an analytic non-conformally flat Rie-
mannian manifold admits a null geodesic collineation and con-L L. 

dition c i-jfc = c ijk ml holds, 'then the vector A^ sa-
tisfies the relations 
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On nul l geodesic col l ineation 5 

( 1 0 ) A l ,m = I S l m , 

(11) B ) k = 0, 

(12) Ap R r
l m k = 0, Ap R r

k = 0, 

(13) Ap R r
i j k T l = - £ R l i j k ' A r R p k , l = " n R l k ' 

(14) A r H h i j k f r = - i t R h i j k ' A * Ehk,r = ' ^T R hk ' 

A ,r ~ n ' h i j k , r ~ n °h i jk ' 

r »g 
where B = A_ _ g . 

r , s 
P r o o f . Applying Theorem B for b ^ = A^ 

a i ;. = LyS^j» B h i j k = Chi^k hypothesis a r e sa t i s f ied 
i n view of (9)), we obtain 

( A l ,m " i S l m ) ( C h i ; j k - (g h k - g h j g l k ) ) = 0 

and, since S = C „_ g r s gp<5 = 0 and (5) holds, we have rpqs 
(10). 

Differentiat ing (10) covariantly, we have 

B , k . B,m 
l,mk = n 6 lm ' A l,km = n g l k * 

Making use of R icc i identity, we obtain 

Al,mk " Al,km = " ^ lmk A r = H { B , k Sim - B , m g l k ) 

whence 

n A r ^ l m k " - B , k g lm + B,m «Ik* 
A 

Applying now Theorem A for v
r = ^ ' Pk = " B k ' B h i j k = 

= w e obtain (11) and immediately (using the last equa-
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6 M.Hotlol 

t ion) (12). Differentiating (12) covariantly and substituting 
(10) we eas i l y obtain (13). Transvecting now the second Bian-
chi identi ty 

R h i j k , l + Rhikl ,3 + R h i l j , k = 0 

with A"1" and using (13), we immediately obtain (14). This 
completes the proof. 

Grycak has proved [5J that nul l geodesic coll ineations 
in a Riemannian manifold sa t i s f y the re lat ion 

( 1 5 ) a r i C\dk + a r j ° rhki + ark ^ h i j = 

With help of th is equation and Lemma 1, we prove the following 
lemma. 

L e m m a 2. Every nul l geodesic col l ineation in con-
formally 2-recurrent Riemannian manifold with symmetric 2-re-
currence tensor s a t i s f i e s the condition 

<16) B [i=T {Ak e 3 h - 6 k h ) - (Ak R ^ - Aj R k h ) ] = 0. 

P r o o f . Differentiating (15) twice covariantly and 
using (10), (8) and (3), (15) we find 

(17) g n Ap C r h j k > m + g.ffl Ap C r h ; j k t l + g j l Ap C r h k i i m + 

1» r r 
+ 6jm Ar C h k i , l + s k l Ar C hi j fm + gkm Ar C h i j . l + 

+ A i ( C lh jk ,m + + V C l h k i , m + ^ k i . l * + 

+ Ak ( C lh i j ,m + C mhi j , l ) + n ( e i l Cmhjk + 6im C lh jk + 

+ 6 j l Cmhki + 6jm C lhki + g k l Cmhij + skm C l h i j J = 
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Cn nu l l geodesic co l l i n e a t i on 

The contract ion of th i s equation with g1"*" g ives 

X* I* S S X1 
n Ar C h,jk,m + ®jm A C khr , s " Bkm " C j h r , s + Cnihjk,r + 

+ À r a a rB 4- ) r - n + L khm,3 Ak u jhm,s + n umhjk " u ' 

This r e l a t i o n together with (14) and the equation ( [ 2 ] , pa-
ge 91) 

i j , k - R i k , j ) - 2 i h n ( R , k ê i j - g i k ; ] 
c s n-3 

i j k , s n-2 

leads immediately to the condit ion 

n Ar ^ h j k . m + f t e f } (skm R j h ~ Sjm Rkh} + n?n-1°(n-2) ( gkh S j 

- gkm «Jh> + A. (Rkh>m - R k m ) h ) - Ak ^ ( H ^ - R j ^ ) + 

+ 2 (n - ? ) ?n -2 ) R,m (Ak g h j " A j ghk> + C ^ - k = 0. 

I t i s easy to see that (1) and (13) g ive 

I* B B 
A r C hjk.m = " n Cmhjk ' n(n-2) (gmk R h j ~ 6mj Rhk} + 

BR 1 
+ n(n-1 J n-2) (smk 6 h j ~ gmj «hk ' " n^2 ( Ak Rhj,m " ^ . m 1 + 

R 

+ (r i -1)(n-2) (Ak gh;j " A j g hk } ' 

The l a s t two equations lead to the r e l a t i o n 

3B 33 3BR 
~ -n C mhjk ~ n(n-21 (smk R h j ~ gmj ^ k * " n(n-1 ) (n-2) ( smj ghk -

3R 
- gmk g h j , + ^ i " ( A j Rhk,m"*Ak R h j ,m} + 2T^feT(Ak &h;fA;j g hk J + 

+ S (Ak Rdm,h - A 3 V h ' -
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8 M.Hotloif 

Transvecting now t h i s equation with Am and using (1) , (12) , 
(13) and (14), we obtain (16). 

3. Main r e s u l t 
F i r s t we prove two lemmas. Using (1) and (12) we f ind 

B A r ^ h j k = H?2 [ ¿ T (Ak - k i «hlc* ~ (Ak R h j " A i Rhk}]' 

This r e l a t i o n together with (16) gives 

B A r ° r h j k = 

D i f f e r e n t i a t i n g t h i s equation twice covar iant ly and using 
(10), (11), (3) and the above r e l a t i o n , we obtain 

( 1 8 ) B ( c i h a k , » + W . i 1 = 

Suppose tha t B £ 0 (B = cons t ) . Then, d i f f e r e n t i a t i n g the 
equation 

C lh jk ,m + Cmh,)k,l 3 0 

and s u b s t i t u t i n g (3) , we have 

fmp C l h j k + f l p Cmhjk = 0 

which, because of <pmp = f p m , evident ly implies = 0* 
This r e s u l t , together with (5) leads to a con t r ad i t i on . The-
r e f o r e , equation (18) implies B = 0. 

'9e have thus proved the fol lowing 
L e m m a 3. Every n u l l geodesic c o l l i n e a t i o n in a 

conformally 2- recur ren t Siemannian manifold with symmetric 
2-recurrence tensor s a t i s f i e s the following condi t ion: 

:19) 3 = A r ) 0 g r s = 0 . 
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On n u l l geodeeio co U l n e a t ion 

Since B = 0, equation (17) can be w r i t t e n in the form 

X T T T 

6 i l A r C h j k , m + 8 i m A r C h j k , l + g j l A r C h k i , m + 6 j m A r C h k i , l + 

+ 8 k l A r ^ h i j . m + gkm A r ^ h i j . l + A i ( C l h j k , m + C mhjk , l ) + 

+ A j ( C l h k i , m + Cmhki, l J + A k ( c l h i j , m + C m h i j , l ) = 

D i f f e r e n t i a t i n g the l a s t equation covar ian t i^ and using (3) 
and the equation Ar ^ = 0, we have 

"Pmp T i l h j k + ^ lp Timhjk = 

where 

( 2 0 ) T i l h j k = « i l V M i J k + « j l V M i k i + « l k A r c r h i d + 

+ A i C l h j k + A j C l h k i + A k C lh i j* 

S i n o e fmp " V ' t h i S i m P l i e s 

*mp T i l h 3 k = 0 

and, s ince <pmp + 0, 

(21) T i l h j k = ° -

The cont rac t ion of (20) with g 1 1 gives A ^ 3 ^ ^ = 0. 
The r e s u l t can be formulated as fo l lows: 

L e m m a 4. I f a conformally 2- recur ren t Riemannian 
manifold with symmetric 2-recurrence tensor admits a n u l l 
geodesic c o l l i n e a t i o n , then the vec tor Â  s a t i s f i e s condi-
t ion 

(22) A r C r
h j k = 0 . 
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10 M.Hotlos 

Now we can proceed to the main r e s u l t of t h i s paper . 
T h e o r e m . I f an a n a l y t i c non conformally f l a t con-

fo rma l ly 2 - r e c u r r e n t Riemannian manifold wi th <f lm = ad -
mi ts a n u l l geodesic c o l l i n e a t i o n , then t h i s c o l l i n e a t i o n i a 
a f f i n e . 

P r o o f . Going to prove t h a t the p a r a l l e l v e c t o r 
f i e l d A^ v a n i s h e s , we assume on the con t ra ry t h a t A^ ¡6 0 
everywhere. Equat ions (20) , (21) and (22) imply 

l h j k =0 

(23) A rA r = 0 

R e l a t i o n (21) l e a d s to the formula 

i=T U k 6 j h * V k h J " ( A i P j h ' AdRkh} = 0 

whence, t r a n s v e c t i n g t h i s wi th A^ and making use of (23) 
and (12) , we have 

R A j Ak = 0 

which, by our assumption, imp l i e s 

(25) R = 0 

I t fo l lows from (24) and (25) t h a t 

( 2 6 ) 

This i m p l i e s , by an elementary a l g e b r a i c argument, 

(27) R i j = e A i A j ' 

where e i s an a n a l y t i c f u n c t i o n on ¿1, 
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On null geodesic collineation 11 

If R. . = 0, then Cu., .. = Ru.... and our theorem follows 13 ' r -, hijk hijk 
immediately from In the remaining case, we have e t 0 
on some open subset V. 
Equation (27) immediately implies 
{ 2 8 ) Rid,k " ckRij' 

where ck = e k/e. 
Relation (7) yields now 

wiAh - V i 
with 

(29) w± = aipAr, 

whence w^ = SA^ for some function S. Therefore 

(30) a i rR^ . SRi;j 

and, because of (25) 

(31) arsRrs = 0. 

Relation (9)» equation A. . = 0 and Ricci identity give 1»J 

( 3 2 ) akrRrijm + airRrkjm = 

Contracting the last equation with g1™ and using (30), we 
obtain 

(33) argRr
i;J

s = SR,.. 

It follows easily from (1), (.30), (31) and (25) that 

(34) S a C V "n=? inS 

pa where a = apsg . 
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12 M . H o t l o s 

D i f f e r e n t i a t i n g (29) and u s i n g (8 ) and (23 ) we have 2 = 

= A j A ^ . On t he o t h e r h a n d , f r o m vr̂  = SA.^ and A . j = 0 

we have w i j = S ^A^. Compa r i n g t h e s e e q u a t i o n s , we o b t a i n 

(35 ) A x = S r 

D i f f e r e n t i a t i n g (34 ) c o v a r i a n t i ^ and u s i n g ( 3 5 ) , ( 2 8 ) , ( 8 ) , 

( 9 ) , ( 2 2 ) , (34 ) and r e l a t i o n A ^ = 0 , we f i n d 

¿ 5 " ? l m R i j = { A l c m + V l , H l J + ( c l c m + ° 1 , J i k R i j ' 

w h i c h l e a d s t o 

( 36 ) E<p lm = ( n - 2 ) ( A l 0 m + A m C l ) + E b l n , 

where E = n S - a , b l m = c i c m + c l f 0 . 

R e l a t i o n R i ; j l m = i m p l i e s 

Eb| l m 

E C h i ; ) k , l m = E R h i j k , l m " ( « i j R h k ' g i k R h ; } + ^ k ^ i j - ^ ^ i k * * 

On t he o t h e r hand e q u a t i o n s ( 36 ) and (2 ) i m p l y 

Eb , 
E C h i j k , l m = ( n - 2 , U l c m + V l , C h i j k + B b l m R h i 3 k — H ^ 6 i 3 R h k " 

" S i l ^ h j + « h k ^ i j " ®h;JRik^* 

Compa r i ng t h e s e r e l a t i o n s and u s i n g (1) and ( 3 6 ) , we o b t a i n 

(37 ) • B 4 i i k f i B - > f i « R h i 3 k - ( A l 0 B + A m 0 l - , i 8 i J 5 h k - « i k R h 3 + 

+ S h l ^ i j " ® h j R i k ' * 

D i f f e r e n t i a t i n g (32 ) t w i o e o o v a r i a n t l y and u s i n g ( 8 ) , ( 9 ) , 

( 3 7 ) , (32 ) and ( 3 0 ) , we have 
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On nul l geodesic coll ineation 13 

( A l c p + A p c l , ( d km R i j + dlmRkd " dijRkm " dkJH im ) = 

" B(AkR l i ; jm,p + AkRpldm,l + A iR lkjm,p + A iRpkjm, l ) ' 

where d i ; j = a i ; j - S g ^ . 
This equation can be written in the form 

°p(dkmAlRid + d imA lRkj " d i jA lRkm " dkjA lR im ) + 

+ cl (d.kmApRij + dimApRkj " dijApRkm " dkdApRim) = 

= B(AkR l i3m,p + AkRpijm,l + A iR lkjm,p + AiRpk;jm,l , 

and a f t e r substitution of (26), in the form 

A i [ ° P { d ko R l j " V i m ) + cl (dkmRpd ~ dkJRpm) " B ( Rpkjm,l + 

+ R lk jm,p ) ] = 

e -Ak[ cp { d imR l j " + c l ( d imRp 3 " d i j V " E ( H p l J " . l + 

+ R l idm>p )]-

This- equation we can shortly write as follows 

AiPpkmlj = " AkPpimlj 

whence, by a standard calculat ion, we have 

V p k m l j = 

Our assumption implies thus 

(38) y d k m R i ; j - d k j R i n ) + cl^dkmRp3 - d k j V = 

" B (Rpkjm,l + R lk jm,p ) ' 
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14 M.Eotlos 

Contracting now (28) with g k i and using (25) and the wel l 
r 1 known r e l a t i o n R = -k E we obtain »J1^ »«J 

(39) c r R r
3 = 0. 

By cont rac t ion of (38) with g l p and s u b s t i t u t i o n of (39), 
we have 

(40) E R r
k . m t r = 0. 

I f E = 0, equation E . = (n-2)A. implies A. = 0 . »J J J 
I f R „ = 0, we use well-known r e l a t i o n R r , , j„ „ = 
= R k j m ~ ®km j an<^ aPP^y Theorem C, Hence, in both cases 
Aj = 0. This con t rad i t ion to our assumption shows our a s se r t -
ion . 
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