

Marian Hotloś

ON NULL GEODESIC COLLINEATION
IN CONFORMALLY 2-RECURRENT RIEMANNIAN MANIFOLDS

1. Introduction

A non-flat n -dimensional ($n > 2$) Riemannian manifold is said to be of recurrent curvature [11] (briefly, a recurrent manifold) if its curvature tensor satisfies the condition

$$R_{hijk,l} = c_l R_{hijk}$$

for some non-zero vector field c_j , where the comma indicates covariant differentiation with respect to the metric of the manifold.

As a generalization of the concept of a recurrent manifold, Lichnerowicz [10] initiated investigations of n -dimensional ($n > 2$) Riemannian manifolds whose curvature tensors satisfy relation of the form

$$R_{hijk,lm} = a_{lm} R_{hijk}$$

Non-flat manifolds of such type (i.e. satisfying the above relation for some tensor a_{ij}) are called second order recurrent or, briefly, 2-recurrent manifolds. Roter proved [7] that the recurrence tensor a_{ij} of a 2-recurrent manifold is necessarily symmetric.

According to Adati and Miyazawa [1] an n -dimensional ($n > 3$) Riemannian manifold is said to be conformally recurrent if its Weyl conformal curvature tensor

$$(1) \quad C^h_{ijk} = R^h_{ijk} - \frac{1}{n-2} (g_{ij}R^h_k - g_{ik}R^h_j + \delta^h_k R_{ij} - \delta^h_j R_{ik}) + \\ + \frac{R}{(n-1)(n-2)} (\delta^h_k g_{ij} - \delta^h_j g_{ik})$$

satisfies the relation

$$(2) \quad C^h_{ijk,l} = f_l C^h_{ijk},$$

for some non-zero vector field f_l .

In this paper we consider n -dimensional ($n > 3$) analytic Riemannian manifolds M whose Weyl conformal curvature tensor satisfies the condition

$$(3) \quad C^h_{ijk,lm} = \varphi_{lm} C^h_{ijk},$$

for some non-zero tensor field φ_{lm} .

The manifolds of this type are called conformally 2-recurrent.

We assume that

$$(4) \quad \varphi_{lm} = \varphi_{ml},$$

$$(5) \quad C^h_{ijk} \neq 0 \quad (\text{for at least one point of } M).$$

Grycak has proved [3] that every analytic Riemannian manifold of dimension $n > 4$ satisfies $C^h_{ijk,lm} = C^h_{ijk,ml}$ if and only if $R^h_{ijk,lm} = R^h_{ijk,ml}$.

It is immediate that every recurrent or 2-recurrent, as well as every conformally recurrent Riemannian manifold satisfies the condition (3) and if the recurrence vector in (2) is locally a gradient then the 2-recurrence tensor in (3) is symmetric.

According to Katzin and Levine, a vector field v on a Riemannian manifold is said to be a null geodesic collineation if

$$L_v^h \Gamma_{ij}^h = g^{hr} g_{ij} Q_{,r},$$

where Q is a certain function, and L_v denotes the Lie derivative with respect to v (for geometrical interpretation, see [9]).

The purpose of this paper is to prove that null geodesic collineations in analytic conformally 2-recurrent Riemannian manifolds satisfying (4), (5) are necessarily affine.

Throughout this paper, by a manifold we shall mean a connected and paracompact Hausdorff manifold. The Riemannian metrics involved need not be positive definite.

2. Preliminary results

We shall use two theorems due to Grycak.

Theorem A. ([4], Theorem 1). Let M be an n -dimensional ($n \geq 3$) Riemannian manifold (not necessarily of definite metric). If B_{hijk} is a generalized curvature tensor on M satisfying

$$B_{hijk,lm} = B_{hijk,ml},$$

and P_i is a vector field on M having the property

$$v_r R^r_{ijk} = P_k g_{ij} - P_j g_{ik},$$

for a suitably chosen vector field v_i , then

$$P_h \left(B_{lijk} - \frac{1}{n(n-1)} S (g_{ij} g_{lk} - g_{ik} g_{lj}) \right) = 0,$$

where $S = B_{rijs} g^{rs} g^{ij}$.

Theorem B. ([5], Theorem 1). If B_{hijk} is a generalized curvature tensor on a Riemannian manifold M ($\dim M = n \geq 3$) such that

$$B_{hijk,lm} = B_{hijk,ml},$$

and a_{ij} , b_{ij} are symmetric tensor fields satisfying

$$a_{ij,lm} - a_{ij,ml} = b_{im} g_{lj} + b_{jm} g_{il} - b_{il} g_{jm} - b_{jl} g_{im}$$

then

$$(b_{lm} - \frac{b}{n} g_{lm}) (B_{hijk} - \frac{S}{n(n-1)} (g_{hk} g_{ij} - g_{hj} g_{ik})) = 0,$$

where $S = g^{rs} g^{pq} B_{rpqs}$, $b = b_{rs} g^{rs}$.

Roter [8] proved that null geodesic collineations in general Riemannian manifolds satisfy the following relations

$$(6) \quad a_{ri} R^r_{hjk} + a_{rj} R^r_{hki} + a_{rk} R^r_{hij} = 0,$$

$$(7) \quad a_{ri} R^r_k = a_{rk} R^r_i,$$

$$(8) \quad a_{hi,j} = A_h g_{ij} + A_i g_{hj},$$

$$(9) \quad a_{hi,jk} - a_{hi,kj} = A_{h,k} g_{ij} + A_{i,k} g_{hj} - A_{h,j} g_{ik} - A_{i,j} g_{hk},$$

where $A^h = g^{hr} Q_{,r}$, $a_{ij} = L_v g_{ij}$.

Furthermore Roter [8] has proved the following

Theorem C. If an ARS_n -space with $R_{ij} \neq 0$ admits a null geodesic collineation, then this collineation is necessarily an affine one.

(A manifold is called almost Ricci-symmetric space or, briefly, ARS_n -space if its Ricci tensor satisfies the relation $R_{ij,k} = R_{ik,j}$).

Lemma 1. If an analytic non-conformally flat Riemannian manifold admits a null geodesic collineation and condition $C^h_{ijk,lm} = C^h_{ijk,ml}$ holds, then the vector A_j satisfies the relations

$$(10) \quad A_{l,m} = \frac{B}{n} g_{lm},$$

$$(11) \quad B_{,k} = 0,$$

$$(12) \quad A_r R^r_{lmk} = 0, \quad A_r R^r_k = 0,$$

$$(13) \quad A_r R^r_{ijk,l} = - \frac{B}{n} R_{lijk}, \quad A_r R^r_{k,l} = - \frac{B}{n} R_{lk},$$

$$(14) \quad A^r R_{hijk,r} = - \frac{2B}{n} R_{hijk}, \quad A^r R_{hk,r} = - \frac{2B}{n} R_{hk},$$

$$A^r R_{,r} = - \frac{2B}{n} R, \quad A^r C_{hijk,r} = - \frac{2B}{n} C_{hijk},$$

where $B = A_{r,s} g^{rs}$.

Proof. Applying Theorem B for $b_{ij} = A_{i,j}$, $a_{ij} = L_v g_{ij}$, $B_{hijk} = C_{hijk}$ (the hypothesis are satisfied in view of (9)), we obtain

$$(A_{l,m} - \frac{B}{n} g_{lm}) \left(C_{hijk} - \frac{S}{n(n-1)} (g_{hk} g_{ij} - g_{hj} g_{ik}) \right) = 0$$

and, since $S = C_{rpqs} g^{rs} g^{pq} = 0$ and (5) holds, we have (10).

Differentiating (10) covariantly, we have

$$A_{l,mk} = \frac{B}{n} g_{lm}, \quad A_{l,km} = \frac{B}{n} g_{lk}.$$

Making use of Ricci identity, we obtain

$$A_{l,mk} - A_{l,km} = - R^r_{lmk} A_r = \frac{1}{n} (B_{,k} g_{lm} - B_{,m} g_{lk})$$

whence

$$n A_r R^r_{lmk} = - B_{,k} g_{lm} + B_{,m} g_{lk}.$$

Applying now Theorem A for $v_r = \frac{A_r}{n}$, $P_k = - B_{,k}$, $B_{hijk} = C_{hijk}$, we obtain (11) and immediately (using the last equa-

tion) (12). Differentiating (12) covariantly and substituting (10) we easily obtain (13). Transvecting now the second Bianchi identity

$$R_{hijk,l} + R_{hikl,j} + R_{hilj,k} = 0$$

with A^1 and using (13), we immediately obtain (14). This completes the proof.

Grycak has proved [5] that null geodesic collineations in a Riemannian manifold satisfy the relation

$$(15) \quad a_{ri} C^r_{hjk} + a_{rj} C^r_{hki} + a_{rk} C^r_{hij} = 0.$$

With help of this equation and Lemma 1, we prove the following lemma.

Lemma 2. Every null geodesic collineation in conformally 2-recurrent Riemannian manifold with symmetric 2-recurrence tensor satisfies the condition

$$(16) \quad B \left[\frac{R}{n-1} (A_k g_{jh} - A_j g_{kh}) - (A_k R_{jh} - A_j R_{kh}) \right] = 0.$$

Proof. Differentiating (15) twice covariantly and using (10), (8) and (3), (15) we find

$$(17) \quad g_{il} A_r C^r_{hjk,m} + g_{im} A_r C^r_{hjk,l} + g_{jl} A_r C^r_{hki,m} + \\ + g_{jm} A_r C^r_{hki,l} + g_{kl} A_r C^r_{hij,m} + g_{km} A_r C^r_{hij,l} + \\ + A_i (C_{lhjk,m} + C_{mhjk,l}) + A_j (C_{lhki,m} + C_{mhki,l}) + \\ + A_k (C_{lhij,m} + C_{mhij,l}) + \frac{B}{n} (g_{il} C_{mhjk} + g_{im} C_{lhjk} + \\ + g_{jl} C_{mhki} + g_{jm} C_{lhki} + g_{kl} C_{mhij} + g_{km} C_{lhij}) = 0.$$

The contraction of this equation with g^{il} gives

$$n A_r C^r_{hjk,m} + g_{jm} A^r C^s_{khr,s} - g_{km} A^r C^s_{jhr,s} + A^r C^s_{mhjk,r} + A_j C^s_{khm,s} - A_k C^s_{jhm,s} + \frac{B(n-1)}{n} C_{mhjk} = 0.$$

This relation together with (14) and the equation ([2], page 91)

$$C^s_{ijk,s} = \frac{n-3}{n-2} \left[(R_{ij,k} - R_{ik,j}) - \frac{1}{2(n-1)} (R_{,k} g_{ij} - R_{,j} g_{ik}) \right]$$

leads immediately to the condition

$$n A_r C^r_{hjk,m} + \frac{B(n-3)}{n(n-2)} (g_{km} R_{jh} - g_{jm} R_{kh}) + \frac{B \cdot R(n-3)}{n(n-1)(n-2)} (g_{kh} g_{jm} - g_{km} g_{jh}) + A_j \frac{n-3}{n-2} (R_{kh,m} - R_{km,h}) - A_k \frac{n-3}{n-2} (R_{jh,m} - R_{jm,h}) + \frac{n-3}{2(n-1)(n-2)} R_{,m} (A_k g_{hj} - A_j g_{hk}) + \frac{B(n-3)}{n} C_{mhjk} = 0.$$

It is easy to see that (1) and (13) give

$$A_r C^r_{hjk,m} = - \frac{B}{n} C_{mhjk} - \frac{B}{n(n-2)} (g_{mk} R_{hj} - g_{mj} R_{hk}) + \frac{B R}{n(n-1)n-2} (g_{mk} g_{hj} - g_{mj} g_{hk}) - \frac{1}{n-2} (A_k R_{hj,m} - A_j R_{hk,m}) + \frac{R}{(n-1)(n-2)} (A_k g_{hj} - A_j g_{hk}).$$

The last two equations lead to the relation

$$- \frac{3B}{n} C_{mhjk} - \frac{3B}{n(n-2)} (g_{mk} R_{hj} - g_{mj} R_{hk}) - \frac{3BR}{n(n-1)(n-2)} (g_{mj} g_{hk} - g_{mk} g_{hj}) + \frac{2n-3}{n-2} (A_j R_{hk,m} - A_k R_{hj,m}) + \frac{3R}{2(n-2)} (A_k g_{hj} - A_j g_{hk}) + \frac{n-3}{n-2} (A_k R_{jm,h} - A_j R_{km,h}) = 0.$$

Transvecting now this equation with A^m and using (1), (12), (13) and (14), we obtain (16).

3. Main result

First we prove two lemmas. Using (1) and (12) we find

$$B A_r C^r_{hjk} = \frac{B}{n-2} \left[\frac{R}{n-1} (A_k g_{hj} - A_j g_{hk}) - (A_k R_{hj} - A_j R_{hk}) \right].$$

This relation together with (16) gives

$$B A_r C^r_{hjk} = 0.$$

Differentiating this equation twice covariantly and using (10), (11), (3) and the above relation, we obtain

$$(18) \quad B(C_{lhjk,m} + C_{mhjk,l}) = 0.$$

Suppose that $B \neq 0$ ($B = \text{const}$). Then, differentiating the equation

$$C_{lhjk,m} + C_{mhjk,l} = 0$$

and substituting (3), we have

$$\varphi_{mp} C_{lhjk} + \varphi_{lp} C_{mhjk} = 0$$

which, because of $\varphi_{mp} = \varphi_{pm}$, evidently implies $C_{lhjk} = 0$. This result, together with (5) leads to a contradiction. Therefore, equation (18) implies $B = 0$.

We have thus proved the following

Lemma 3. Every null geodesic collineation in a conformally 2-recurrent Riemannian manifold with symmetric 2-recurrence tensor satisfies the following condition:

$$(19) \quad B = A_{r,s} g^{rs} = 0.$$

Since $B = 0$, equation (17) can be written in the form

$$g_{il} A_r C^r_{hjk,m} + g_{im} A_r C^r_{hjk,l} + g_{jl} A_r C^r_{hki,m} + g_{jm} A_r C^r_{hki,l} + \\ + g_{kl} A_r C^r_{hij,m} + g_{km} A_r C^r_{hij,l} + A_i (C_{l h j k, m} + C_{m h j k, l}) + \\ + A_j (C_{l h k i, m} + C_{m h k i, l}) + A_k (C_{l h i j, m} + C_{m h i j, l}) = 0.$$

Differentiating the last equation covariantly and using (3) and the equation $A_{r,l} = 0$, we have

$$\varphi_{mp} T_{ilhjk} + \varphi_{lp} T_{imhjk} = 0,$$

where

$$(20) \quad T_{ilhjk} = g_{il} A_r C^r_{hjk} + g_{jl} A_r C^r_{hki} + g_{lk} A_r C^r_{hij} + \\ + A_i C_{l h j k} + A_j C_{l h k i} + A_k C_{l h i j}.$$

Since $\varphi_{mp} = \varphi_{pm}$, this implies

$$\varphi_{mp} T_{ilhjk} = 0$$

and, since $\varphi_{mp} \neq 0$,

$$(21) \quad T_{ilhjk} = 0.$$

The contraction of (20) with g^{il} gives $A_r C^r_{hjk} = 0$. The result can be formulated as follows:

Lemma 4. If a conformally 2-recurrent Riemannian manifold with symmetric 2-recurrence tensor admits a null geodesic collineation, then the vector A_j satisfies condition

$$(22) \quad A_r C^r_{hjk} = 0.$$

Now we can proceed to the main result of this paper.

Theorem. If an analytic non conformally flat conformally 2-recurrent Riemannian manifold with $\varphi_{lm} = \varphi_{ml}$ admits a null geodesic collineation, then this collineation is affine.

Proof. Going to prove that the parallel vector field A_i vanishes, we assume on the contrary that $A_i \neq 0$ everywhere. Equations (20), (21) and (22) imply

$$A_i C_{lhjk} + A_j C_{lhki} + A_k C_{lhij} = 0.$$

Transvecting this equation with A^i , we obtain $A_r A^r C_{lhjk} = 0$ and, because of (5),

$$(23) \quad A_r A^r = 0.$$

Relation (21) leads to the formula

$$(24) \quad \frac{R}{n-1} (A_k g_{jh} - A_j g_{kh}) - (A_k R_{jh} - A_j R_{kh}) = 0$$

whence, transvecting this with A^k and making use of (23) and (12), we have

$$R A_j A_k = 0$$

which, by our assumption, implies

$$(25) \quad R = 0$$

It follows from (24) and (25) that

$$(26) \quad A_k R_{jh} = A_j R_{kh}.$$

This implies, by an elementary algebraic argument,

$$(27) \quad R_{ij} = e^{A_i} A_j,$$

where e is an analytic function on M .

If $R_{ij} = 0$, then $C_{hijk} = R_{hijk}$ and our theorem follows immediately from [6]. In the remaining case, we have $e \neq 0$ on some open subset V .

Equation (27) immediately implies

$$(28) \quad R_{ij,k} = c_k R_{ij},$$

where $c_k = e_k/e$.

Relation (7) yields now

$$w_i A_h = w_h A_i$$

with

$$(29) \quad w_i = a_{ir} A^r,$$

whence $w_i = S A_i$ for some function S . Therefore

$$(30) \quad a_{ir} R^r_j = S R_{ij}$$

and, because of (25)

$$(31) \quad a_{rs} R^{rs} = 0.$$

Relation (9), equation $A_{i,j} = 0$ and Ricci identity give

$$(32) \quad a_{kr} R^r_{ijm} + a_{ir} R^r_{kjm} = 0.$$

Contracting the last equation with g^{km} and using (30), we obtain

$$(33) \quad a_{rs} R^r_{ij} S = S R_{ij}.$$

It follows easily from (1), (30), (31) and (25) that

$$(34) \quad a_{rs} C^r_{ij} S = \frac{1}{n-2} (nS - a) R_{ij},$$

where $a = a_{rs} g^{rs}$.

Differentiating (29) and using (8) and (23) we have $w_{i,1} = A_1 A_1$. On the other hand, from $w_i = S A_i$ and $A_{i,1} = 0$ we have $w_{i,1} = S,1 A_i$. Comparing these equations, we obtain

$$(35) \quad A_1 = S,1.$$

Differentiating (34) covariantly and using (35), (28), (8), (9), (22), (34) and relation $A_{i,j} = 0$, we find

$$\frac{E}{n-2} \varphi_{lm} R_{ij} = (A_1 c_m + A_m c_1) R_{ij} + (c_1 c_m + c_{1,m}) \frac{E}{n-2} R_{ij},$$

which leads to

$$(36) \quad E \varphi_{lm} = (n-2) (A_1 c_m + A_m c_1) + E b_{lm},$$

where $E = nS-a$, $b_{lm} = c_1 c_m + c_{1,m}$.

Relation $R_{ij,lm} = b_{lm} R_{ij}$ implies

$$E C_{hijk,lm} = E R_{hijk,lm} - \frac{E b_{lm}}{n-2} (g_{ij} R_{hk} - g_{ik} R_{hj} + g_{hk} R_{ij} - g_{hj} R_{ik}).$$

On the other hand equations (36) and (2) imply

$$E C_{hijk,lm} = (n-2) (A_1 c_m + A_m c_1) C_{hijk} + E b_{lm} R_{hijk} - \frac{E b_{lm}}{n-2} (g_{ij} R_{hk} - g_{ik} R_{hj} + g_{hk} R_{ij} - g_{hj} R_{ik}).$$

Comparing these relations and using (1) and (36), we obtain

$$(37) \quad E R_{hijk,lm} = E \varphi_{lm} R_{hijk} - (A_1 c_m + A_m c_1) (g_{ij} R_{hk} - g_{ik} R_{hj} + g_{hk} R_{ij} - g_{hj} R_{ik}).$$

Differentiating (32) twice covariantly and using (8), (9), (37), (32) and (30), we have

$$(A_1 c_p + A_p c_1) (d_{km} R_{ij} + d_{im} R_{kj} - d_{ij} R_{km} - d_{kj} R_{im}) = \\ = E(A_k R_{lijm,p} + A_k R_{pijm,l} + A_i R_{lkjm,p} + A_i R_{pkjm,l}),$$

where $d_{ij} = a_{ij} - S g_{ij}$.

This equation can be written in the form

$$c_p (d_{km} A_1 R_{ij} + d_{im} A_1 R_{kj} - d_{ij} A_1 R_{km} - d_{kj} A_1 R_{im}) + \\ + c_1 (d_{km} A_p R_{ij} + d_{im} A_p R_{kj} - d_{ij} A_p R_{km} - d_{kj} A_p R_{im}) = \\ = E(A_k R_{lijm,p} + A_k R_{pijm,l} + A_i R_{lkjm,p} + A_i R_{pkjm,l})$$

and after substitution of (26), in the form

$$A_i [c_p (d_{km} R_{lj} - d_{kj} R_{lm}) + c_1 (d_{km} R_{pj} - d_{kj} R_{pm}) - E(R_{pkjm,l} + \\ + R_{lkjm,p})] = \\ = -A_k [c_p (d_{im} R_{lj} - d_{ij} R_{lm}) + c_1 (d_{im} R_{pj} - d_{ij} R_{pm}) - E(R_{pijm,l} + \\ + R_{lijm,p})].$$

This equation we can shortly write as follows

$$A_i P_{pkmlj} = - A_k P_{pimlj}$$

whence, by a standard calculation, we have

$$A_i P_{pkmlj} = 0.$$

Our assumption implies thus

$$(38) \quad c_p (d_{km} R_{lj} - d_{kj} R_{lm}) + c_1 (d_{km} R_{pj} - d_{kj} R_{pm}) = \\ = E(R_{pkjm,l} + R_{lkjm,p}).$$

Contracting now (28) with g^{ki} and using (25) and the well known relation $R^r_{,jr} = \frac{1}{2} R_{,j}$, we obtain

$$(39) \quad c_r R^r_{,j} = 0.$$

By contraction of (38) with g^{lp} and substitution of (39), we have

$$(40) \quad E R^r_{,kjm,r} = 0.$$

If $E = 0$, equation $E_{,j} = (n-2)A_j$ implies $A_j = 0$.

If $R^r_{,kjm,r} = 0$, we use well-known relation $R^r_{,kjm,r} = R_{kj,m} - R_{km,j}$ and apply Theorem C. Hence, in both cases $A_j = 0$. This contradiction to our assumption shows our assertion.

REFERENCES

- [1] T. Adati, T. Miyazawa: On a Riemannian space with recurrent conformal curvature, Tensor N.S., 18 (1967) 348-354.
- [2] L.P. Eisenhart: Riemannian geometry, Princeton 1966.
- [3] W. Grycak: Riemannian manifolds with a symmetry condition imposed on the 2-nd derivative of the conformal curvature tensor, (to appear).
- [4] W. Grycak: On generalized curvature tensor and symmetric $(0,2)$ -tensors with a symmetry condition imposed on the 2-nd derivative, (to appear).
- [5] W. Grycak: Null geodesic collineations in conformally recurrent manifolds, (to appear).
- [6] W. Grycak: Some remarks on null geodesic collineations in 2-recurrent Riemannian manifolds, (to appear).

- [7] W. R o t e r : Some remarks on second order recurrent spaces, Bull. Acad. Polon. Sci., Ser. Sci. Math. Astr., Phys., 12 (1964) 207-211.
- [8] W. R o t e r : On null geodesic collineations in some Riemannian spaces, Colloq. Math. 31 (1974) 97-105.
- [9] G.H. K a t z i n , J. L e v i n e : Applications of Lie derivatives to symmetries, geodesic mappings and first integrals in Riemannian spaces, Colloq. Math. 26 (1972) 21-38.
- [10] A. L i c h n e r o w i c z : Courbure, nombres de Betti et espaces symétriques, Proc. of the Inter. Congr. of Math., 2 (1952) 216-223.
- [11] A.G. W a l k e r : On Ruses spaces of recurrent curvature, Proc. London Math. Soc. 52 (1950) 36-64.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY, WROCŁAW

Received April 14, 1978.

