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MOMENT RECURRENCE RELATIONS
FOR THE INFLATED NEGATIVE BINOMIAL,
POISSON AND GEOMETRIC DISTRIBUTIONS

Introduction

In Section 1 of this paper we have dealt with the so-cal-
led discrete inflated distributions and shortly presented the
results obtained for them in the field of estimating the pa-
rameters, of moments and the distribution of the sums of ran-
dom variables, In Section 2 we have given a few theorems con-
cerning recurrence relations for the moments about the origin
and about the mean of the negative binomial distribution. The
correspondent relations for the moments of the Poisson and
geometric distributions have been shown in the form of co-
rollaries in Section 3.

1. Discrete inflated distributions

Let us denote by X a discrete random variable with a
distribution P(X = k;8) (8 - a certain parameter) and by Y
a variable with the inflated distribution P1(Y = k; 0} de-
fined as follows:

p+ar(X =0;68) for k =0,

%
(1.1) P.(Y = k;8) =
( -
aP(X = k;8) for k # 0,

where a.e(0,1] and f= 1-a.
The probability distribution of this form was introduced
into statistical studies by S.KN.Singh [18] in 1963 in the ca=-
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2 T.Gergtenkorn

se of the function P(X = k;8) being the Poisson law. The
distribution was to serve as the probabilistic description of
such experiments that were virtually well described by the
above-mentioned law, with a slight inflation, however, of the
probability at zero point.

In the paper of 1965/66 M.P.Singh [}7] returned to this.
problem having taken the binomial distribution to be a basis
of his investigations. He pointed out that there exist such
situations that can be described by the binomial distribution
almost well, i.e., one can however perceive some deformation
of theoretically expected values of frequency, consisting in
a distinct increase of the fréquency of the observed event at
zero point as well as a respective decrease of its value at
the remaining points. The object for this author’s studies
was a population of four-person families, The set of the fa-
milies considered was a mixture in the sense that some of
them were in the environment exposed to the danger of being
afflicted with a certain disease, while other families were
not. The gquantity of sick individuals in each family of the
population considered was examined and the results recorded.
The binomial distribution was adopted as a statistical model
of the population and on the ground of this model there were
calculated theoretically expected frequencies of the occurren-~
ce of values 0,1,2,3,4, that is, of the numbers representing
all individunals in a family being healthy (no person sick),
one person sick, etc. The results of the observations had been
compared with the theoretical frequencies and it turned out
that the frequency of the occurrence of zero was actually a
little greater than one could expect on the ground of the mo-
del adopted. The case described above was after all cuite well
modelled by (1.1) if P(X = k) constituted the very binomial
distribution. It was due to the fact that distribution (1.1)
is a special case of the mixture of distributions P1(X = k)
and P2(X = k), i.e., the distribution given by the formula

P(X=k) = pP,(X=k) + aP,(X=k],
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Moment recurrence relations 3

where PT is the so-called degenerate distribution

1 when Xk =0,
P1(X = k) =

0 when k £ 0

and P, =~ an arbitrary discrete distribution.

The authors in question did not analyze this fact but it
is completely evident if one takes into account that the co-
efficient of inflation a under consideration represents, in
reality, a share (fraction) of the distribution P, in the
mixture, Therefore, the studies of the inflated distributions
are a particular case of the researches of the mixed distri-
butions and hence their great importance in statistical prob-
lems.,

Soon after the afore-quoted paper il1.P.Singh published in
1966 a next one [16] in which he generalized his former con-
siderations for the case of inflation at an arbitrary point
of the binomial distribution. The proposals of such generali-
zations were presented a little earlier (1964/65) by X.li.Pen~-
dey [12] for the case of the Poisson distribution.

Generally speaking, we may say that the random variasle Y
has the so-called generalized discrete inflated distribution
with parcmeter 6 if its probability function is expresced
by the formula

' p+ a?(X=1;8) for k =1
(1.2) P, (Y=k;0) =
dP(X=k;0) for k £ 1,

where o € (C,1] and p= 1-a, and P(X=k;0) is & distritu-
tion of the random variable X,

So, the generalized inflated distribution is such & mixtu-
re of the afore-mentioned distributions Py and 2, in which
the former is a degenerate distribution of the variabls
at the point k = 1.

The studies of the Indian investigators guoted hers had
respect to the quections of estimating the coefficient a ané
to those of estimating parameters of the binomial and Z»isson
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4 T.Gerstenkorn

distributions undér examination (the parameters p and A,
respectively).

The problem of the moments for the inflated distributions
was taken up by L.Grzegdrska (Sobich) in paper [9] of 1973.
She occupied herself with the Guestion of calculating the sim-~
ple and the central moments for the class of power series di-
stributions (PSD), including to her considerations the case
of the truncated distribution as well,

In paper [ﬁ9] published a year later the same authoress
dealt with the establishment of the recurrence relations for
the moments of the inflated binomial and Poisson distribution,

The present writer in [5] has reported various problems
connected with the inflated distributions,

In paper [6] one can find the recurrence relations for
the moments about an arbitrary point of a class of the dis-
crete inflated distributions.

In the studies concerning the inflated distributions there
has also been taken into account a problem of the distri~
bution of the sum of random variables with inflated distri-
butions, There is a reference to it in papers [8] and [20].
In the former the binomial variables have been treated of,
while in the latter - variables having a distribution of type
PSD.

2. Moments of the inflated negative binomial distribution

Definition. The random variable Y is said
to obey a generalized inflated negative binomial distribution
if its probability function is expressed by the formula

ﬁ+a(—1)k(£n)pkqn for k = 1

(2.1) P(Y=k} =
0,1 geeoe ,1"'1 ’l+1,000,

a(-1)E(B)pke®  for k

where 0 <d <1,a+p=1,0< p< 1, ptg = 1,
If a= 1, the above distribution is reduced to the nega-
tive binomial one without inflation,
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Mloment recurrence relations 5

If, in formula (2,1}, we accept n egqual to 1, then we
get the so-called geometric inflated distributions

B+ pkq for k

1
[

(2.2) (Y=x) =

2¥]

k

ap g for k OsTgecesl=1,14+7,0c0

or in the case of o= 1 -~ the one without inflation.

We shall derive the recurrence relations for the simple
and the central moments of the inflated negative binomial di-
stribution and give, in particular, formulae for the inflated
geometric and Poisson distributions. To prove, we shall make
use of the following, almost obvious, lemma,

Lemnma. Let ¢./(t) and ?y(t) denote characteris-
tic functions of the random variables X and Y with and
without inflation, respectively. Then

(2.3) ¢5(t) = pe*t ragp (+).

Theoremnm 1, If Y is a random variable with in-
flated negative binomial distribution (2.1), then the simple
moments m,, of this distribution satisfy the recurrence re-
lation

(2.4) m, = % {ﬁlr - pp(1+n)(1+1)7° &

r-1
+p Z [n(r;,) + (E_:} ):l Er-1-k}' = 1,2,000
k=0

Proof. On the ground of formula (2.3) of the lemma
and the well-known form of the characteristic function of the
negative binomial distribution ([3], p.179, (5.13.9), German
ed.,p.151) we have

(2.5) (py(t) - ﬁeitl + aqn(.‘_peit)-n.
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6 T.Gerstenkorn

The characteristi®¢ function of the random variable posses-
sing the moments of an arbitrary order can be expanded in the
MacLaurin series

where @M., is the jth simple moment of the random variable
with inflated distribution. Thus putting it = 6, we obtain
the equality

(2.6) :E:‘g%'ﬁj =‘ﬁeel +agt (1-pea)'n.
3=0

We differentiamte both sides of (2.6) with respect to 6.
After some suitable calculations we get

) =
(2.7) (1-p88) :E: nggjj-ia = (1—pes) /Sle91 +

=, 94
+ npes Z'Q‘ ﬁj - pnpee‘1+1).

Paying respect to the transformation

1 - pe9 = -p(ee-1) + 0

and the possibility of representing e® in the form of a se-
ries for all 0, i.e., taking into account the formula

o0
(2.8) 1-pf =q-p> &,

we shall have fror the left side of (2.7):

s s gk+j-1 =1

(2.9) P D D Hr(3-1T Byt 9 D T5oA77 By
k=1 j=1 =1
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Moment recurrence relations 7

while the right side of (2,7), for the convenience of further
transformations, will be written as follows

89
! mj‘.

(1+1) 8

Bl _ ﬁp(l+n}ee = npe

M3

fle
=0

.

After having expanded ee(l+1) and e9-1 in a series, we

then obtain:

< .k.k sk K
(2.10) pL s 81 _ pplin) S Q—(—l—%’——+
k=0 k:o

oo 00 9j+k_

+8p > ktjr Bye
k=0 j=0

By combining formulae (2,9) and (2.10) obtainéd, we get

o e pkij-l = gi-1
(A1) =p 2, D0 fr(g-111 By *+ 9 2 Ty By =
k=1 j=1 j=1
Lo o0 k
= pl Z __Bk% - pp{l+n) Z M—L§T1 +
k=0 k=0
S~ S aktd
+HPZ'Z ktj! Mye
k=0 3=0

Successive addends appearing in relation (2.11) will be
denoted by: -a, gb, ¢, -d, e, We shall then write this re-
lation down briefly as

b = % (c ~d +e + 8).

er--1

Considering the coefficients at obtained in this

relation for b, ¢, d, e, a, we may writfe
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8 T.Gerstenkorn

l_ﬁr_ 1 ep(a+n)(141)7" 81~
r-1)! =g |~ (r=1 )1 A E D
r-1

*TE:%)TE_‘:) [n SUE (iﬂ)] ﬁr-‘l-k}’

from which we immediately get formula (2.4) representing the
proposition.

Let us calculate a few simple moments, according to re-
currence relation (2.4) for inflated negative binomial distri-
bution (2.1)

( 51 = Bl + an-g ’
m, = ,612 + an-g f(n+1 )g+ 1] = {.‘»12 +o(njq’—2- (np+1),
(2.12) § &y = p13 +ang :(n2 + 3n + 2)(-51)2 + 3(n+1) -g- + 1],
m, = p1* +dng i(n3 + 6n% + 110 + 6) (g-)B +
. + 6(n? + 3n + 2) (ap)2+7(n+1)g+1] .

At the same time, the given examples provide an illustra-
tion of the application of the simple formula

(2.13) m, = p1t +oAm,, T o= 1,2,000

which determines the relationship between the simple moments
of the inflated distribution and the one without inflation,
The moments m, can be attained by putting Pp= 0 in formu~
la (2.4). We then get the recurrence relation offered, for

the first time, by R.Risser and C.E.Traynard in [14] (p.323,
2nd ed, p.94). The same relation has been achieved by the pre-
sent writer as a result of considerations on the particular
cases of the so-called power series distributions ([7], p.21,
(2.8)).
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Moment recurrence relations 9

We shall show one more recurrence relation concerning the
simple moments of the inflated negative binomial distribution.
Theorem 2, If the random variable Y has in-
flated negative binomial distribution (2.1), then the follow-

ing recurrence relation holds
(2.14) B4 = ﬁlr(lqm) + ni, + p-g;z y T =0,1,2,000,

where m = n 2 denotes the first simple moment of the nega-

tive binomial distribution without inflation.
Proof., In virtue of formula (2.13) we will have

for (2.1)

(2.15) G, = 17+ & 3 (=15 (£7) plo®,
k=0

By differentiating both sides of (2.15) with respect to p,
we shall obtain, after some appropriate calculations,

dﬁr a4 — r+1 k ;-n k n
W:;Zk (-1) (k)pq -

k=0
n < .r k (~ny kn
- g D0 K (-1)F (P) pit.
k=0
blr+1 1T
Adding up and subtracting 5 and nB-a—-, we have

d [ )
SR L™, oS (o )k(;n)pkqn] -
k=0

o |-

[ oo
ﬁlr + :E: kr(-1)k(En)pkqn] +
k=0

i
K1}

r(n _1\_1gm -4z r np - 1g
Al (q p>‘p"’r+1 g B+ AL =g
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10 T.Gerstenkorn

whence, after some simple transformations, we get formula
(2.14) representing the proposition.

The technique of calculating the moments according to
(2.14) is simple. They result in exactly the same formulae for
consecutive moments as those mentioned sbove. We disregard
full particulars of the calculations,

Formula (2.14) with p= 0 gives the formula for the mo-
ments of the negative binomial distribution without inflation

dm,,
(2.16) Mpyq = BRpq + Py » T = 152535000

almost identicel in its structure with that offered by A.R.
Crathorne [2] (p.1202, (3)) for the binomial distribution.
The method of proving the formula used by this author was.
completely different, It was based on the exploitation of a
certain recurrence relation given by R.Frisch [4] for the cu-
mulants of the very distribution. (The discussion of this
matter can be found in [7],’pp.9-10). The calculation of mo=-
ments by means of (2.16) seems to be simpler than by applying
the characteristic function as it happens, for example, in
[3] (p.179, German ed., p.151).

¥e now proceed to the recurrence relations concerning the
central moments of the inflated negative binomial distribu-
tion.

Theorem 3. If the random variable Y has in~
flated negative binomial distribution (2.1), then there ari-
ses a recurrence relation for the central moments Eir of
this distribution

ofp(1-m) L - P(l-m)i, +

ag anTil, 4
p<dpr+ q:g 9 r=1,'2’000,

where m = n g denotes the first moment (expected value} of
the negative binomial distribution without inflation.

(2.17) T

<+

- 398 -



Moment recurrence relations 11

Proof., From the definition of the central moments
of the rth order we have:

(2.18) fp = A(1-8,)7 +« i (k=B 7011 () p(1-p)",

By substituting (2.12) in (2.18), we obtain
- Tr p r
(2.19) PI‘ = ﬂa <l - n -1_—p>

hiacd r
+a > (k-pl-an ;EL{> (-1)k () ok (1-p)"n.
k=0 -

By differentiating the above formula with respect to b,
we get

dg _ o <= - r
ap_I‘ - -dq—“é‘t‘m + = (-1)%¢ ) (k=pl-am)
=0

k n(kq-np)-

The second addend of this formula is transformed into

&2 (=15 (P e (k~pLl-am )T - ol i (=1)%() (c-pl-am) To% B

Substituting k = (k-p-l-dm) + (Bl+am) in the subirahend of
the above difference, we obtain, after simple transformations,

dp oo
(2.20) _H%E = -q-8L yr—1 :E: -n)(k-ﬁl-dn)r*1 k,n

(‘4

THQ

+ %2 (1a-np) :E: (-1)k(En)(k-ﬁl-am)rpk;n.

¢}
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It f(llows from (2.19) that

a). (k-plam)® (-1)¥ (;B) p%% = i, - gt (1-m)%,
k=0

where i = r,r+1,
Considering this relation in (2.20), we attain

a
T nr- - 11 = r+1 r+1
T TP TR [y - Ba™" 1-m)™] 4

+ 8 (1en) [y - pe® (1-0)7]

from which

d
pr+1 =P H%E ¥ dlgﬁg-pr-1 * arﬁ(l'm)r+1 - p(l-m)ﬁr,

and finally - the required formula (2.17). The very formula
with ﬁ = 0 gives the relation for the central moments of
the negative binomial distribution without inflation

dy
(2.21) pyq = P <§5£ +-§%—yr_z> ,

analogous to the one for the binomial distribution offered
by V.Romanovsky [Ti] (p.410, (2)). To obtain this relation,
the above author made use of a method of differentiating the
moment-generating function. (The discussion of the problem -
see: [7], pe6). Formula (2.17) was given earlier in [9] ((13),
p.24) as a special case of formula ((3), p.20) for the mo-
ments of power series distribution (PSD).

Let us calculate two central moments by using (2.17):

e =a[ﬁ(l-m)2 + -:4] ’

i = apla-p)(1-m)3 - Baﬁ-g-l- (1-m) + a% (1+p) &
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Moment recurrence relations 13

Ve shall give another formula for the central moments of
distribution (2.1).

Theorem 4. The central moments pi of inflated
negative binomial distribution (2,1) satisfy the recurrence
relation

"

(2.22) p, = p1 %;——(l-m)r'1- pg (n+1) (1+al-am)®"1 =

r-1 r-2
_ -1, = %
(am+pl) gy g + m EE% F3E + § :Eg (%3 Mg +
J: J:

r=2

P (am+p1) Z (r51)pj. T = 1,2,000,
J=0

+

where m = n-g denotes the first simple moment of the nega-
tive binomial distribution without inflation.

Lssuming that the variable Y has distribution (2.1)
with characteristic function (2.5), we calculate the charac-
teristic function of the centred variable Y1 =Y - ﬁ1 and
represent it in the form of the MacLaurin series

(2.23) y, (0] = ig—

We shall then have

(2.24) Z_g_:!]_ gj = ﬁeﬂa(l—m) +aqne-9(pl+d.m) (1_peﬁ)-n.
J=0

Let us differentiate both sides of (2.24) with respect to 8 .
The derivative L’ of the left-hand side is expressed by

oo j-1 _
J:
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and the derivative P’ of the right-hand side of (2.24) has
the form

? = aﬁ(l-m)eea(l'm) - (p1+Qm)aqne-e(pl+am)(1-pe9)_n +

8. n -8(ﬁ1+am)(

+ npe’ag-e 8y-n-1,

1-pe
It follows from (2.24) that

ne~9(ﬁ1+am)(1_pe0)-n (8) - ﬂeea(l'm).

aq

Substituting this relation in the derivative of the right-hand
side, we obtain, after having eguated L' to P':

o0 i et
(2.25)  (1-pe?) Z—(ejiﬁpj - oB(1-m) (1-ped jefe(1-m) _
j=1

_ ﬁeea(l-m) +

- (1-pe9)(ﬁl+am)(f& (8)

+ npe<® ﬁeea -mD

After (2.8) has been made use of, the left-hand side of the
above formula takes the form

had = = sk+j-—1 -
; )rt‘; ngkz(j-m“j'

The right-hand side of {2.25) is transformed into

B)GOa(l-m)

pL(1~pe - (1-pe8)(ﬁl+am)¢y1(6) +

+ npeelfy (8) =~ ﬁnpee(ﬂal-am)‘
1
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iloment recurrence relations 15

Using (2.8) as well as (2.23) once more, we get further trans-

formations:

oo

J

mee“‘l"”’ _ ﬁlpee(wal-am) - ¢(pl+an) Z %[‘-J +

j=

oo k+,) .
+ p(ﬁlﬂ!m) Z Z ?{'J' ’:‘J + np Z Z k'J' P’J -
k=1 j=0 k=0 §=0

-5npe°“+‘ﬂ‘“‘“’ - p1 i ko (l-ml ~pp(1+n) Z 8¥(1+a1-an) ¥,

k! N
k=0

8

i [\/]8

C_l-

np Z i + p{pl+am) Z
k=0

- Q(blﬂxm) . '—j-ry-jo
3=0

Putting the left-hand side of (2.25) and its right-hand side
together, we eventually obtain

>, gi-1 _ ~
(2.26) o 3 T3 T By -0 2, 2 w(g-Ty By =
3=t 1

=1 3=1
[~ 5 _ o0 o0 k+j _
= ~q(pl+am) Z 9—, By + p(pl+am) Z Z ETH S I
J=0 k=1 j:o
°°°°Qk+;|_ oo kk(_lk
+anZk!jlj+plzeak%m -
k=0 3=0 k=0
ook k
-{Sp(l+n) Z 9 (1+dljdm) .
k=0

Let us compare the coefficients at Gr'1 in the above
formula, In the first addend of the left-hand side the very

q
coefficient amounts to -E,y:f-’-!- .
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In the addend

o0 o0 k+j=-1 S0 oo k+J+1
8 _ _gkti+l
p :E: :E: k!(j-1)1 B3 =P :E: :E: Ter10137 B34
k=1 j=1 k=0 §=0
there will be OT~' when k = r-2-j; if k = O, then

J = r~2. Therefore

) J+k+1 e 1 I
> T e = 2 > Tt 2 (5 By e

k=0 3=0 r=2 J=0

Thus we have the coefficient at gT-1

r-2

=T ?4_70 5 By -

In the first addend of the right~hand side of (2.26) we have
the coefficient at 91"'1 equal to

-q(ﬁl+am)'Tﬁé§?% .

In the addend

k+3+1 _

ot +3 _
p{p1l+am) Z Z g'j' PJ = p(pl+om) Z Z zk+1)'.]' FJ

k=1 j=0 k=0 j=0
there will still be 6T~ when k = r-j=2; 60 we have

o0

0((51 +am) Z (I‘—'l)' Z (I‘-1

r=2

-T

Cith 87 we then heve

r=2
(Bl + o) Z r—1 -

B CC I
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loment recurrence relations 17

Analogically, in the subsequent addend we have:

o oo Gtk _ o p-1 TV
o > > Frr By = ome 3L teor 2 O3 iy
k=0 §=0 =1 j=0

The coefficient is then as follows:

r-1
AT JZO *3" 5.

The coefficients at Sr'1 in the last two addends on the
right-hand side are as follows

blar'1(l--m}r'1 _ Bp(l+n)(1+atl-<oun)r'1
(r-1)1 ' {r-1]1 *

Paying respect to the results obtained, we immediately attain
(2.22) which represents the proposition of Theorem 4.

Relation (2.22) with p=0 gives the formula for the cen-~
tral moments of the negative binomisl distribution without
inflation

H
1
N

(2.27) yr =n

Nelle]

-2
-1, -1
S +§Zo 370 B
J:

.
o

or the one in the form of

-2
: -1
(2.28) b = £ > (P31 (g + 40

H

.

Relation (2.27) is analcgous to the one for the binomial
distribution offered by R.Frisch [4] (p.171, (20)) or to the
formula equivalent to it (but of another form, cf. [4], p.165,
(1)) which was also obtained for the binomial distribution
by X.Pearson [33] (p.160, (XII)) a year before. The formula
of the Pearsonian structure for the negative binomial distri-
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bution equivalent to (2.28) was given in [7], (p.37, (3.13)).
More through discussion of those matters can be found in [7],
pp.6-8.

We shall give here the formula for Fz, calculated accord-
ing to (2.22), for the inflated negative binomial distribu-
tion. The details of calculations have been omitted. We have

g, = a[ﬁ(l-m)2 + iq'i].

3. Moments of the inflated Poisson and geometric distri-
butions

¥rom the recurrence relations for the simple and the cen-
tral moments of the inflated negative binomial distribution
we can obtain in the 1imit proceeding

lim n g = A>0

n-=oo
(cf. Theorem 5.13.1, p.181 in [3]; German ed.,p.151, and
Lemma 1, p.462 in [15]) the recurrence relations for the same
moments of the inflated Poisson distribution. Hence we have

Corollary 1. The simple and the central mo~

ments of the inflated Poisson distribution are expressed by
the following recurrence relations:

r-1
(3.1) &, = p2% - paen)™ w2 3 (A,
j=0
am
(3.2) g = BLT(1-A) + ﬂ.<ﬁr +m—11> ,

- dafl

(3.3) bret = aTp(1-4)7*T - B(1-Aldy, + A("rpr-'l +Wr> ’
(3.4) = prlaz-w]""" - gafrearr-a]"

r-1i

- A epLIE g +A D (T g

3=0

for r = 1,2,-10 .
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Moment recurrence relations 19

The relations mentioned above were also obtained by L.So-~
bich [19] (p.463, (11) - (14)) as corcliaries from formulae
for the inflated binomial distribution in the limit proceed-
ing.

Putting the value 1 instead of n 1in the recurrence re-
lations for the simple and the central moments of the inflat-
ed negative binomial distribution, we &ttain, as a special
case, the recurrence relations for the same moments of the
irflated geometric distribution.

Corollary 2. The recurrerce relations Tor the
simple and the central moments of the inflated geometric di-
atribution have the following forms

{plr - Bp(1+1)F + p (j£1) 5r-1-j} ,

L. 4
(3.6) B, p1r< -8+ P<q_I *_p£>’

r+1 _ ar
(3.7) Fr+1 _drﬁ(l Ep) o A1 _'g) bp * p<q_:5 ooy +d—Pr>,

Q|

(305) EI‘ =

i
|
K~
Q
=
[
]
alg
]
S
>
Felle]
}-_l
+
—
[ peren |
+
2
fu—
1
o
| Emaatl
L]
1
-
1

(3.8) @, =

@2+ puipn g+ £ 2 (7 By 0 B 35 T By ¢

r-2
Do+ o) 3 ("7 B
j=C

+

To the relations given here the same remarks refer az tho-
se made above for the negative binomial distrivution on the
possibility of obtaining formulae for the distribution without
inflation. Simpler relations of that kind were already knowr
before., 4nd so, the zquivalent of foramnla (3.1) (i.e., under
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the condition that P = 0) was offered by R.Risser and C.Z.
raynard B4] (p.320, 2nd ed.yp.91) in 1933, next, by .Kry-
sicki DT] (p.23, (5-I)) in 1957 and lastly, by the present
writer [7] (p.20, (2.5)) in 1971. The discussion of the me~
thods used in the derivation of this formula, which are dif-
ferent from the one mentioned above, can be found in [7]
(ppe3,15,20,21),

In 1934 4.7.Craig [1] (p.264) obtained formulae (3.2) and
(3.3) for the Poisson distribution without inflation (cf. [7],
p.10), and in 1965 4.R.Kamat BO] {(pe47, (17)) obtained for-
mula (3.4} also for the very distribution (the formula of a
different but equivalent form was obtained by K.Pearson [13]
(p.161, ZVII) as early as 1924 (cf. [7], p.7). Formula (3.5)
for the case of Pp= O can be found in [7] (p.21, (2.8)),

It is also worth mentioning that the relations obtained
here for distribution (2.71) may as well be given for the case
of the-so-called Pélya-Eggenberger distribution which is ob-
tained from (2.1) by substituting p = 9/1+7 and n =A/g,
where A>0 and 0> 0 (cf. [7], pp.22,31,37,40 and 44).
e omit an effective presentation which can easily be carried
out,
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