

Aleksander Hać, Roman Stysz

A NON-LINEAR HILBERT-RIEMANN PROBLEM
WITH BOUNDARY CONDITIONS OF THE CLASS L_p^α 1. Introduction

The composite mixed Hilbert-Riemann problem in the class of analytic functions has been considered by I.S.Rogozhina [4] and Lu Chien Ke [2], and in the class of pseudoanalytic function by J.Wolska-Bochenek [7]. In the above-mentioned papers the authors were seeking a solution to the Hilbert-Riemann problem in the class of Hölder functions in connected and multiconnected domains. The present paper provides a generalization of these results with respect to the class in which the solution is sought. Namely, we solve a non-linear Hilbert-Riemann problem with boundary conditions of the class L_p^α .

2. The formulation of the problem

Assume that in the complex variable plane E we are given a doubly connected domain D^+ bounded by two non-intersecting closed Lapunov curves L and L_0 . The curve L_0 comprises the curve L . The orientation of L and L_0 is selected in such a way that the right-angle rotation from the positive direction of the tangent to the interior normal with respect to the domain D^+ is consistent with the rightangle rotation from the real axis OX to the imaginary axis OY . Let D^- denote the domain lying inside the curve L , where we assume that the origin of the coordinate system lies within

D^- . Without loss of generality we may assume that $L_0 = \{z : |z| = 1\}$, is a circle comprising L (see [3], p.37).

We introduce the following notation: $\bar{S} = D^- \cup L \cup D^+ \cup L_0$; $S^- = E \setminus \bar{S}$.

The non-linear Hilbert-Riemann problem to be investigated here consists in finding a function $\phi(z)$ sectionally holomorphic in the domains D^+ and D^- , whose boundary values $\phi^+(t)$ and $\phi^-(t)$ satisfy, almost everywhere on L and L_0 respectively, the boundary conditions:

$$(1) \quad \begin{cases} (a) \quad \phi^+(t) = G(t)\phi^-(t) + g[t, \phi^+(t), \phi^-(t)], & t \in L, \\ (b) \quad \operatorname{Re}[c(t_0)\phi^+(t_0)] = H(t_0), & t_0 \in L_0, \end{cases}$$

where the functions G, g, c, H are given.

To solve this problem we make the following assumptions:

I. The complex function $G(t)$ defined for every $t \in L$ satisfies Hölder's condition

$$(2) \quad G(t) \in H^\mu(L, M_G, k_G) \quad \text{and} \quad \bigwedge_{t \in L} G(t) \neq 0, \quad \mu \in (0, 1).$$

II. The complex function $g(t, u_1, u_2)$ is defined in the domain $t \in L; u_1, u_2 \in E$ and belongs to the class L_p^α , i.e. it satisfies the inequalities

$$(3) \quad \begin{cases} \|g(t, u_1, u_2)\|_{L_p} \leq M_g \\ \|g(t, u_1, u_2) - g(t', u_1', u_2')\|_{L_p} \leq k_g |t - t'|^\alpha + k'_g \|u_1 - u_1'\|_{L_p} + \|u_2 - u_2'\|_{L_p} \end{cases}$$

where $p \in (1, +\infty)$, $\alpha \in (0, 1)$, $M_g, k_g, k'_g > 0$ are constants.

III. The complex function $c(t_0)$ is defined for every $t_0 \in L_0$ and satisfies Hölder's condition

$$(4) \quad c(t_0) \in H^\mu(L_0, M_c, k_c), \quad \mu \in (0, 1).$$

IV. The real function $H(t_0)$ is defined for every $t_0 \in L_0$ and belongs to L_p^α .

$$(5) H(t_0) \in L_p^\alpha(L_0, M_H, k_H), \quad p \in (1, +\infty), \quad \alpha \in (0, 1), \quad M_H, k_H > 0.$$

V. The index of the problem satisfies the condition

$$\text{ind}[G(T)]_L = \frac{1}{2\pi i} \ln[G(t)]_L = \frac{1}{2\pi} [\arg G(t)]_L = \alpha_H \geq 0,$$

$$\text{ind} \left[\frac{c(t_0)}{c(t)} \right]_{L_0} = \frac{1}{2\pi i} \ln \left[\frac{c(t_0)}{c(t)} \right]_{L_0} = \frac{1}{\pi} [\arg \overline{c(t_0)}] = \alpha_R \geq 0.$$

3. The solution of the problem

Making use of the theory developed in [2], [7], we can state that if the problem (1) has a solution $\phi(z)$, then

$$(6) \quad \phi(z) = \phi_1(z) + X_1(z)\phi_0(z);$$

the function $\phi_1(z)$ is a solution of the Hilbert problem and is defined by the formula

$$(7) \quad \phi_1(z) = \frac{X_1(z)}{2\pi i} \int_L \frac{g[\tau, \phi_1^+(\tau), \phi_1^-(\tau)]}{X_1^+(\tau)(\tau - z)} d\tau + X_1(z)P_1(z),$$

where $P_1(z)$ is an arbitrary polynomial and $X_1(z)$ is a canonical solution of the homogeneous Hilbert problem [see [3]]

$$(8) \quad X_1^+(t) = G(t)X_1^-(t), \quad t \in L,$$

and is defined by the formula

$$(9) \quad X_1(z) = \begin{cases} z^{-\alpha_H} \exp \Gamma_1(z), & z \in D^+ \cup L_0 \cup S^-, \\ \exp \Gamma_1(z), & z \in D^-, \end{cases}$$

where

$$(10) \quad \Gamma_1(z) = \frac{1}{2\pi i} \int_L \frac{\ln [\tau^H G(\tau)]}{\tau - z} d\tau,$$

the function $\phi_0(z)$ from (6) is a solution of the Riemann problem (cf. (16))

$$(11) \quad \operatorname{Re} \left[c(t_0) X_1^+(t_0) \phi_0^+(t_0) \right] = H(t_0) - \operatorname{Re} \left[c(t_0) \phi_1^+(t_0) \right], \quad t_0 \in L_0,$$

and can be expressed by the formula

$$(12) \quad \phi_0(z) = \frac{1}{2} \left[\phi_3(z) + \phi_3^*(z) \right] + X_0(z) P_0(z),$$

where $P_0(z)$ is an arbitrary polynomial and

$$(13) \quad \phi_3(z) = \frac{X_0(z)}{\pi i} \int_{L_0} \frac{\phi_4(\tau_0)}{X_0^+(\tau_0)(\tau_0 - z)} d\tau_0, \quad \tau_0 \in L_0,$$

$$(14) \quad \phi_4(\tau_0) = H(\tau_0) - \operatorname{Re} c(\tau_0) \phi_1^+(\tau_0),$$

$$(15) \quad \phi_3^*(z) = \overline{\phi_3\left(\frac{1}{\bar{z}}\right)},$$

$$(16) \quad X_0(z) = \begin{cases} \text{const } \exp \Gamma_0(z), & z \in \bar{S} \setminus L_0, \\ \text{const } z^{-\alpha} \exp \Gamma_0(z), & z \in S^-, \end{cases}$$

$$(17) \quad \Gamma_0(z) = \frac{1}{2\pi i} \int_{L_0} \frac{\ln \left[\tau_0^{-\alpha} \frac{c(\tau_0)}{c(z)} \right]}{\tau_0 - z} d\tau_0.$$

The canonical solutions $X_1^+(t)$ for $t \in L$, $X_0^+(t_0)$ for $t_0 \in L_0$ satisfy Hölder's condition

$$(18) \quad X_1^+(t) \in H^\mu(L, k_{X_1}, M_{X_1}), \quad X_0^+(t_0) \in H^\mu(L_0, k_{X_0}, M_{X_0}), \quad \mu \in (0, 1)$$

and the inequalities

$$(19) \quad 0 < m_{X_1} \leq |X_1^+(t)| \leq M_{X_1}, \quad 0 < m_{X_0} \leq |X_0^+(t_0)| \leq M_{X_0},$$

where m_{X_1} , m_{X_0} , M_{X_1} , M_{X_0} are lower and upper bounds of Hölder's coefficients of the canonical solution of the respective Hilbert problems.

Applying Sochocki-Plemelj's formulas [3] to the function $\phi_1(z)$ given by the formula (7), we obtain the system of integral equations

$$(20) \quad \begin{cases} \phi_1^+(t) = \frac{1}{2} g[t, \phi_1^+(t), \phi_1^-(t)] + \frac{X_1^+(t)}{2\pi i} \int_L \frac{g[\tau, \phi_1^+(\tau), \phi_1^-(\tau)]}{X_1^+(\tau)(\tau-t)} d\tau + \\ + X_1^+(t)P_1(t), \\ \phi_1^-(t) = -\frac{1}{2} \frac{X_1^-(t)}{X_1^+(t)} g[t, \phi_1^+(t), \phi_1^-(t)] + \\ + \frac{X_1^-(t)}{2\pi i} \int_L \frac{g[\tau, \phi_1^+(\tau), \phi_1^-(\tau)]}{X_1^+(\tau)(\tau-t)} d\tau + X_1^-(t)P_1(t). \end{cases}$$

We introduce the following notations

$$(21) \quad \begin{cases} \varphi_j(t) = \begin{cases} \phi_1^+(t) & \text{for } j = 1, \\ \phi_1^-(t) & \text{for } j = 2, \end{cases} \\ Y_j(t) = \begin{cases} X_1^+(t)P_1(t) & \text{for } j = 1, \\ X_1^-(t)P_1(t) & \text{for } j = 2, \end{cases} \\ g_j[t, \varphi_1(t), \varphi_2(t)] = \begin{cases} \frac{1}{2} g[t, \varphi_1(t), \varphi_2(t)] & \text{for } j=1, \\ -\frac{1}{2} \frac{X_1^-(t)}{X_1^+(t)} g[t, \varphi_1(t), \varphi_2(t)] & \text{for } j=2, \end{cases} \\ f_j(t) = \begin{cases} \frac{X_1^+(t)}{2\pi i} \int_L \frac{g[\tau, \varphi_1(\tau), \varphi_2(\tau)]}{X_1^+(\tau)(\tau-t)} d\tau & \text{for } j = 1, \\ \frac{X_1^-(t)}{2\pi i} \int_L \frac{g[\tau, \varphi_1(\tau), \varphi_2(\tau)]}{X_1^+(\tau)(\tau-t)} d\tau & \text{for } j = 2, \end{cases} \end{cases}$$

With the above notations the system (20) can be written in the following form

$$(22) \quad \varphi_j(t) = g_j[t, \varphi_1(t), \varphi_2(t)] + f_j(t) + Y_j(t) \text{ for } j=1,2.$$

Putting

$$(23) \quad \begin{aligned} \varphi^0(t) &= [\varphi_1(t), \varphi_2(t)], \quad \varphi^1(t) = \phi(t), \quad \phi(t) = [\phi^+(t), \phi^-(t)], \\ \varphi^2(z) &= \phi_0(z), \quad \varphi^3(z) = \phi_3(z), \quad \varphi^4(t_0) = \phi_4(t_0) \end{aligned}$$

and making use of the equalities (21) and (22), in view of the formulas (6), (12), (13) and (14), we obtain the following system of strongly singular integral equations

$$(24) \quad \begin{cases} \varphi^1(t) = \varphi^0(t) + X_1(t)\varphi^2(t), \\ \varphi^2(z) = \frac{1}{2} [\varphi^3(z) + \varphi^3(z)] + X_0(z)P_0(z), \\ \varphi^3(z) = \frac{X_0(z)}{2\pi i} \int_{L_0} \frac{\varphi^4(\tau_0)}{X^+(\tau_0)(\tau_0 - z)} d\tau_0, \\ \varphi^4(t_0) = H(t_0) - \operatorname{Re} [c(t_0)\varphi^0(t_0)]. \end{cases}$$

If the problem (1) has a solution of the form (6), then the system (24) has a solution and conversely.

Before we show the existence of at least one solution of the system (24) with the help of J.Schauder's fixed point theorem [5], we state some lemmas.

L e m m a 1. If the function $g(t, u_1, u_2)$ satisfies the assumption II, then the function $\varphi^0(t)$ defined by (22), (23) belongs to the class L_p^β , where $\beta = \min(\alpha, \mu)$.

P r o o f. We make use of the results obtained by B.W.Chwedelidze [1] and R.Słysz [6]. According to the assumption II the function $g(t, u_1, u_2)$ satisfies the inequality (3), hence we have

$$g[t, \varphi_1(t), \varphi_2(t)] \in L_p^\alpha(L, M_g, k_g + 2kk'_g),$$

where k is an arbitrary fixed positive number. In view of (21), we have

$$g_1[t, \varphi_1(t), \varphi_2(t)] \in L_p^\alpha\left[L, \frac{1}{2} M_g, \frac{1}{2} (k_g + 2kk'_g)\right],$$

$$g_2[t, \varphi_1(t), \varphi_2(t)] \in L_p^\alpha\left[L, \frac{1}{2} \frac{M_{X_1}}{m_{X_1}} M_g, \frac{1}{2} \frac{M_{X_1}}{m_{X_1}} (k_g + 2kk'_g) + k_X M_g \frac{M_{X_1}}{m_{X_1}^2}\right].$$

Let $M = \min\left(\frac{1}{2}, \frac{1}{2} \frac{M_{X_1}}{m_{X_1}}\right)$, then we have

$$g_j[t, \varphi_1(t), \varphi_2(t)] \in L_p^\alpha\left[L, MM_g, M(k_g + 2kk'_g) + k_X \frac{M}{m_{X_1}} M_g\right], \quad j=1, 2.$$

The functions $f_j(t)$ defined by (21) belong to the class

$$L_p^\alpha\left[L, a_1 \frac{M_{X_1}}{m_{X_1}} M_g, a_2 \frac{M_{X_1}}{m_{X_1}} M_g + a_3 \frac{M_{X_1}}{m_{X_1}} (k_g + 2kk'_g) + \frac{M_{X_1}}{m_{X_1}^2} k_X M_g\right].$$

The functions $Y_j(t)$ defined by the formula (21) satisfy conditions (18), (19) and we have

$$Y_j(t) \in H^\mu(L, M_{X_1} P_{X_1}, M_{P_1} k_{X_1} + M_{X_1} k_{P_1}), \quad j = 1, 2.$$

We also have

$$(25) \quad \varphi^0(t) \in L_p^\beta\left[L, MM_g + a_1 \frac{M_{X_1}}{m_{X_1}} M_g + M_{X_1} P_{X_1}, M(k_g + 2kk'_g) + k_{X_1} \frac{M}{m_{X_1}} M_g + a_2 \frac{M_{X_1}}{m_{X_1}} M_g + a_3 \frac{M_{X_1}}{m_{X_1}} (k_g + 2kk'_g) + \frac{M_{X_1}}{m_{X_1}^2} k_{X_1} M_g + M_{P_1} k_{X_1} + M_{X_1} k_{P_1}\right],$$

where $\beta = \min(\alpha, \mu)$. Let us denote

$$\frac{M_{X_1}}{m_{X_1}} = A_1, \quad \frac{M_{X_1}}{m_{X_1}} = A_2, \quad \frac{M}{m_{X_1}} + \frac{M_{X_1}}{m_{X_1}} = A_3, \quad a_2 \frac{M_{X_1}}{m_{X_1}} = A_4.$$

We then have

$$(26) \quad \varphi^0(t) \in L_p^\beta \left[L, A_1 M_g + M_{X_1} P_{X_1}, A_2 (k_g + 2k k'_g) + A_3 k_{X_1} M_g + A_4 M_g + M_{P_1} k_{X_1} M_{X_1} k_{P_1} \right],$$

where A_1, \dots, A_4 are constants dependent of M_{X_1} , m_{X_1} , M .

Lemma 2. If the functions $c(t_0)$ and $H(t_0)$ satisfy the assumptions III and IV, respectively, and $\varphi^0(t_0) \in L_p^\beta$, then the function $\varphi^4(t_0)$ defined by (24) belongs to the class L_p^β .

Proof. Making use of the assumptions III, IV and of the Lemma 1 we obtain

$$(27) \quad \begin{aligned} \|\varphi^4(t_0)\|_{L_p} &= \left(\int_{L_0} \left| \varphi^4(t_0) \right|^p dt_0 \right)^{\frac{1}{p}} = \\ &= \left(\int_{L_0} \left| H(t_0) - \operatorname{Re} [c(t_0) \varphi^0(t_0)] \right|^p dt_0 \right)^{\frac{1}{p}} \leq \\ &\leq \left(\int_{L_0} \left| H(t_0) \right|^p dt_0 \right)^{\frac{1}{p}} + \left(\int_{L_0} \left| \operatorname{Re} [c(t_0) \varphi^0(t_0)] \right|^p dt_0 \right)^{\frac{1}{p}} \leq \\ &\leq b_1 M_H + b_2 M_c (A_1 M_g + M_{X_1} P_{X_1}) = B_1 + B_2 M_g + B_3 M_{X_1} P_{X_1}, \end{aligned}$$

$$\begin{aligned}
 (28) \quad & \left\| \varphi^4(t_0 + \Delta t_0) - \varphi^4(t_0) \right\| = \left(\int_{L_0} \left| \varphi^4(t_0 + \Delta t_0) - \varphi^4(t_0) \right|^p dt_0 \right)^{\frac{1}{p}} \leq \\
 & \leq \left(\int_{L_0} \left| H(t_0 + \Delta t_0) - H(t_0) \right|^p dt_0 \right)^{\frac{1}{p}} + \\
 & + \left(\int_{L_0} \left| \operatorname{Re} \left[c(t_0 + \Delta t_0) \varphi^0(t_0 + \Delta t_0) - c(t_0) \varphi_0(t_0) \right] \right|^p dt_0 \right)^{\frac{1}{p}} \leq \\
 & \leq b_3 k_H |\Delta t_0|^\alpha + b_4 M_c \left[A_2 (k_g + 2k'_g) + A_3 k_{X_1} M_g + A_4 M_g + M_{P_1} k_{X_1} + \right. \\
 & \left. + M_{X_1} k_{P_1} \right] |\Delta t_0|^\alpha + b_5 k_c (A_1 M_g + M_{X_1} P_{X_1}) |\Delta t_0|^\mu \leq \\
 & \leq \left[B_4 + B_5 (k_g + 2k'_g) + B_6 k_{X_1} M_g + B_7 M_g + B_8 M_{P_1} k_{X_1} + \right. \\
 & \left. + B_9 M_{X_1} k_{P_1} + B_{10} M_{X_1} P_{X_1} \right] |\Delta t_0|^\beta,
 \end{aligned}$$

where $\beta = \min(\alpha, \mu)$, B_i ($i = 1, \dots, 10$) are positive constants depending upon M_H , k_H , M_c , k_c .

Lemma 3. If the function $\varphi^A(\tau_0)$ belongs to L_p^β in agreement with Lemma 2, then the function $\varphi^3(z)$ defined by the inequality (24) belongs to the class L_p^β .

Proof. The proof of this lemma follows from the papers of B.W.Chwedelidze [1], R.Słysz [6] and from Lemma 2. Hence we have

$$\begin{aligned}
 (29) \quad & \varphi^3(z) \in L_p^\beta \left[L_0, \tilde{B}_1 + \tilde{B}_2 M_g + \tilde{B}_3 M_{X_0} P_{X_0}, \tilde{B}_4 + \tilde{B}_5 (k_g + 2k'_g) + \right. \\
 & \left. + \tilde{B}_6 k_{X_0} M_g + \tilde{B}_7 M_g + \tilde{B}_8 M_{P_0} k_{X_0} + \tilde{B}_9 M_{X_0} k_{P_0} + \tilde{B}_{10} M_{X_0} P_{X_0} \right],
 \end{aligned}$$

where \tilde{B}_i ($i = 1, \dots, 10$) are positive constants.

Lemma 4. If $\varphi^3(z) \in L_p^\beta$, then $\varphi^2(z)$ given by (24) also belongs to L_p^β .

Proof. Lemma 4 follows directly from Lemma 3, if we apply to (24) the formulas given in [3] (p.42). Namely we have

$$(30) \quad \varphi^2(z) \in \left[L_p^\beta L_0, B'_1 + B'_2 M_g + B'_3 M_{X_0} P_{X_0}, B'_4 + B'_5 (k_g + 2kk'_g) + B'_6 k_{X_0} M_g + B'_7 M_g + B'_8 M_{P_0} k_{X_0} + B'_9 M_{X_0} k_{P_0} + B'_{10} M_{X_0} P_{X_0} \right],$$

where B'_i ($i = 1, \dots, 10$) are positive constants.

Lemma 5. If $\varphi^0(t) \in L_p^\beta$, $\varphi^2(t) \in L_p^\beta$, $X_1(t) \in H^L$, then $\varphi^1(t) \in L_p^\beta$.

Proof. Lemma 5 follows from Lemma 1 and Lemma 4. Hence we have

$$(31) \quad \varphi^1(t) \in L_p^\beta \left\{ L, A_1 M_g + M_{X_1} P_{X_1} + k_{X_1} (B'_1 + B'_2 M_g + B'_3 M_{X_0} P_{X_0}), A_2 (k_g + 2kk'_g) + A_3 k_{X_1} M_g + A_4 M_g + M_{P_1} k_{X_1} + M_{X_1} k_{P_1} + M_{X_1} \left[B'_4 + B'_5 (k_g + 2kk'_g) + B'_6 k_{X_0} M_g + B'_7 M_g + B'_8 M_{P_0} k_{X_0} + B'_9 M_{X_0} k_{P_0} + B'_{10} M_{X_0} P_{X_0} \right] \right\}.$$

From the lemmas given above it follows that the functions $\varphi^1(t), \varphi^2(z), \varphi^3(z), \varphi^4(z)$ belong to the class $L_p^\beta(L)$. Hence it suffices to make use of Schauder's theorem to show that there exists a solution of the equation which is the superposition of equations (24). To this aim we consider the functional space \wedge consisting of all pairs of functions $\varphi^1(t) = [\varphi_1^1(t), \varphi_2^1(t)]$ integrable on the curve L with the power p . In this space the norm is defined by the formula

$$(32) \quad \|\varphi^1(t)\| = \max_{j=1,2} \left(\int_L |\varphi_j^1(t)|^p dt \right)^{\frac{1}{p}}, \quad p \in (1, +\infty).$$

The operations of addition and multiplication by a scalar are defined in the usual way. With this definition, \wedge is a Banach space. In this space we consider the set $Z(\varrho, \alpha)$ of points such that

$$(33) \quad \varphi^1(t) \in L_p^\beta(L, \varrho, \alpha), \quad \beta = \min(\alpha, \mu),$$

where ϱ and α are arbitrary fixed positive constants. The set Z is convex and closed. Let us transform it by means of the formula

$$(34) \quad \psi^1(t) = \varphi^0(t) + x_1(t)\tilde{\varphi}^2(t),$$

where $\tilde{\varphi}^2(t)$ is formed by substituting to the first of the equations (24) in place of $\varphi^2(t)$ the respective functions from the remaining three equations in (24). The formula (34) associates to every point $\varphi^1(t) \in Z$ a point $\psi^1(t) \in Z'$. We shall find conditions assuring that $Z' \subset Z$.

Lemma 6. If the constant k'_g is sufficiently small, then Z' is a subset of Z .

Proof. From Lemma 5 we infer that the operation defined by (34) transforms the set Z into its subset Z' , whenever the following inequalities hold

$$(35) \quad \left\{ \begin{array}{l} A_1 M_g + M_{X_1} P_{X_1} + k_{X_1} (B'_1 + B'_2 M_g + B'_3 M_{X_0} P_{X_0}) \leq \varrho, \\ A_2 (k_g + 2\alpha k'_g) + A_3 k_{X_1} M_g + A_4 M_g + M_{P_1} k_{X_1} + M_{X_1} k_{P_1} + \\ + M_{X_1} [B'_4 + B'_5 (k_g + 2\alpha k'_g) + B'_6 k_{X_0} M_g + B'_7 M_g + \\ + B'_8 M_{P_0} k_{X_0} + B'_9 M_{X_0} k_{P_0} + B'_{10} M_{X_0} P_{X_0}] \leq \alpha. \end{array} \right.$$

The inequalities (35) hold for any selection of the constants ϱ and α if we have

$$(36) \quad 2k'_g (A_2 + B'_5 \frac{M}{M_{X_1}}) < 1,$$

i.e. if

$$(37) \quad k'_g < \frac{1}{2(A_2 + B'_5 \frac{M}{M_{X_1}})},$$

where A_2 and B'_5 are positive constants depending upon m_{X_1} , M_{X_1} and $M = \min \left(\frac{1}{2}, \frac{M_{X_1}}{2m_{X_1}} \right)$.

If the condition (37) holds, i.e. if the constant k'_g is sufficiently small, then the set Z' is a subset of Z .

Lemma 7. The transformation (34) of the set Z is continuous with respect to the norm of the space Λ .

Proof. It suffices to show that if a sequence $\{\varphi^{(n)}_1(t)\} \in Z$ is convergent to a function $\varphi^1(t) \in Z$, then the sequence $\{\psi^{(n)}_1(t)\} \in Z$ is convergent in norm to the function $\psi^1(t) \in Z$ according to the formula (34), i.e.

$$(38) \quad \psi^{(n)}_1(t) = \varphi^{(n)}_0(t) + x_1(t) \tilde{\varphi}^2(t).$$

Making use of the notation (21), the equation (22) and the assumption (3), we obtain

$$\begin{aligned} \|\psi^{(n)}_1(t) - \psi(t)\| &= \|\varphi^{(n)}_0(t) - \varphi^0(t)\| + \|x_1(t)\| \cdot \|\tilde{\varphi}^2(t) - \tilde{\varphi}^2(t)\| = \\ &= \|g_j \left[t, \varphi^{(n)}_1(t), \varphi^{(n)}_2(t) \right] - g_j \left[t, \varphi_1(t), \varphi_2(t) \right]\| + \\ &+ \|\tilde{f}_j^{(n)}(t) - \tilde{f}_j(t)\| + \|x_1(t)\| \|\tilde{\varphi}^2(t) - \tilde{\varphi}^2(t)\| \leq \\ &\leq 2k'_g \frac{\varepsilon}{6k'_g} + 2k'_g M_1 \frac{\varepsilon}{6k'_g M_1} + 2k'_g M_2 M_{X_1} \frac{\varepsilon}{6k'_g M_2 M_{X_1}} \leq \varepsilon \end{aligned}$$

$(n > N_1) \quad (n > N_2) \quad (n > N_3)$

for $n = \max(N_1, N_2, N_3)$. M_1 and M_2 are positive constants depending upon m_{X_1}, M_{X_1} . Hence the transformation (38) is continuous in the norm of the space Δ .

Lemma 8. The transformed set Z is compact.

Proof. From the inequalities (35) it follows that the functions $\psi^1(t)$ defined by (34) are jointly bounded and continuous, hence Z' is compact ([8], p.27).

We see that all the assumptions of Schauder's theorem are satisfied. Hence there exists, on the curve L , at least one solution $\hat{\phi}^1(t) \in L_p^\beta(L, \varrho, \omega)$ of the equation being the superposition of the equations (24). Substituting the solution $\hat{\phi}^1(t)$ into the equation (6) we obtain a function $\phi(z)$ which is sectionally analytic in D^+ and D^- , and its boundary values satisfy the conditions (1).

We can now summarize our results in the following theorem.

Theorem. If the given functions $G(t)$, $g(t, u_1, u_2)$, $H(t_0)$, $c(t_0)$ and the index of the problem (1) satisfy the assumptions I-V, and the constant k'_g of the problem satisfies the inequality (37), then there exists at least one solution $\phi(z)$, partly holomorphic in the domains D^+ and D^- , whose boundary values satisfy almost everywhere the boundary conditions (1).

BIBLIOGRAPHY

- [1] Б.В. Х в а д ' е л и д з е : Линейные разрывные граничные задачи теории функций, сингулярные интегральные уравнения и некоторые их приложения, Trudy Tbil. Matem. Inst. Akad. Nauk SSSR, 23 (1957) 3-158.
- [2] Lu Chien Ke : On compound boundary problems. Sci. Sinica 14 (1965) 1545-1555.
- [3] W. P o g o r z e l s k i : Integral equations and their applications, Vol. III, Warsaw 1960.

- [4] I.S. Rogozhina : The Hilbert problem for a piecewise analytic function. Kabardino-Balkarsk. Gos. Univ. Učien. Zap., 19 (1963) 259-263.
- [5] J. Schauder : Der Fixpunktsatz in Funktionalraumen, Studia Math. 2 (1930) 171-180.
- [6] R. Słysz : Własności całki typu Cauchy'ego - zagadnienie Hilberta dla uogólnionych funkcji analitycznych, Doctoral thesis (unpublished), Technical University of Warsaw 1974.
- [7] J. Wolska - Bochenek : A compound non-linear boundary value problem in the theory of pseudo-analytic functions, Demonstratio Math. 4 (1972) 105-117.
- [8] I.N. Vekua : Generalized analytic functions. London 1962.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF WARSAW,
Received January 12, 1978.