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OPERATIONAL EQUATIONS IN SPACE B* 
AND BOUNDARY VALUE PROBLEMS 

I t i s proved i n [5] t h a t any l i n e a r va lue problem 

x ' = f ( t , x ) , lx=r has e x a c t l y one s o l u t i o n (under some assump-

t i o n s on f ) i n the Banach space of continuous f u n c t i o n s on 

a compact i n t e r v a l . Making use of B i t t n e r ' s o p e r a t i o n a l c a l -

c u l u s C O ( L 1 , L ° , S , T , s ) where 
ft 1 M 

( i ) L i s a BQ s p a c e , L i s a BQ s p a c e ; 

( i i ) S : L ^ — L ° , T : L ° — L** are a l g e b r a i c a l l y l i n e a r opera-

t i o n s such t h a t T i s continuous and S»T = id^o! 

( i i i ) the p r o j e c t i o n ssl/*——KerS, c a l l e d a l i m i t c o n d i t i o n , 

g i v e n by sx = x - T°Sx i s a continuous o p e r a t i o n , 

one can formulate a type of "boundary value problem" as f o l -

lows 

Sx = f ( x ) 
( 1 ) 

l x = c (c 6 KerS ) . 

Since the "theorem about open mappings i s true a l s o f o r l o c a l -

l y convex t o p o l o g i c a l spaces we are able to prove t h a t the 

problem (1 J posseses e x a c t l y one s o l u t i o n i n the space B*. 

T h i s i s c e r t a i n l y a g e n e r a l i z a t i o n of the A. L a s o t a ' s and 

Z. O p i a l ' s r e s u l t ( [ 5 ] ) t h a t permits to use the space of a l l 

continuous f u n c t i o n s on the i n t e r v a l [ o , ° ° ) , w i t h a sequence 

of semi-norms Q k ( x ) = s u p { | x ( t ) | : t e [ o , k ] } (k = 1 , 2 , . . . ) . 

As a r e s u l t we o b t a i n the e x i s t e n c e and uniqueness f o r the 

system of d i f f e r e n t i a l equat ions 
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2 T.Pruszko 

x' = f(t,x) 

with the boundary value condition x^ + A*x(o) = r where 
% e R, r 6 Rn, Xoo = lim x(t). 

t OO 

1. The theorem on the existenoe and uniqueness of the so-
lution of problem (1) 

If E is a Bq space then nv(E) denotes the family 
of all nonempty subsets of E. A mapping H s E —•— nv(E) 
will be called upper semicontinuous if its graph {(x,y) : 
: y 6 H(x)} is closed in E*E, and compact if, for any, 
bounded subset X of E the closure of the set U H(x) is 

xeX 
compact in E. An upper semicontinuous and compact mapping 
H : E-—nv(E) will be called completely continuous. 

Let ke a family of semi-norms in L̂  such that 
if q„(x) = 0 for n = 1,2,...., then x = 0. We shall de-

- 1 1 note by L the complementation of L in the paranorm 

|x| - 2 1 + q (x) * 
n=1 n 

In the proof of Theorem 1 we shall make use of the following 
Lemma which is an immediate corollary fiom Theorem 10 of [7]. 

L e m m a 1. Let E be a BQ space and let g : E-—E 
be a mapping of the form g = I - h where I is the iden-
tity on E, whereas h : E — E is a compact map. Then if 
g : E — g(E) is one-to-one mapping, then g s E ——E is 
open. 

T h e o r e m 1. Assume that dim(KerS) < <»<> and so-
me mappings lsL1 — K e r S , f L ^ — — L°, F : L 1——nv(L°) sa-
tisfy the following conditions: 
(a) T»p : L1 —-nv(L1), where T»P(x) = T(P(x)) for eaoh 

x 6 L1, is completely continuous mapping 
(b) f is a continuous mapping and f(x.,)-f(x2) e F(x.|-x2) 

for any x^ ,x2 e L^ 
(c) 1 is a linear continuous operation. 
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Operational aquations 3 

Then, i f x = 0 is the unique solution of the problem 

then in the space L1 there exists exactly one solution of 

(2) S(xj e F (x ) , lx = 0 

then 
( 1 ) . 

P r o o f . As the solution of problem (1) i s equivalent 
to the solution of the following equation: 

(x ,c ) = (T « f (x )+c ,c+c 0 - lx ) 

therefore the theorem w i l l be proved i f we demonstrate that 
the mapping g : L^x KerS —— L^x KerS given by the formula 

g (x , c ) = (x ,c ) - ('i 'of(x) + c, c + cQ - l x ) 

i s a homeomorphism. 
I f the mapping h : L1x KerS —-L 1x KerS is defined by 

the formula 

h (x ,c ) = (T<>f(x) + c, c + cQ - l x ) , 

then the mapping g has the form g = I - h, where I is 
identity on L1x KerS. 

1°. Let us notice in the f i r s t place that g : L1x KerS — 
—•— g(L^x KerS) is a one-to-one mapping. Indeed, le t g ( x 1 , c 1 ) = 
= gfxgjCg)« Then i t follows from the def init ion of g that 

(x.,-x2,t^-Cg) = (T [ f ( x 1 ) - f ( * 2 ) ] + c1" c2» c1" c2 " 

and this equality i s equivalent to the following system of 
two equations 

(1.1) x.,-x2 = i f f i x . , ) - f ( x 2 ) ] + c.j -c2 

(1.2) l t x ^ Z g ) = 0. 

As, according to our assumption (b) f ( x 1 ) - f ( x 2 ) e P (x 1 -x 2 ) , 
therefore i t follows from ( 1 . 1 ) that 

- 319 -



4 T.Pruszko 

(1.3) T«P(X1-X2) + c-j-cg. 

Hence we get from (1.2) and (1.3) S(x.j-x2) e P (x^ -x 2 ) , 
l fx^-x^) = 0 . By our assumptions problem (2) has only a ze -
ro so lu t ion and hence we obtain from condi t ion (1.1) the equa-
l i t y 

c 2 - c 1 = s(c2—ci) = s o T j f ( x 1 ) - f ( x 2 ) J = 0 

then we have (x^,c^) = ( x 2 , c 2 ) . Consequently g j L^xKerS —— 
—— g(L^x KerS) i s a one-to-one mapping. 

2° Next we s h a l l show tha t h i s a compact mapping, i . e . 
tha t f o r any a r b i t r a r y bounded se t X C L^x KerS the closure 
of the set h(X) i s compact in L^x KerS. 

Let ( y n i ° n ) e h(X) ( n = 1 , 2 , . . . ) . We const ruct a sequen-
ce 

(1.4) { * ( * n . c n ) ~ = { ( T [ f ( x n ) - f ( 0 ) ] + c n , c n - l x n ) } , 

where ( x
n » c n ) e x a n d k ( x n , c n ) ~ ( n = 1 « 2 » . . . ) . 

As the sequence i s bounded, the re fo re the sequen-
ces jx^j and | c n j are bounded, too , in L̂  and KerS 
r e s p e c t i v e l y . I t fol lows from assumption (b) t ha t CO 
T j f ( x n ) - f ( 0 f j e U T°F(xQ). By assumption (a) the mapping 

T®F i s compact, and there fore the sequence | t [ f ( x n ) - f ( o ) J | 
contains a convergent subsequence. As dim(KerS) < ®® , t h e r e -
fore the bounded sequence | c

n ] contains a convergent sub-
sequence. The l i n e a r and continuous operat ion 1 maps the 
bounded sequence [ x

n ] in to the bounded sequence {^n} 
where lxQ 6 KerS ( n = 1 , 2 , . . . ) . We may assume now, without 
any loss of g e n e r a l i t y , tha t { T [ f ( x

n ) ] ] » { c n} ' a n d { l x n } 
are convergent. I t fol lows the re fo re from (1.4) tha t the s e -
quence convergent» the re fo re the closure of 
ii(Xi i s compact an consequently the mapping h i s compact. 

Now in view of Lemma 1 g i s open. 
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3°. Let V(0,0) be such a neighbourhood of zero in 
L1x KerS that 

(1.5) pn (x ,a ) < n for (x ,c ) e V(0,0) (n=1 ,2 , . . . ) , 
- 1 

where pn is a sequence of seminorms in L x KerS such that 
pn < pn - 1 (n=1 ,2 , . . . ) . Let 3V(0,0) be the boundary of the 
neighborhood V(0,0) . We shall show the existence of such a 
neighborhood W(0,0) that condition 

(1.6) (y,c ) e a V(x,c) ===> g(y,c ) i W(g(x,c) ) 
holds for (x fc )€L1xKer£>. 

Assume that condition (1.6) is fa lse . Then for any neigh-
borhood Wn(0,0) = |(x,c) s pn (x ,c ) < 1 J (n=1,2, . . . } there 

exist such elements ( x n » c n ) e KerS and (7n»cn ) 6 
6 3V(xn>c ) that 

(1.7) 8(7n ,cn ) e Wn (g (xn ,cQ ) ) , 

where 

s (y n , c n ) = ( y n , c n ) -h (y n , c n ) , g (x n , c n ) = (xn ,cn ) -h (xn ,cnJ. 

Therefore 

(1.8) . (7n -xn ,cn -cn ) = H (7 n , c n ) -h (x n , c n ) +g (y n , c i l ) - g (x n , c n ) . 

Condition (1.7) is equivalent to the following condition 

g (y n , c n ) - g (x n , c n ) e Wn(0,0) 

and therefore 

P n ( g ( y n . c n ) - g ( x n , c n j ) < J (n=1,2 , . . . ) . 

Hence 

(1.9) lim [g (y n ,ô n ) -g (x n ,c )] = 0 . 
n -—oo 
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We get from the def ini t ion of h that 

(1.10) h(yn ,cn ) -h(Vcn ) = ( T [ f ( y n ) - f ( X n ) ] + V C n ' V V l ( V x n O • 

A s i y » , t®„M*„»0 6 3 V(0,0) (n=1 ,2 , . . . ) , therefore by (1.5) 
xt a n _ 

the sequence {(7n~xn»cn"'cn)} bounded in L x KerS. Now, 
;ust as in part 2° we notice that the sequences {l(xn~yn)}» 
°n""cnJ» |T[f (7 n ) - f (x n ) J| include convergent subsequenoes. 

therefore without any loss of general ity we can assume that 
the sequence ( u n » c n ) = { k ^ n ^ n ^ " " ^ ^ » 0 ^ ] i s c o n v e r S e n t » 
Let 

(1.12) lim (u n , c n ) = (u ,c ) . 
n 

I t follows from conditions (1 .8) , (1 .9) , (1.12) that 

(1.13) lim (y n -x n . c n -e n ) = U , c ) 
n * 

and that 

(u,S) = lim (^ [ f ( 7 n ) - f ( x n ) ] +o, c - l u ) . 

Put 

(1.14) z = lim T[f (y n ) - f < x n ) ] • 

By assumption (b) we have 

(1.15) " f ( x n ) ] e ( n = 1 » 2 » " ' ) 

and as the mapping T»F i s upper semicontinuous, we get from 
conditions (1.13>, (1.14), (1.15) 

(1.16) z e T°P(u). 

Next, taking the l imits in (1.11), we get 

(1.17) (u,c) = (z+c,c-lu). 
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Operational equations .7 

Therefore from (1.16) and (1.17) we get 

Su e F(u), lu = 0. 
As by our assumptions problem (2) has only a zero solution, 
therefore u = 0. It follows from (1.16) that sz = 0. By 
(1.17) sz+c = 0 therefore 2 = 0 . Hence (u,g) = (0,0). 

Prom the other side we have ^n~xn'^n~cn^ £ ^ "V(0,0) 
(n=1,2,...) and therefore Py(u,c) = 1 where Fy is the 
Minkowski functional for the neighborhood V(0,0). This con-
tradicts the fact that (u,c) = (0,0). Thus condition (1.16) 
has been proved. 

4°. Finally we shall that Im g = L1x KerS. It follows 
from (1.6) and from the fact that g is an open mapping we 
get 

(1.18) W(g(x,c)) C g(V(x,c)). 
—1 

Assume that L x KerSXIm g ^ 0. As g is open, therefore 
there exists an element (y,c) e L x KerS such that 
(y,c) i Iai g. and (y,c) e Im g. Since (y,c) 6 Im g there 
exists an element £ Im g such that (y,c) t "!(-, ). 
assume g(xQ,c0) = (yo»co). From condition (1.18) we obtain 
the relation V(yQ,co) C g(V(xQ ,cQ ) ). (y, c) e ";('J0,cQ) 
we have (y,c) e g(V(x0,c0)). 

Thus we obtained a contradiction with the condition 
(y,c) 4 Im gt Therefore g is a surjection. q.e.d. 

2. Certain boundary value problem for the equation 
x' = f(t,x) in the unlimited interval 

1 
Let L be the space of all absolutely continuous func-

tions x : with the sequence of setninorms 
<5k(x; = sup ||x(t)j : t 6 [0, k] | (k=1,2,...J. 

— 1 
It can be easily seen that in this case L is the space of 
all continuous functions c [o ,°° j . 
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8 T.Pruszko 

let L° be the spac6 of such functions y : (0, «>) — — Rm 

that if y = (y1 ,y2f ••• *1:1611 the functions yi: (0, ooj — R 1 

are locally integrable. Ip L° we define a sequence of semi-
norms 

k 
Pk(y) = max | Jjyi{-t) |dt : i=1,2,... ,m j (k=1,2,...). 

o 
The derivative operation and the integral we define as follows 

S = f t . ! - J . 
o 

rhen sx = (x (0)) and the space KerS is isomorphic with 
v/e can easily verify that the operational calculus defined in 
this way satisfies conditions (i)-(iii). 

Let M C C[0,°°) be a subspace of functions possessing 
a finite limit lim x(t) = x » and let ¡I £ H^. On the + —— oo (U m 
space M we define á continuous linear operation 1 : M —«-R , 
lx = Xoo + Ax(0). We infer easily from the Han-Banach's The-
orem that there exists a continuous linear operation 
1 : c[o,~) — S m such that lx = lx for x e M. 

In the defined model of the operational calculus we shall 
prove the following 

L e m m a 2. If <f>:(0,°°) — R1 is a non-negative 
integrable function and if the mapping P : C [O,oo) — — nv(L°) 
is defined by the formula 

F(x) = jy 6 1° : |y(t) | < f ( t ) | x ( t ) | a.e. on (Of~)j 

then the mapping T»F : C [o,«» ) — nv(C [o, oo)), T<>F(x) = 
T(P^x)) is completely continuous. 
P r o o f . In the first place we shall show that' T°F 

is a compaot. Let X C c[0,°°) be a bounded set. We shall 
show that the closure of the set 

U T. P(x) is compact in 
xeX C[o,oo). Ab X is bounded, therefore for any positive inte-
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Operational equations 9 

ger k there exists such a positive number that 
sup|qk(x) s x e x } ^ N^. Thus in every integral [o,k] 
(k=1,2,...) the functions belonging to the set Y = LJ T< F(x) 

k 
are all bounded by the constant N. f i f ( t)dt and are eaui-

r ° continuous, because for 't-)»'t2 € L^»^] w e have 

xeX 

J y(z)dz - J y(z)dz ^ Nk J <f>(z)dz for y e Y. 

Let |y n] be some sequence of functions belonging to Y. 
By Ascoli's theorem sequence j^n} con'fcaij;ls a n7 k=1,2,, 
a subsequence 

where 
' h ] 1 

n. . 1 „ convergent in the seminorm q v 

k is a subsequence of 
ni 

for any k. Now we 
can select by means of the diagonal method the subsequence I^n i-1 2 { 7 n } convergent in any seminorm qk 

k=1,2,...). Thus we have shown that the closure of Y is 
compact. Hence T°P is compact, too. 

Next we shall show th§t the mapping T°F is upper semi-
continuous, i.e. that the conditions 
(2.1) x, un -u, u n6T»P(x n) (n=1 ,2,... ) 

imply 
u e T«P(x). 

Let 

(2.2) 

where 

un = / yQ(zJdz, 

(2.3) y n 6 P(xn), i.e. |yn(t)| $ f(t) |xn(t)| a.e. on (0,~). 
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10 í .P ru3zko 

A a the sequence { x
n j i s bounded in c [ o , ° ° J t h e r e f o r e the 

f u n c t i o n h ( t ) = s up | | x^ ( t : n = 1 , 2 , . . . J t e [ 0 , o o ) i s l o -
c a l l y i n t e g r a b l e . 

How from (2 .3 ) we have 

(2.'4) j y n ( t ) j <; ¡p(t )h ( t j a . e . on (O .co j . 

Let denote the space of i n t e g r a b l e f u n c t i o n s 
v : (0 ,k )——R m and l e t P k : L° ——L., (0 ,k) be a cont inuous 
l i n e a r opera t ion def ined by the formula ? k ( y ) ( t ) = y ( t ) f o r 
t e ( 0 , k ) . Since f o r the sequence cond i t ion (2 .4) 
holds then in the space L° t he re e x i s t s a f u n c t i o n y such 

r i k 1 ~ t h a t the sequence F ^ con ta ins a subsequence • 

"/eakly convergent to the P^y in the space L.j(0,k) f o r 
k = 1 , 2 , . . . ( c f . [3] t h . I V . 3 . 9 and [8] t h . 4 . 2 ) . l ioreover , l e t 

, k+1] the sequence be a subsequence of ] P ^ n }i=1 

f o r k = 1 , 2 , . . 
iiow we can s e l e c t by means of the d iagonal method the se-

c uence 7, ̂ L of ( j ' j v/eakly convergent to the f u n c t i o n n i ] i = 1 I n J ^ 
y in the space L c . Hence the sequence jTy?" I i s weakly 

1 i J i=1 
convergent to the f u n c t i o n Ty, in the space Cl_0,«> ) by the 
c o n t i n u i t y of T. Since Ty^ u as T y f l — - u by ( 2 . 1 ) , 
t h e r e f o r e 1 

( 2 .5 ; Ty = u. 

On the o ther hand, by (2 .4) i t fo l lows t h a t t he re i s a sequen-
c e { v n } n 

= 1 of convex combinations of P ^ j ^ - , » p k y n+2 ' 
P ^ such t h a t p k (v^ - f ky ; — 0 i f n • «» . ' f he re -r k 1 0 0 

f o r e t he re i s a subsequence ^v n [ of the sequence 

such t h a t 

- u p 

v n ( t ) ——y(t ; i f j — a o , a . e . on ( 0 , k ) , (k=1 , 2 , . . . ) . 
0 
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..m From the convexity of tne set F(x)(t/ = |z 6 H1" : |z| < 
^ <p(t;|x(t/|| ior every t 6 and the convergence 
O f | "<:nJ to X i t i'oliov/s that y ( t ) e F ( x ) ( t ) a .e . on 
(O, k J. ( k = 1 , 2 , . . . j . Cor.ceq uently by (2.5) we have y e F(xj 
and therefore a 6 ToF(x). q.e .d. 

liow we shal l formulate lemma which has been proved in [&] 
f o r bounded in te rva l s . 

•i 

L e m m a 3. I f <ps(0,°°) — R i s a non-negative 
integrable function sa t i s fy ing the condition 

then the problem 

(*) 

J" <p(t)dt < In |5l| 

x 'e F(x) , lx = 0, 

where F i s the mapping defined in Lemma 2 has exclusively 
a zero solution. 

P r o o f . If x 6 F (x) , then we have from the d e f i -
nit ion of F 

( 2 . 6 ) |x' ( t )| ^ <f(t) |x(t j| a . e . on (0,<~ ). 

We sha l l show that i f the function x s a t i s f i e s the inequa-
l i t y (2 .6) then x 6 M i . e . there ex i s t s a f i n i t e l imit 
lim x ( t ) = x . In f ac t , from (2.6) follows the ineaua l i ty 

t_oo t 

|x(t)|< |x(0 ) | + J" <f(z)|x(z) |dZ. 

From Gronwall's inequal i ty we obtain 

(2 .7) |x ( t )| í |x(0)| exp J <p(z )dz 

what together with inequa l i t i e s (2 .6) gives 

(2.8) | x ' ( t ) | x(0)| exp J f ( z ) d s [ t ) . 
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12 T.Pruszko 

Now we obtain from (2.8) that the integra l J 
oo 0 

convergent. Therefore le t x M = J * (t )dt. 

Then 
0 

(2.9) 
oo 

x ( t ) - J x ' ( t ) d t 
0 

£ 
oo 

j x(z)dz 
z 

and as / |x'(z)|dz i s convergent, therefore we obtain from 
o 

the estimation (2.9) that lim x ( t ) = x„-. Thus x e M. 
t — 

Next we show that problem (*) has only a zero solution. 
If x(0) = 0 then from (2.7) we obtain x ( t ) = 0. I f , on 
the contrary, x(0) ^ 0, then (2.7) implies 

(2.10) 

As X € 

In ! < 7 <f(z)dZ. 1x1 JxToTJ 4 { r 

therefore lx = x + H'x(O), Therefore from 
(*) follows the equality 

I 
|x(0) l 1*1 

what together with condition (2.10) gives 
e e 

In |A I < f if(t )dt. 
o 

This contradicts our assumption. Therefore problem (*) has 
exclusively a zero solution. 

From Theorem 1 and Lemmas 2 and 3 i t follows that 
T h e o r e m 2. Assume that : 

(a) the integrable and non-negative function tp:(0,°°) —H 
s a t i s f i e s the assumption of Lemma 3; 

({!>) the continuous function f : [o,oo)x Rm—Rm s a t i s f i e s 
the conditions 

|f( t ,s ) - f ( t , s ) | s? <f(t) |s-s| and f ( t , 0 ) = 0 for t e [ ú , « ¡ . 
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Than t h e r e e x i s t s one and only one s o l u t i o n of the problem 

x ' ( t ) = f ( t , x ( t ) ) 

Xoo + A.x(O) = r , r e Rm. 
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