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OPERATIONAL EQUATIONS IN SPACE B,
AND BOUNDARY VALUE PROBLEMS

It is proved in [5] that any linear value problem
x'= f(t,x), lx=r has exactly one solution (under some assump-
tions on f) 4in the Banach spece of continuous functions on
a compact interval, Meking use of Bittner’s operational cal-
culus CO(L1,L°,S,T,B) where
(1) 1% is a B, space, 1! isa B} space;

(11) 5:1'—1°, 1:1°—1' are algebraically linear opera-
tions such that T is continuous and SeT = id;o;
{1ii) the projection s:L1——-KerS, called & 1limit condition,
given by s8x = x - TeSx is a continuous operation,
one can formulate a type of "boundary value problem" as fol-
lows
Sx = f(x)
(1)

1x = ¢ {c € KerS).

Since the theorem about open mappings is true also for local-
1y convex topological spaces we are able to prove that the
problem (1) posseses exactly one solution in the space B:.
This is certainly a generalization of the A, Lasota’s and

Z., Opial’s result ([5]) that permits to use the space of all
continuous functions on the interval [o,o0), with a sequence
of semi-norms q(x) = sup{lx(t)l s t e[},k]} (k = 1,25000)0
As a result we obtain the existence and uniqueness for the
gystem of differential equations
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2 T.Pruszko

x' = £(t,x)

with the boundary value condition Xe + A+x(0) = r where
A€ER, TeERY X = 1lim x(t).

t oo

1. The theorem on the existence and uniqueness of the so~
lution of problem (1) .

If E is a B, space then nv(E) denotes the family
of all nonempty subsets of E, A mapping H : E —— nv(E)
will be called upper semicontinuous if its graph {(x,y) :
Ty € H(x)} is closed in E¥ xE, and compact if, for any.

bounded subset X of E the closure of the set \UJ H(x) is
x€X
compact in E. An upper semicontinuous and compact mapping

H : E~=nv(E) will be called completely continuous.

Let qng be a family of semi-norms in L1 such that
if qp(x) = for n = 1,2,eeey, then x = O. We shall de-
note by i1 the complementation of L1 in the paranorm

q,(x)

=l = 20 2™ 73 o -
n=1

In the proof of Theorem 1 we shall make use of the following
Lemma which is an immediate corollary from Theorem 10 of fﬂ.

Lemma 1. Let £ be a Bo gspace and let g : E—E
be & mapping of the form g =1 - h where I is the iden-
tity on E, whereas h : E—~ E 1is a compact map., Then if
g : E—~g(B) is one~to-one mapping, then g : £ —E 1is
open,

Theorem 1. Assume that dim(KerS) < oo and so-
me mappings 1:T'| ——KerS, f '—1°, F : T ——nv(1°) sa-
tisfy the following conditions:

(a) ToF : T) —=nv(T'), where ToF(x) = T(F(x)} for each

X € f1, is completely continuous mapping
(b) £ 1is a continuous mapping and f(x1)-f(x2) € Flx,—=x,)

for any xq,x, ¢ I
(c) 1 is a linear continuous operation.
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Operational aquations 3

Then, if x = 0 1is the unique solution of the oprovlem

(2) S(x} € F(x}, 1x = 0

then in the space L1 there exists exactly one solution of
(1).

Proof. As the solution of problem (1) is eguivalent
to the solution of the following equation:

(x,c) = (Tof(x)+c,c+c°—lx)

therefore the theorem will be proved if we demonstrate that
the mapping g : T'x KerS —1'x Kers given by the tformula

glx,c) = (x,c) - (vof(x) + ¢, ¢ + ¢, - 1x)

is a homeomorphism,
If the mapping h : T'x KerS —T'x KerS is defined by
the formula

h(x,c) = (Tef(x) + ¢, ¢ + ¢, - 1x),

then the mapping g has the form g =1 - h, where I |is
identity on I'x Kers.

1°, Let us notice in the first place that g : T'x Kers—
—-g(i1x KerS) is a one-to-one mapping. Indeed, let g(x1,c1)=
= g(xz,cz). Then it follows from the definition of g that

(i1-x2,c1-c2) = (T[f(x1)-f(x2)]-+c1-c2, cq=¢, = L{xy-x,))

and this equality is equivalent to the following system of
two equations

(1.1) Xq=X, = T[}(x1) - f(xz)] + cq=Cy

(102) 1(11-x2) = 0.

As, according to our assumption (b) f(x1) - f(xe)e F(x1-x2),
therefore it follows from (1.1) that
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4 T.Pruszko

{(1.3) XX, € TOF(x1-x2) + Cq=Cpe

Hence we get from (1.2) and (1.3) S(x1-x2) € F(x1-x2),
1(x1-x2) = 0. By our assumptions problem (2) has only a ze-
ro solution and hence we obtain from condition (1.1) the equa~-
1ity

c,-¢q = 8ley=cq) = SOT[f(x1)-f(x2)] =0

1xKerS —

then we have (x;,cq) = (x5,c,). Consequently g: L
——3g(I'x KersS) is a one-to-one mapping.

2° Next we shall show that h is a compact mapping, i.e.
that for any arbitrary bounded set X C i1x KerS the closure
of the set h(X) is compact in T'x KerS.

Let (yn,En) € h(X) (n=1,2,ses)s We construct a sequen~-

ce
(1.4) {h(xn,cn) - h(0,0)} = {(T[f(xn)-f(o)] + o, cn-lxn)},

where (x ,c ) € X and hix ,c;} = (3,,5,) (n=1,2,...).

As the sequence {(xn,cn)} is bounded, therefore the sequen-
ces {xn} and e/} are bounded, too, in ' and KerS
respectively., It follows from assumption (b) that

T[f(xn)-f(O)] € U1 TOF(xn). By assumption {a) the mapping
n=

Te¥ is compact, and therefore the sequence 4¢T ﬁ(xn)-f(o)]}
contains a convergent subsequence. As dim(KerS) < e, there-
fore the bounded sequence {cn} contains a convergent sub-
sequence., The linear and continuous operation 1 maps the
bounded seguence X, into the bounded sequence {lxn}
where 1x ¢ KerS (n=1,2,...). We may assume now, without
any loss of generality, that {T[f(xn)]}, {cn}, and {lxn}
are convergent. It follows therefore from (1.4) that the se-
guence {h(xn,cn)} is convergent, 'fherefore the closure of
n{a} 1is compact an consequently the mapping h 1is compact.
ow in view of Lemma 1 g is open.
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Operational equations 5

3%, et V(0,0) be such a neighbourhood of zero in
T'x KerS that

(1.5) py(x,0) < n for (x,c) € V(0,0) (n=1,2,...),

where P is a sequence of seminorms in i1x KerS such that
Pp < Ppq (n=1,2,0s.). Let 3V(0,0) be the boundary of the
neighborhood V(0,0). We shall show the existence of such a
neighborhood W(0,0) that condition

(1.6) (y,¢) e 3 V(x,c) == g(y,c) ¢ Wig(x,c))
holds for (x,c)ei1szrB.

Assume that condition (1.6) is false, Then for any neigh-

borhood Wn(0,0) = 1(x,¢c) pn(x,c) < %-} (n=1,2,0es) there

exist such elements (xn,cn) € I'x Kers and (yn,En)e
€dvV(x ,c ) that

(1.7) 8(y,,8,) € dp(glxp,c ),

where

g(yn,én) = (7n’°n)'h(yn’6n)’ g(xn,cn) = (xn,cn)-h(xn,cn).
Therefore

(1.8) A3p=xpsC-cy) = ﬁ(yn,én)-h(xn,cn)+g(yn,6n)-g(xn,cn).
Condition (1.7) is equivalent to the following condition

gy sc,) - glx e ) € W (0,0)

and therefore

pn(g(yngan)-g(xn,cn))< % (n=1,2,lco)o

Hence

(1.9) 1im [g(yn,é'n)-g(xn,cn)] = 0,

n -~eao
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6 T.Pruszko

We get from the definition of h that

(1.10) h(yn,En)-h(xn,cn) = (T[?(yn)'f(xni]+En'°n'6n'°n'l(¥n'xn)) o

As  (y,,8,)-(x ,cn) € d4Vv(0,0) (n=1,2,...), therefore by (1.5)
the sequence (yn-xn,én-cn) is bounded in i1x KerS. Now,
Just as in part 2° we notice that the sequences {l(xn-yn)},
lﬁn-cn}, {T[?(yn)-f(xn)]} include convergent subsequences.,
herefore without any loss of generality we can assume that
the sequence (un,En) = {h(yn,En)-h(xn,cn)} is convergent,
Let

(1.12) 1im (un,En) = (u,c).

n-——oo

It follows from conditionms (1.8), (1.9), (1.12) that

(1.13) lim (y,-x, 48 -c,) = (u,c)
n—>oo
and that
(u,8) = nl_.iu:o(‘r [f(yn)-f(xn)] +&, c-lu) .
Put
(1.14) z = 1lim T[f(yn) - f(xn)] .

Il —=~vo

By assumption (b) we have

(1.15) T[f(yn) - f(xn):l e ToP(y, -x,) (n=1,2,...)

and as the mapping TeF 1is upper semicontinuous, we get from
conditions (1.13), (1.14), (1.15)

{1.16) z € ToF(u).
Next, taking the limits in (1.11), we get

(1.17) (u,8) = (z+8,8-1u).
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Therefore from (1.16) and {1.17) we get

Su ¢ F(u), 1lu =0,

As by our assumptions problem (2) has only a zero solution,
therefore u = 0., It follows from (1.,16) that sz = 0. By
(1.17) s2+8 = 0 therefore @ = O, Hence (u,2) = (0,0},

From the other side we have (yn-xn,cn-cn) €2V(0,0)
(n=1,2,...) and therefore Pylu,c) =1 where P; is the
Minkowski functional for the neighborhood V(0,0). whis con-
tradicts the fact that (u,c) = (0,0). Thus condition (1.16)
has been proved.

4°, Finally we shall that Im g = i1x KerS, It follows
from (1.6) and from the fact that g is an open mapping we

get
(1.18) W(glx,c)) ¢ g(Vix,c)).

Assume that T'x KerS\Im g £ 8. 4s g 1is open, therefore
there exists an element (y,Z) € f1x KerS such that
(y,c) ¢ Im g. and (y,¢) € Im g. Since (y,6) € Im g there
exists an element (yo,Eo) € Im g such that (7,8) € T(y_,& ).
assume g(x ,c ) = (y,,E ). From condition (1.18) we obtain
the relation N(yo,Eo) C g(V(xo,co)). as (7,81 € T(yD,EO)
we have (y,3) € g(V(xo,co)).

Thus we obtained a contradiction with the condition
(y,¢) ¢ Im &+ Therefore g 1is a surjection. gG.e.d.

2. Certain boundary value problem for the equation

x' = £f{t,x) in the unlimited interval
Let L1
tions x : [O,°°) ~—R® with the sequence of seminorms

be the space of all absolutely continuous func-

qk(xi = sup {[x(t)] : t e [O,k]} (k=1,2,000 )0

It can be easily seen that in this case ! is tae

t

sace oFf
ell continuous ifunctions 0[0,°°).
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3 _ T.Pruszko

Let L° be the space of such functions y : (0, o) —=RT
thet 1f J = (7,,9,10++93,) then the functions y,:(0, we)—R'
are locally integrable. In L° we define a sequence of semi-
norms

k
o (7] = max“' |75 (t)]at i=1,2,...,m} (k=1,2,000 )0
o

The derivative operation and the integral we define as follows

then sx = (x(o)) and the space KerS is isomorphic with R™.
e can easily verify that the operational calculus defined in
this way satisfies conditions (i)~(iii).

Let 1 c c[o,°) be a subspace of functions possessing
@ finite limit lin x(t) = Xw and lot Ae R'. on the

space I we define & continuous linear operation T:M _‘_Rm;
ix = Xoo + AXx(0), We infer easily from the Han-Banach’s The-
orem that there exists a continuous linear operation
1:C[0,e) —=R® such that 1x = 1x for x & M.

In the defined model of the operational calculus we shall
prove the following

Lemma 2, If ¢:(0,00) ——R
integrable function and if the mapping F : C[0,e) — nv(1°)
is defined by the formula

1 is a non-negative

F(x) = {y e 1° : |3(t)]| < ¢(t)|x(t)] a.e. on (O,°°)}

then the mapping ToF : C[0, ) —=nv(C[0, o)), TeF(x) =
= T{F{x)) 1is completely continuous.

Proof, In the first place we shall show that TeF
is a compact. Let X C C[0,°°) be a bounded set. We shall

show that the closure of the set kJ ToF(x) is compact in
xeX »
Clo,ee). A8 X 1is bounded, therefore for any positive inte-
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Operational equations 9

ger k there exists such a positive number Nk that
sup{qk(x} : X € X}'s Ny o Thus in every integral B)Cj
ToF(x)

(k=1,2,.++) the functions belonging to the set Y=
xeX

k
are all bounded by the constant Nk j g(t)dt and are equi-

)
continuous, because for t,,t, € [0,k] we have

t1 t2 t1
f y(z)dz - f y(z)dz é.Nk J‘ ?(z)dz for y e ¥,
0 o t2

Let n be some sequence of functions belonging to Y.
By Ascoli’s theorem sequence {yn} contains for any k=1,2,¢ee

a subsequence {yni}i=1,2,... convergent in the seminorm 9y

where yk+1 is a subsequence of yk for any k. Now we
ny n.

i
can select by means of the diagonal method the subsequence

[yii}i=1’2"" of {3nj} convergent in any seminorm Ay
k=1,2,+0¢ ). Thus we have shown that the closure of Y is
compact. Hence T°F is compact, too.

Next we shall show thgt the mapping TeF is upper semi-
continuous, i.e. that the conditions

(2.1) X, —=X%, Q,—=—u, u, € T°F(xn) (n=1,2,4¢4.)
imply
u e ToPF(x),
Let
t
(2.2) ay = | 95(2)da,
)
where

(2.3) 3, Flx i, i.e. |yn(t}‘ < y(t)lxn(t)| 8.6, on (0,°fh
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10 TePruszko

he the segquence Xy is bounded in C[b,cw) therefore the
function h(t) = sup{lxn(t)l : n=1,2,...} te [0,0) is lo-
cally integrable.

Tow from (2.3) we have

(2.4) lyn(t}‘ s ¢(tih(t) a.e. on (0,e ),

Let L1(O,k) denote the space of integrable functions
v:(0,k; — 3™ and let Byt L° ——1,(0,k) be a continuous
linear operation defined by the formula Pk(y)(t) = z(t} for
t € (0,k). Since for the sequence yn} condition (2.4)

holds then in the space I° there exists a function y such
oo

that the secuence {Pkyn} contains a subseguence {Pkyii}i=1
veakly convergent to the P,y in the space L1(O,k) for
k=1,2,+0. (cf. [3] th.IV.8.,9 and [8] th.4.2), lioreover, let

k+1 L

oo
the sequence {Pk+1yn. }i=1 be a subsequence of {Pkygk}i=1

for k=1,2,.-0 .
iiow we can select by means of the diagonal method the se-

Guence yé = of {yn} weakly convergent to the function
ili=1 Caes

7 1in the space L°, Hence the sequence Ty; is weakly

ifi=1
convergent to the function Ty, 1in the space C E%‘” ) by the
continuity of T. Since Ty;-——-u as Tyn——-u by (2.17,
i

w
therefore
(205) Ty = Ue

On the other hand, by (2.4) it follows that there is a sequen~-

k= . .
ce {vn} of convex combinations of Pkyn+1’ Pky

n=1 n+2?
P

kyn+3"°" such that py(vg - I—ky)——o if n -=o, ‘There-
[ -]
fore there is a subseguence {vk } of the sequence

e 331
K h that
Vn n=1 suce

Vn'(t)——“y(t} if j—.w, 8¢S, on (O,k),(k=1,2,o.oo).
J
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Prom the convexity of the set {x)(t; = {z e )% |z] <
< ¢(t)lx(t;|} ror every t € (0, ) and the convergence
of :.:n} to x it follows that y(tj € F(xi(t) a.e. on
(0,%), {k=1,2,e0.]s Corcecuently by (2.5) we have 3y € =(x)
and therefore u € TolF(x). gee.d.

iow we shall formulate lemma which has been proved in Eﬂ
for vounded intervals,

Lemma 3. If ¢@:(0,) —R' is a non-negative
integrable function satisfying the condition

jnp(t)dt < 1n [A|
o]

then the problem
(#) x'e P(x), 1x =0,

where F 1is the mapping defined in Lemma 2 has exclusively
a zero solution.

Proof. If x ¢ F(x), then we have from the defi-
nition of F

(2.6) Ix' (t)] < y(t)lx(t)l a.e. on (0,e0),

We shall show that if the function x satisfies the inecqua-
lity (2.6) then x &€ M i.e. there exists a finite limit

tlim x(t) = x . In fact, from (2.6) follows the inequality
- 00
t
|x(t1| < |x(0)] + f ¢(z)|x(z)|az,
0

From Gronwall’s inequality we obtain

(2.7) |x(+)[< |x(0)] exp | [ ¢lz)dz
(o]

what together with inequalities (2.6) gives

(2.8) [x'(t)]<]x(0)]exp T’¢(z)dz o(t).
L0
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oo

Now we obtain from (2.8) that the integral [ |x’(t)|dat 1s
0

Oy

convergent, Therefore 1let Xo.. = f x (t)dt.

o
Then
(2.9) x(t) -Tx’(t)dt < Tx(z)dz
[o] 2

and as |x’(z)|dz is convergent, therefore we obtain from
0
the estimation (2.9) that 1im x(t) = x_. Thus x € M.
t —=o0

Next we show that problem (%) has only a zero solution.
If x(0) = 0 then from {2.,7) we obtain x(t) = 0. If, on
the contrary, x(0) # 0, then (2.7) implies

| %o | T olz)d
< 2 /A2,
(2.10) lnm { ¢
Ls x € i, therefore Ix = x, + A+x(0)., Therefore from
() follows the equality
IX“I _ |
Ix(0)] = |2

what together with condition (2.10) gives

n |2 <{ g(t)at.
0

This contradicts our assumption. Therefore problem (%) has

exclusively a zero solution.
Trom Theorem 1 and Lemmas 2 and 3 it follows that
Theorem 2. Assume that:

(a) the integrable and non-negative function ¢:(0,%) —=R
satisfies the assumption of Lemma 3;

(p) the continuous function f : [0,e0)x R®—=— R satisfies
the conditions

1

l£(t,s) - £(t,5)] < ¢(t)|s~8] and £(t,0) =0 for t e[0,°°).
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Then there exists one and only one solution of the problem

[1]

x'(¢) = £(t,x(t))
Xoo + Aex(0) = 1, r € R®,
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