

Tadeusz Pruszko

**OPERATIONAL EQUATIONS IN SPACE B_o^*
AND BOUNDARY VALUE PROBLEMS**

It is proved in [5] that any linear value problem $x' = f(t, x)$, $lx = r$ has exactly one solution (under some assumptions on f) in the Banach space of continuous functions on a compact interval. Making use of Bittner's operational calculus $CO(L^1, L^0, S, T, s)$ where

- (i) L^0 is a B_o space, L^1 is a B_o^* space;
- (ii) $S: L^1 \rightarrow L^0$, $T: L^0 \rightarrow L^1$ are algebraically linear operations such that T is continuous and $S \circ T = id_{L^0}$;
- (iii) the projection $s: L^1 \rightarrow \text{Ker } S$, called a limit condition, given by $sx = x - T \circ Sx$ is a continuous operation, one can formulate a type of "boundary value problem" as follows

$$(1) \quad \begin{aligned} Sx &= f(x) \\ lx &= c \quad (c \in \text{Ker } S). \end{aligned}$$

Since the theorem about open mappings is true also for locally convex topological spaces we are able to prove that the problem (1) possesses exactly one solution in the space B_o^* . This is certainly a generalization of the A. Lasota's and Z. Opial's result ([5]) that permits to use the space of all continuous functions on the interval $[0, \infty)$, with a sequence of semi-norms $q_k(x) = \sup\{|x(t)| : t \in [0, k]\}$ ($k = 1, 2, \dots$). As a result we obtain the existence and uniqueness for the system of differential equations

$$x' = f(t, x)$$

with the boundary value condition $x_\infty + \lambda \cdot x(0) = r$ where $\lambda \in \mathbb{R}$, $r \in \mathbb{R}^n$, $x_\infty = \lim_{t \rightarrow \infty} x(t)$.

1. The theorem on the existence and uniqueness of the solution of problem (1)

If E is a B_σ space then $nv(E)$ denotes the family of all nonempty subsets of E . A mapping $H : E \rightarrow nv(E)$ will be called upper semicontinuous if its graph $\{(x, y) : y \in H(x)\}$ is closed in $E \times E$, and compact if, for any bounded subset X of E the closure of the set $\bigcup_{x \in X} H(x)$ is compact in E . An upper semicontinuous and compact mapping $H : E \rightarrow nv(E)$ will be called completely continuous.

Let $\{q_n\}$ be a family of semi-norms in L^1 such that if $q_n(x) = 0$ for $n = 1, 2, \dots$, then $x = 0$. We shall denote by \bar{L}^1 the complementation of L^1 in the paranorm

$$\|x\| = \sum_{n=1}^{\infty} 2^{-n} \frac{q_n(x)}{1 + q_n(x)}.$$

In the proof of Theorem 1 we shall make use of the following Lemma which is an immediate corollary from Theorem 10 of [7].

Lemma 1. Let E be a B_σ space and let $g : E \rightarrow E$ be a mapping of the form $g = I - h$ where I is the identity on E , whereas $h : E \rightarrow E$ is a compact map. Then if $g : E \rightarrow g(E)$ is one-to-one mapping, then $g : E \rightarrow E$ is open.

Theorem 1. Assume that $\dim(\text{Ker } S) < \infty$ and some mappings $l : \bar{L}^1 \rightarrow \text{Ker } S$, $f : \bar{L}^1 \rightarrow L^0$, $F : \bar{L}^1 \rightarrow nv(L^0)$ satisfy the following conditions:

- (a) $T \cdot F : \bar{L}^1 \rightarrow nv(\bar{L}^1)$, where $T \cdot F(x) = T(F(x))$ for each $x \in \bar{L}^1$, is completely continuous mapping
- (b) f is a continuous mapping and $f(x_1) - f(x_2) \in F(x_1 - x_2)$ for any $x_1, x_2 \in \bar{L}^1$
- (c) l is a linear continuous operation.

Then, if $x = 0$ is the unique solution of the problem

$$(2) \quad S(x) \in F(x), \quad lx = 0$$

then in the space \bar{L}^1 there exists exactly one solution of (1).

P r o o f. As the solution of problem (1) is equivalent to the solution of the following equation:

$$(x, c) = (T \cdot f(x) + c, c + c_0 - lx)$$

therefore the theorem will be proved if we demonstrate that the mapping $g : \bar{L}^1 x \text{Ker } S \rightarrow \bar{L}^1 x \text{Ker } S$ given by the formula

$$g(x, c) = (x, c) - (T \cdot f(x) + c, c + c_0 - lx)$$

is a homeomorphism.

If the mapping $h : \bar{L}^1 x \text{Ker } S \rightarrow \bar{L}^1 x \text{Ker } S$ is defined by the formula

$$h(x, c) = (T \cdot f(x) + c, c + c_0 - lx),$$

then the mapping g has the form $g = I - h$, where I is identity on $\bar{L}^1 x \text{Ker } S$.

¹⁰. Let us notice in the first place that $g : \bar{L}^1 x \text{Ker } S \rightarrow g(\bar{L}^1 x \text{Ker } S)$ is a one-to-one mapping. Indeed, let $g(x_1, c_1) = g(x_2, c_2)$. Then it follows from the definition of g that

$$(x_1 - x_2, c_1 - c_2) = (T[f(x_1) - f(x_2)] + c_1 - c_2, c_1 - c_2 - l(x_1 - x_2))$$

and this equality is equivalent to the following system of two equations

$$(1.1) \quad x_1 - x_2 = T[f(x_1) - f(x_2)] + c_1 - c_2$$

$$(1.2) \quad l(x_1 - x_2) = 0.$$

As, according to our assumption (b) $f(x_1) - f(x_2) \in F(x_1 - x_2)$, therefore it follows from (1.1) that

$$(1.3) \quad x_1 - x_2 \in T \circ F(x_1 - x_2) + c_1 - c_2.$$

Hence we get from (1.2) and (1.3) $S(x_1 - x_2) \in F(x_1 - x_2)$, $l(x_1 - x_2) = 0$. By our assumptions problem (2) has only a zero solution and hence we obtain from condition (1.1) the equality

$$c_2 - c_1 = s(c_2 - c_1) = s \circ T[f(x_1) - f(x_2)] = 0$$

then we have $(x_1, c_1) = (x_2, c_2)$. Consequently $g: \bar{L}^1 x \text{Ker}S \rightarrow g(\bar{L}^1 x \text{Ker}S)$ is a one-to-one mapping.

2° Next we shall show that h is a compact mapping, i.e. that for any arbitrary bounded set $X \subset \bar{L}^1 x \text{Ker}S$ the closure of the set $h(X)$ is compact in $\bar{L}^1 x \text{Ker}S$.

Let $(y_n, \bar{c}_n) \in h(X)$ ($n=1, 2, \dots$). We construct a sequence

$$(1.4) \quad \{h(x_n, c_n) - h(0, 0)\} = \{(T[f(x_n) - f(0)] + c_n, c_n - lx_n)\},$$

where $(x_n, c_n) \in X$ and $h(x_n, c_n) = (y_n, \bar{c}_n)$ ($n=1, 2, \dots$). As the sequence $\{(x_n, c_n)\}$ is bounded, therefore the sequences $\{x_n\}$ and $\{c_n\}$ are bounded, too, in \bar{L}^1 and $\text{Ker}S$ respectively. It follows from assumption (b) that

$T[f(x_n) - f(0)] \in \bigcup_{n=1}^{\infty} T \circ F(x_n)$. By assumption (a) the mapping $T \circ F$ is compact, and therefore the sequence $\{T[f(x_n) - f(0)]\}$ contains a convergent subsequence. As $\dim(\text{Ker}S) < \infty$, therefore the bounded sequence $\{c_n\}$ contains a convergent subsequence. The linear and continuous operation l maps the bounded sequence $\{x_n\}$ into the bounded sequence $\{lx_n\}$ where $lx_n \in \text{Ker}S$ ($n=1, 2, \dots$). We may assume now, without any loss of generality, that $\{T[f(x_n)]\}$, $\{c_n\}$, and $\{lx_n\}$ are convergent. It follows therefore from (1.4) that the sequence $\{h(x_n, c_n)\}$ is convergent. Therefore the closure of $h(X)$ is compact and consequently the mapping h is compact.

Now in view of Lemma 1 g is open.

3⁰. Let $V(0,0)$ be such a neighbourhood of zero in $\bar{L}^1 x \text{Ker}S$ that

$$(1.5) \quad p_n(x, c) < n \text{ for } (x, c) \in V(0,0) \quad (n=1, 2, \dots),$$

where p_n is a sequence of seminorms in $\bar{L}^1 x \text{Ker}S$ such that $p_n < p_{n-1}$ ($n=1, 2, \dots$). Let $\partial V(0,0)$ be the boundary of the neighborhood $V(0,0)$. We shall show the existence of such a neighborhood $W(0,0)$ that condition

$$(1.6) \quad (y, \bar{c}) \in \partial V(x, c) \implies g(y, \bar{c}) \notin W(g(x, c)) \text{ holds for } (x, c) \in \bar{L}^1 x \text{Ker}S.$$

Assume that condition (1.6) is false. Then for any neighborhood $W_n(0,0) = \{(x, c) : p_n(x, c) < \frac{1}{n}\}$ ($n=1, 2, \dots$) there exist such elements $(x_n, c_n) \in \bar{L}^1 x \text{Ker}S$ and $(y_n, \bar{c}_n) \in \partial V(x_n, c_n)$ that

$$(1.7) \quad g(y_n, \bar{c}_n) \in W_n(g(x_n, c_n)),$$

where

$$g(y_n, \bar{c}_n) = (y_n, c_n) - h(y_n, \bar{c}_n), \quad g(x_n, c_n) = (x_n, c_n) - h(x_n, c_n).$$

Therefore

$$(1.8) \quad (y_n - x_n, \bar{c}_n - c_n) = h(y_n, \bar{c}_n) - h(x_n, c_n) + g(y_n, \bar{c}_n) - g(x_n, c_n).$$

Condition (1.7) is equivalent to the following condition

$$g(y_n, c_n) - g(x_n, c_n) \in W_n(0,0)$$

and therefore

$$p_n(g(y_n, \bar{c}_n) - g(x_n, c_n)) < \frac{1}{n} \quad (n=1, 2, \dots).$$

Hence

$$(1.9) \quad \lim_{n \rightarrow \infty} [g(y_n, \bar{c}_n) - g(x_n, c_n)] = 0.$$

We get from the definition of h that

$$(1.10) \quad h(y_n, \bar{c}_n) - h(x_n, c_n) = \left(T[f(y_n) - f(x_n)] + \bar{c}_n - c_n, \bar{c}_n - c_n - l(y_n - x_n) \right).$$

As $(y_n, \bar{c}_n) - (x_n, c_n) \in \partial V(0,0)$ ($n=1,2,\dots$), therefore by (1.5) the sequence $\{(y_n - x_n, \bar{c}_n - c_n)\}$ is bounded in $\bar{L}^1 x \text{Ker } S$. Now, just as in part 2^o we notice that the sequences $\{l(x_n - y_n)\}$, $\{\bar{c}_n - c_n\}$, $\{T[f(y_n) - f(x_n)]\}$ include convergent subsequences. Therefore without any loss of generality we can assume that the sequence $(u_n, \tilde{c}_n) = \{h(y_n, \bar{c}_n) - h(x_n, c_n)\}$ is convergent. Let

$$(1.12) \quad \lim_{n \rightarrow \infty} (u_n, \tilde{c}_n) = (u, \tilde{c}).$$

It follows from conditions (1.8), (1.9), (1.12) that

$$(1.13) \quad \lim_{n \rightarrow \infty} (y_n - x_n, \bar{c}_n - c_n) = (u, \tilde{c})$$

and that

$$(u, \tilde{c}) = \lim_{n \rightarrow \infty} \left(T[f(y_n) - f(x_n)] + \tilde{c}, \tilde{c} - lu \right).$$

Put

$$(1.14) \quad z = \lim_{n \rightarrow \infty} T[f(y_n) - f(x_n)].$$

By assumption (b) we have

$$(1.15) \quad T[f(y_n) - f(x_n)] \in T \circ F(y_n - x_n) \quad (n=1,2,\dots)$$

and as the mapping $T \circ F$ is upper semicontinuous, we get from conditions (1.13), (1.14), (1.15)

$$(1.16) \quad z \in T \circ F(u).$$

Next, taking the limits in (1.11), we get

$$(1.17) \quad (u, \tilde{c}) = (z + \tilde{c}, \tilde{c} - lu).$$

Therefore from (1.16) and (1.17) we get

$$Su \in F(u), \quad lu = 0.$$

As by our assumptions problem (2) has only a zero solution, therefore $u = 0$. It follows from (1.16) that $sz = 0$. By (1.17) $sz + \tilde{c} = 0$ therefore $\tilde{c} = 0$. Hence $(u, \tilde{c}) = (0, 0)$.

From the other side we have $(y_n - x_n, \tilde{c}_n - c_n) \in \partial V(0,0)$ ($n=1,2,\dots$) and therefore $P_V(u, c) = 1$ where P_V is the Minkowski functional for the neighborhood $V(0,0)$. This contradicts the fact that $(u, c) = (0, 0)$. Thus condition (1.16) has been proved.

4^o. Finally we shall show that $\text{Im } g = \bar{L}^1 x \text{Ker } S$. It follows from (1.6) and from the fact that g is an open mapping we get

$$(1.18) \quad W(g(x, c)) \subset g(V(x, c)).$$

Assume that $\bar{L}^1 x \text{Ker } S \setminus \text{Im } g \neq \emptyset$. As g is open, therefore there exists an element $(y, \tilde{c}) \in \bar{L}^1 x \text{Ker } S$ such that $(y, \tilde{c}) \notin \text{Im } g$ and $(y, \tilde{c}) \in \overline{\text{Im } g}$. Since $(y, \tilde{c}) \in \overline{\text{Im } g}$ there exists an element $(y_0, \tilde{c}_0) \in \text{Im } g$ such that $(y, \tilde{c}) \in W(y_0, \tilde{c}_0)$. Assume $g(x_0, c_0) = (y_0, \tilde{c}_0)$. From condition (1.18) we obtain the relation $W(y_0, \tilde{c}_0) \subset g(V(x_0, c_0))$. As $(y, \tilde{c}) \in W(y_0, \tilde{c}_0)$ we have $(y, \tilde{c}) \in g(V(x_0, c_0))$.

Thus we obtained a contradiction with the condition $(y, c) \notin \text{Im } g$. Therefore g is a surjection. q.e.d.

2. Certain boundary value problem for the equation $x' = f(t, x)$ in the unlimited interval

Let \bar{L}^1 be the space of all absolutely continuous functions $x : [0, \infty) \rightarrow \mathbb{R}^m$ with the sequence of seminorms

$$q_k(x) = \sup \{ |x(t)| : t \in [0, k] \} \quad (k=1, 2, \dots).$$

It can be easily seen that in this case \bar{L}^1 is the space of all continuous functions $C[0, \infty)$.

Let L^0 be the space of such functions $y : (0, \infty) \rightarrow \mathbb{R}^m$, that if $y = (y_1, y_2, \dots, y_m)$ then the functions $y_i : (0, \infty) \rightarrow \mathbb{R}^1$ are locally integrable. In L^0 we define a sequence of semi-norms

$$p_k(y) = \max \left\{ \int_0^k |y_i(t)| dt : i=1, 2, \dots, m \right\} \quad (k=1, 2, \dots).$$

The derivative operation and the integral we define as follows

$$S = \frac{d}{dt}, \quad T = \int_0^t.$$

Then $sx = (x(0))$ and the space $\text{Ker } S$ is isomorphic with \mathbb{R}^m . We can easily verify that the operational calculus defined in this way satisfies conditions (i)-(iii).

Let $M \subset C[0, \infty)$ be a subspace of functions possessing a finite limit $\lim_{t \rightarrow \infty} x(t) = x_\infty$ and let $\lambda \in \mathbb{R}^1$. On the space M we define a continuous linear operation $\tilde{I} : M \rightarrow \mathbb{R}^m$, $\tilde{I}x = x_\infty + \lambda x(0)$. We infer easily from the Hahn-Banach's Theorem that there exists a continuous linear operation $I : C[0, \infty) \rightarrow \mathbb{R}^m$ such that $Ix = \tilde{I}x$ for $x \in M$.

In the defined model of the operational calculus we shall prove the following

Lemma 2. If $\varphi : (0, \infty) \rightarrow \mathbb{R}^1$ is a non-negative integrable function and if the mapping $F : C[0, \infty) \rightarrow \text{nv}(L^0)$ is defined by the formula

$$F(x) = \left\{ y \in L^0 : |y(t)| \leq \varphi(t)|x(t)| \text{ a.e. on } (0, \infty) \right\}$$

then the mapping $T \circ F : C[0, \infty) \rightarrow \text{nv}(C[0, \infty))$, $T \circ F(x) = T(F(x))$ is completely continuous.

Proof. In the first place we shall show that $T \circ F$ is a compact. Let $X \subset C[0, \infty)$ be a bounded set. We shall show that the closure of the set $\bigcup_{x \in X} T \circ F(x)$ is compact in $C[0, \infty)$. As X is bounded, therefore for any positive inte-

ger k there exists such a positive number N_k that $\sup\{q_k(x) : x \in X\} \leq N_k$. Thus in every integral $[0, k]$ ($k=1, 2, \dots$) the functions belonging to the set $Y = \bigcup_{x \in X} T \circ F(x)$ are all bounded by the constant $N_k \int_0^k \varphi(t) dt$ and are equicontinuous, because for $t_1, t_2 \in [0, k]$ we have

$$\left| \int_0^{t_1} y(z) dz - \int_0^{t_2} y(z) dz \right| \leq N_k \int_{t_2}^{t_1} \varphi(z) dz \quad \text{for } y \in Y.$$

Let $\{y_n\}$ be some sequence of functions belonging to Y . By Ascoli's theorem sequence $\{y_n\}$ contains for any $k=1, 2, \dots$ a subsequence $\{y_{n_i}^k\}_{i=1}^{\infty}$ convergent in the seminorm q_k where $\{y_{n_i}^{k+1}\}$ is a subsequence of $\{y_{n_i}^k\}$ for any k . Now we can select by means of the diagonal method the subsequence $\{y_{n_i}^i\}_{i=1}^{\infty}$ of $\{y_n\}$ convergent in any seminorm q_k ($k=1, 2, \dots$). Thus we have shown that the closure of Y is compact. Hence $T \circ F$ is compact, too.

Next we shall show that the mapping $T \circ F$ is upper semi-continuous, i.e. that the conditions

$$(2.1) \quad x_n \rightarrow x, \quad u_n \rightarrow u, \quad u_n \in T \circ F(x_n) \quad (n=1, 2, \dots)$$

imply

$$u \in T \circ F(x).$$

Let

$$(2.2) \quad u_n = \int_0^t y_n(z) dz,$$

where

$$(2.3) \quad y_n \in F(x_n), \text{ i.e. } |y_n(t)| \leq \varphi(t) |x_n(t)| \quad \text{a.e. on } (0, \infty).$$

As the sequence $\{x_n\}$ is bounded in $C[0, \infty)$ therefore the function $h(t) = \sup\{|x_n(t)| : n=1,2,\dots\}$ $t \in [0, \infty)$ is locally integrable.

Now from (2.3) we have

$$(2.4) \quad |y_n(t)| \leq \varphi(t)h(t) \text{ a.e. on } (0, \infty).$$

Let $L_1(0, k)$ denote the space of integrable functions $v: (0, k) \rightarrow \mathbb{R}^m$ and let $P_k: L^0 \rightarrow L_1(0, k)$ be a continuous linear operation defined by the formula $P_k(y)(t) = y(t)$ for $t \in (0, k)$. Since for the sequence $\{y_n\}$ condition (2.4) holds then in the space L^0 there exists a function y such that the sequence $\{P_k y_n\}$ contains a subsequence $\{P_k y_{n_i}^k\}_{i=1}^{\infty}$ weakly convergent to the $P_k y$ in the space $L_1(0, k)$ for $k=1, 2, \dots$ (cf. [3] th. IV.8.9 and [8] th. 4.2). Moreover, let the sequence $\{P_{k+1} y_{n_i}^{k+1}\}_{i=1}^{\infty}$ be a subsequence of $\{P_k y_{n_i}^k\}_{i=1}^{\infty}$ for $k=1, 2, \dots$.

Now we can select by means of the diagonal method the sequence $\{y_{n_i}^i\}_{i=1}^{\infty}$ of $\{y_n\}$ weakly convergent to the function y in the space L^0 . Hence the sequence $\{Ty_{n_i}^i\}_{i=1}^{\infty}$ is weakly convergent to the function Ty , in the space $C[0, \infty)$ by the continuity of T . Since $Ty_{n_i}^i \xrightarrow{w} u$ as $Ty_n \xrightarrow{w} u$ by (2.1), therefore

$$(2.5) \quad Ty = u.$$

On the other hand, by (2.4) it follows that there is a sequence $\{v_n^k\}_{n=1}^{\infty}$ of convex combinations of $P_k y_{n+1}, P_k y_{n+2}, P_k y_{n+3}, \dots$, such that $P_k(v_n^k - P_k y) \rightarrow 0$ if $n \rightarrow \infty$. Therefore there is a subsequence $\{v_{n_j}^k\}_{j=1}^{\infty}$ of the sequence $\{v_n^k\}_{n=1}^{\infty}$ such that

$$v_{n_j}^k(t) \rightarrow y(t) \text{ if } j \rightarrow \infty, \text{ a.e. on } (0, k), (k=1, 2, \dots).$$

From the convexity of the set $F(x)(t) = \{z \in \mathbb{R}^m : |z| \leq \varphi(t)|x(t)|\}$ for every $t \in (0, \infty)$ and the convergence of $\{x_n\}$ to x it follows that $y(t) \in F(x)(t)$ a.e. on $(0, k)$, ($k=1, 2, \dots$). Consequently by (2.5) we have $y \in \mathbb{E}(x)$ and therefore $u \in T \circ F(x)$. q.e.d.

Now we shall formulate lemma which has been proved in [6] for bounded intervals.

Lemma 3. If $\varphi : (0, \infty) \rightarrow \mathbb{R}^1$ is a non-negative integrable function satisfying the condition

$$\int_0^\infty \varphi(t) dt < \ln |\lambda|$$

then the problem

$$(*) \quad x' \in F(x), \quad \tilde{L}x = 0,$$

where F is the mapping defined in Lemma 2 has exclusively a zero solution.

Proof. If $x \in F(x)$, then we have from the definition of F

$$(2.6) \quad |x'(t)| \leq \varphi(t)|x(t)| \quad \text{a.e. on } (0, \infty).$$

We shall show that if the function x satisfies the inequality (2.6) then $x \in M$ i.e. there exists a finite limit $\lim_{t \rightarrow \infty} x(t) = x_\infty$. In fact, from (2.6) follows the inequality

$$|x(t)| \leq |x(0)| + \int_0^t \varphi(z)|x(z)| dz.$$

From Gronwall's inequality we obtain

$$(2.7) \quad |x(t)| \leq |x(0)| \exp \left[\int_0^\infty \varphi(z) dz \right]$$

what together with inequalities (2.6) gives

$$(2.8) \quad |x'(t)| \leq |x(0)| \exp \left[\int_0^\infty \varphi(z) dz \right] \varphi(t).$$

Now we obtain from (2.8) that the integral $\int_0^\infty |x'(t)|dt$ is convergent. Therefore let $x_\infty = \int_0^\infty x(t)dt$.

Then

$$(2.9) \quad \left| x(t) - \int_0^\infty x'(t)dt \right| \leq \left| \int_z^\infty x(z)dz \right|$$

and as $\int_0^\infty |x'(z)|dz$ is convergent, therefore we obtain from the estimation (2.9) that $\lim_{t \rightarrow \infty} x(t) = x_\infty$. Thus $x \in M$.

Next we show that problem (*) has only a zero solution. If $x(0) = 0$ then from (2.7) we obtain $x(t) \equiv 0$. If, on the contrary, $x(0) \neq 0$, then (2.7) implies

$$(2.10) \quad \ln \frac{|x_\infty|}{|x(0)|} \leq \int_0^\infty \varphi(z)dz.$$

As $x \in M$, therefore $\tilde{x} = x_\infty + \lambda \cdot x(0)$. Therefore from (*) follows the equality

$$\frac{|x_\infty|}{|x(0)|} = |\lambda|$$

what together with condition (2.10) gives

$$\ln |\lambda| < \int_0^\infty \varphi(t)dt.$$

This contradicts our assumption. Therefore problem (*) has exclusively a zero solution.

From Theorem 1 and Lemmas 2 and 3 it follows that

Theorem 2. Assume that:

- (a) the integrable and non-negative function $\varphi: (0, \infty) \rightarrow \mathbb{R}^1$ satisfies the assumption of Lemma 3;
- (b) the continuous function $f: [0, \infty) \times \mathbb{R}^m \rightarrow \mathbb{R}^m$ satisfies the conditions

$$|f(t, s) - f(t, \bar{s})| \leq \varphi(t) |s - \bar{s}| \quad \text{and} \quad f(t, 0) = 0 \quad \text{for } t \in [0, \infty).$$

Then there exists one and only one solution of the problem

$$x'(t) = f(t, x(t))$$

$$x_\infty + \lambda \cdot x(0) = r, \quad r \in \mathbb{R}^m.$$

REFERENCES

- [1] R. Bittner: Operational calculus in linear spaces, *Studia Math.* 20(1961) 1-18.
- [2] R. Bittner: Algebraic and analytic properties of solutions of abstract differential equations, *Rozprawy Matematyczne*, Warszawa 1964.
- [3] N. Dunford, J.T. Schwartz: Linear operators, Part I, New York 1958.
- [4] A. Lasota, Z. Opial: On the existence and uniqueness of solution of nonlinear functional equations, *Bull. Acad. Polon. Sci., Ser. Sci. Math., Astronom. Phys.*, 15(1967) 797-800.
- [5] A. Lasota, Z. Opial: On the existence of solutions of linear problems for ordinary differential equations, *ibidem*, 14(1966) 371-376.
- [6] J. Myjak: A boundary value problem for nonlinear differential equations with a retarded argument, *Ann. Polon. Math.* 27(1973) 133-142.
- [7] M. Nagumo: Degree of mapping in locally convex linear topological spaces, *Amer. J. Math.* 73(1951) 497-511.
- [8] S. Rolewicz: Metric linear spaces, Warszawa 1973.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY, GDANSK
 Received February 18, 1977.

