DEMONSTRATIO MATHEMATICA
Yol. X11 No2 197

Krzysztof Tatarkiewicz

LES PROPRIETES ASYMPTOTIQUES DES SOLUTIONS
DE CERTAINS SYSTEMES D’EQUATIONS DIFFERENTIELLES

1. Introduction
Considérons ie systéume de Geux equations différentielles
ordinaires du premier ordre, Linéaires, nomogenes

414

=ax+pz

~~

(11)
J=cx+d.

Supposons que les fonctions c® o 8yDyGyd ¢ <O3+=) —=R
vérifient les conditions

|8(8)] <& by < B(%)

(1.2)
by < o) &) < &y

pour t e < O;+w)=:ﬁ+,

ou les constantes a, et b, satisfont & lt'inégalité

(1 03> 0 < 8.1 < b1o
Fosons
(1 QLI') h = b,] - a,]n

Il est bien connu gue les solutions saturées des systemes
linéaires sont définies dans les m8mes intervalles que leurs
coefficients et qu'ils sont déterminées univoquement par leurs
conditions initiales.
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2 v K.Tatarkiewioz

Ce travail est consacré & la démonstration du théoréme
suivant.

Théoréme 1. Si les hypothéses (1.2) et (1.3)
sont vérifiées, alors le systéme (1.1) d'équations différen~
tielles admet deux solutions saturées non banales x = g(t),
y = g(t) et x = X(%), ¥ = z(t), telles que pour chaque
w € < 0;h) (ou le nombre h est donné par la formule (1.4))
on a

(1.5) lin x(t)e"F = 0, lim y(t)e™ = 0
t =+00 ™ t—=+to0
et
(1.6)  lim E(t)e™™ = 4+, lim §(t)e™™ = + .
—= + 00 t-+o”

La démonstration du théoréme 1 sera domnée aux n°° 3- 5,
Son extension aux systemes non nécéssairement lindaires sera
formulée au n° 6.

2. Quelques remarques

2.1. Introduisons la définition suivante.

Définition. S'il existe un nombre k > O
tel que

lim £(t)e"®

t-too

= 0,

nous dirons que la fonction £ : <O3;+e) —= R tend expo-
nentiellement vers zéro et s'il existe un nombre h > 0 tel
que

n

lim £(6)e™ = 4o (- o0),

t—+ o0

nous dirons que la fonction f tend exponentiellement vers
+ oo (—eo).
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Propriétés asymptotiques 3

En employant cette définition on peut formuier le théoré-
me 1 d'une autre meniére (moins précise), & savoir:

Théoréme 2., BSi les conditions (1.2) et (1.3)
sont vérifiées, alors le systéme (1.1) admet une famille &
un paramétre exactement de solutions telles que toutes les
deux fonctions les formant tendent exponentiellement vers
zéro. Les autres solutions sont formées de deux fonctions
qui tendent exponentiellement ou bien simultanément vers + oo
ou bien simultanement vers - oo,

2.2, Dans le cas particulier ol les fonctionc a,b,c,d
sont constantes et les conditions (1.2) et (1.3) sont véri-
fiées, c'est-a-dire que

max [|a|,|d|] < min I:b,c]

les projections sur le plan (x,y) des solutions x = x(%t),
y = y(t) (les caractéristiques) du systéme (1.1) forment
un col (voir la fig.1).

2.3. Considérons-un autre cas
particulier, & savoir 1le cas ou \ g
a(t) = 0, b(t) = 1. Alors le sy- \
stéme d'équations différentiel-
les (1.1) équivaut & une équa-

\\
tion différentielle du second = AN\
ordre ;],/ ~ A———“:::T_
///"" \
—

(2.1) E-4d6-¢3=0s \
ou
|d(t)| <ayy b,] < g(t) etO(a,,(b.l, Fig.1

et O désigne la fonction-zéro (c'est-a-dire une telle fon-
ction qu'on & Q(x) = O pour tous les x - ou ici plus exac-
tement - pour tous les x € { Oj+o0)).

Ainsi - vu l'hypothése (1.3) - pour l'équation (2.1) nous
n'allons pas retrouver les résultats du travail [2], ou -
& la place de l'hypothése (1.3) - nous n'avons sSupposé gque
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4 K.Tatarkiewicz

0 < aqy et 0 4 b, (voir la fig.2, ou sont montrés les ao-
maines dans lesquells - sous l'hypothése (1.3) - doit &tre
contenue la projection de la
courbe a = d(t), b = c(t)
\QS sur le plan (2,b)l). Zvidemment
- & plus forte raison - les
N résultats du trevail [4] con-
;9’ j/)/ cernant l'équation (2.1) ne
4 seront pas des cas particu-
liers de notre théoréme 1.
2.4, Supposons que les
constantes a,,b, vérifient
les conditions (1.2) et (1.3).
Fig.2 Alors chaque constante - 3,
telle que a, { &; < by vé-
rifiera aussi les conditions (1.2) et (1.3) dans lesquelles

on a substitué 31 4 la place de a . 3sns diminuer la gé-
néralité de nos raisonnements nous pouvons donc dans la suite
supposer que la constante a, soit suffisamment grande pour
vérifier,sauf (1.3), l'inégalité suivante

(2.2) » V——55—" b, < a,

(la vérification de cette inégalité sers nécessaire dans la
démonstration du n® 4).
2.5. Fosons

i
W o

p :=a+d, q =
~ ~ ~ S

I1 serait intéressent de sevoir, si lz condition qu'il
existe deux constzntes Pq et a4 telles que pour tout
t € < Cy+) on a

|p(®)| <pqp a®) < -qq <0
n'entraine vas la thése du théoreme 17
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Fropriétés asymptotigués 5

2.€. On peut fzcilement montrer seulement un résultat
beaucouv plus faible. Surrosons jue E'E’S'Q € C1(§+) et
que E(t) # O. In éliminant y du systéme (41.7%) on obtient
‘une équation différentielle du second ordre. En appliquant
les résultats de [2] on voit que, s'il existe deux constan-
tes Da > 0 et Q4 > C, telles que

|a(e) + a(s) + [la p(®)]'| < p

et

a(t) b(v)

< B(®) %(t)}l
A. t ,
2 ow awy| MY [2®

alors la thése du théoréme 1 est vraie (on obtient un résul-
tat sembleble en éliminant x dans le cas, ou ¢(t) # 0).

2.7. La littérature concernant les propriétés asymptoti-
ques des, systémes (1.1) dans lesquels les coefficients sont
des fonctions "presque constantes" compte - vraisemblable-
ment -~ des centaines de travaux (pour l'histoire et pour un
choix de bibliographie voir - par exemple -~ le travail [5]).
Cependant il y a peu de travaux quli sont consacrés aux
systémes dont les coefficients ne sont pas des fonctions
"presque constantes". Il faut noter ici le travail Radzikow-
ski [1] - ses résultats sont contenus dans le n8tres. En
effet son auteur suppose que les fonctions a,b,c,d ¢ C1 (et
non € C°), admet non seulement les inégalités (1.2) et (4.3),
mais en plus il suppose que les fonctions a,b,c,d sont bornées
et vérifient deux inégalités différentielles (ressemblant &
(2.3), mais beaucoup plus compliguées). Enfin - sous ces hy-
pothéses - il démontre seulement que les solutions considé-
rées tendent vers zéro (et non qu elles tendent exponentielle~
ment vers zeéro).
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6 K.Tatarkiewicz

3. L'existence des solutions non bornées

Remarquons, que le couple de fonctions x = O, ¥y =9
forme la solution (banale) du systéme (1.1).Donc aucune pro-
jection de solution non banale x = x(t), ¥y = y(t) sur le
plan des (x,y) ne passe pas par le point (0,0).

Dans les points de l'espace (t,x,y) tels que t > O,

x>0 et y=0 ona

(3.1) é}t) = c(t)x > x> 0

et dans les points (t,x,y) tels que t2» 0, x =0 et
¥y> 0 ona

x(t) = B(t)y > byy > O.

Donc par la frontiére du premier quart
du plan des (x,y) (sauf par le point
(0,0)) les projections des solutions du
systéme (1.1) entrent dans ce quart (voir
la fig.3). Il s'ensuit le lemme suivant.
~d Lemme 1. Si pour un t,2 0
on a %(tq) > 0, z(t1) 2 0, ot 52(t1) +
. + yg(tq) > 0, alors x(t) >0 et

Fig.3 Z(¥) >0 pour t> ty.-

Autrement dit si la projection d'une solution non banale
est, pour un t1 > O, contenue dans la fermeture du premier
quart du plen, alors elle restera dans ce quart pour tous
les t > tq.

De méme si x(t,) < O, z(t1) < 0, za(tq) + 22(t1) > 0,
alors x(t) <0 et z(t) < 0 pour t > t,.

On peut renforcer ce résultat. Posons

(N3

’X

_—T—
b W

et

V(r,s) = {(x,y) 1X>r,y> s} .
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ﬁvidemment ltensemble R+S forme la frontiére de l'en-
semble V(r,s) (voir la fig.4). Nous avons supposé que la

by

Fig.4

condition (1.3) soit vérifiée - dono a,iby < 1 < byia,.
Supposons gue

b
(3.2) o<%1r<s<;1r.
1 1
Alors
J'r(t)l = g(t)x + g(t)y| = g(t)x + g(t)SI >
~ <] S S

>%r-a@>'%r-

;'c,(t)|R a(t)x + g(t)le a(t)r + y(t)y|R>

a,b
>-a,r + b,|s> -a,r + :‘]’11

r=20
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8 K.Tatarkiewicz

(ou le symbole IR et | signifie gu'il faut prendre la
valeur de la fonction considérée dans les points de 1 enzemcle

R et & respectivement). Nous avons donc demoantre cus =
condition (3,2) est veriiice, alors pnar chague point de la
frontiere du domaine V(r,s) x(U;+ ) 1les solutions Gu sys-
téeme (1.1) entrent dans ce domaine, Il s ensuit immédietexzent
le lemme suivant.

Lemme 2. 31 x = (), y = y(¥) est une solu-
tion du systeme (1.1) telle gue 5(t1)=r~> o, z(t1)=s>o (ol
ty 2 C) et la condition (3.2) soit vérifiée, zlors x(%t) > r,
et z(t) > s rpour tout t > t,.

Soit x = x(%t), y = y{t) la solution du systeme (7.1)
telle que ”

r,

a
(3.3) §(t1) = T, y(tq) = [1 + 1]}54 =t Sh,

ol t, = 0 et les nombres 1., s, vérifient lz condition
(3.2) pour r = r, et s = s,.
Vu le lemme 2, nous aurons
(3.4) x(t) > T, et y(t) > sy
~N » ~
pour ¢ > t4 = O. ©Nous avons
b
1 &1 1 1
E[:ﬂ+'s;]<1<§[’]+’lj|o

Il existe donc un plus grand t,> 6, =0 (ou il peut
&tre t2 = +0) tel qu'on a

b
y(6) < 7 [’1 + %] x(%)

pour +t € 11 HES <t1;t2). Donc si t2 <'+<», alors
(3.5) 6, =1 |1+ 23| e
. JL%) =3 EO -
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Propriétés asymptotiques

Pour t € I1 nous aurons

S(DIR(E) + A(DF(E) > byx(t) - agg(t)>

5(t) =
a b
>b1§(t) - 51 [4 + 331 x(t) =
x(%) T,
= (by = ay) 53— > (b - ap) 5 = ke

Vu (1.3), nous avons k,1 > 0, et, vu (3.3), on a
(3.6) z(t) P kq(t'— tq) + 5, pour t e L.
Supposons que t, = + oo (ctest-a-dire que I, =
= < 03+e)). Alors de (3.6) il s'ensuit que Y(t) —= + oo
pour t'—=+eo. ilais d'autre part
z(t) = a(£)x(t) + B(EIY(E) > -a,x(t) + byy(t),
donc pour t > t,1 nous surons
x(8) > z(t),

est la solution de l'équation différentielle

ou z = z(%)
z = -8,2 + by
telle gue 2z(t.) = §(t1) =ry > 0. Il est bien connu (nous
r.ppelons gue t1 = 0) que
-aqt —aﬂt v a,v
+be f v(v)e dv.

-—
L
1

E(t) = rﬁe
facilement

4 1'zide du théoreme de l'HOpital con montre
t —= + o0,

que 2z(t) —=—+o0, donc, que ‘}“((t)——+oo pour

- 303 -



10 K.Tatarkiewicz

Supposons maitenant que t, < +oo. Posons (voir (3.5))

by | T,
(307) %(ta) =1 I‘2, Z(ta) = (1 +; == =

Vu (3.4) et (3.6) nous aurons
To> Tqs 832 ky(8y = %) + 87> 8

et

by 84
Z(t2> =32= 1 +_-2-> 1 +~5-1— §(t2)‘

Il existe donc un plus grand t3 > %, (11 peut &tre
t5 = +00) tel que

y(®) > ;_ [’l + a:]g(t)

pour t € 12 t= <t2;t5). Donc si 1:3 < +%0, alors

1 a
Z(t3) 5|1+ 5(173).
Nous avons donc

2b,‘z(t)

E‘C(t) £ ?4.—1)1 pour t € 12.

Vu le lemme 2, nous aurons x(t) > r, et y(t) > S,
pour t € (ta;t5) et

(1) = a(t)x(t) + p(H)y(E) > -ax(t) + by(H)>

>=8q v by I(8) + 2qz(8) > —a 5 85>

52
> (b,] - &,i) 5— = k2-
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Propriétés asymptotiques 11

Nous avons k2 > k1 >0 et, vu (3.7)

(3.8) x(t) > ky(t - t5) + r, pour t e Ip.

Si t; = +oq, alors x(t) —=+ oo pour t—=+ o et on
peut montrer facilement qub de méme y(t)—= + oo pour
t —= 400, ”

Si t3 < + o nous répétons notre raisonnement. Nous ob-
tenons ainsi une suite croissante de nombres tq, Ty e et
une suite d'intervalles 11, I2, «ss leurs correspondants
dans lesquels sont valables les estimations (qui généralisent
les estimations (3.6) et (3.8))

(3.9)  3(8) 2 kop_4(6 =ty 4) + 85y 4 pour te I, g

et
(3.10) E(t) 2 kzn(t - tzn) +r,  pour t € I2n’

ol les suites 8198p5000y T sThseee €6 K 3k5,000  sont
croissantes.

Sipour un k on a ty = + o0y alors la suite tistoseee
ceesty  est finie est la démonstration est achevée. Si la
suite ainsi construite Tiatpyeee  est infinie, alors il est
facile & voir qu'il doit 8tre t, —=+x. En effet, la suite
t)st5500s  est croissante. Si elle ne tendait pas & l'infini,
elle serait bornée et elle aurait une limite finie t. Vu la
définition des points (2(t,)»3(t,))s du théoréme de la
moyenne 1l s'ensuivrait que

lim #(t) = +e = 1lim (%)
t—~t- t=%- %

ce qui est impossible. Donc
OO

Z Ik = <O;+°°)o
k=1
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12 K.Tatarkiewlcz

Vu Ii-I'j =@ pour i £ j, il s'ensuit que ou bien
1l*ensemble

:E: I2n

1

(=]
n=

ou bien l'ensemble

OO
b3 Ton

n=1

a une mesure infinie. Vu (3.9) et (3.10), il s'ensuit qutau
moins une des fonctions x = x(t), y = y(¢) croit & 1'infini
pour t —e+o0, Il est facile a montrer que l'autre croit
aussi & +oo,

Nous avons donc démontré qu'il existe au moins une so-
lution x = E(t)’ y = y(t) du systéme (1.1) telle que les
deux fonctions x et ~y qui la forment croissent & +oe

~

pour t —e= +oo,

4, L'existence des solutions bornées

Posons

(#.1) k ::T— = +
zaz.,l(b,I - ag

Soit l'ensemble B formé par deux segments y = O pour
0<x<k et x=0 pvour -k gy < C (voir le fig.5).
rosons

(vu (2.2), ona 1< k, < k) et soit l'ensemble A formé
par guatre segments:



Propriétés asymptotiques 13

Fig.5

a
(4.2) y=b—1-(x-k) pour k; & x<k
1

(pour ce segment on a -1 ¢y <0),

y = -1 pour ’l<x<k,1,
x =1 pour -k; <y < -1
et enfin par
2
(4.3) x ==61— (y + ¥) pour -k <y -k,

(pour ce dernier segment ona 0< x <£1).
Soit G 1le domaine.borné, ayant comme frontiére l'ensern
ble A+B. Etudions par quels points de la frontiére A+B
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14 K.Tatarkiewicz

les projections des solutions du systéme (1.1) sur le plan
des (x,y) entrent et par lesquels elles sortent du do-
maine G.

1° Le point (0,0) est - comme nous le savons déja -
la projection de la solution benale et aucune projection de
solution n'entre ni ne sort de G par lui.

2° Nous savons aussi que par y =0 pour x » O et par
x =0 pour y < O les projections des solutions sortent du
guatriéme quart du plan (x,y), dono-a plus forte raison -
par y =0 pour O < x <k etpar x =0 pour -k <y < O
les projections des solutions sortent du domaine G.

3° Sur la demi-droite I donnée par les formules y = -1,
X > 1 nous avons

(4e8)  F0)] g = g(8)x = 4B)| 1, > ogx = 8y > By - 8g > O

Donc par le segment y = -1 pour 1 < x < k1 les pro-
jections des solutions entrent dans G. De méme elles en-
trent dans G par le segment x = 1 pour -k1 <y £ -1,

De (4.4) et d'une estimation analogue pour Xx(t) il s'en-
suit que par le point (~1,-1) les projections des solutions
entrent aussi dans le domaine G.

.4° Par la droite (4.2) pour k, ¢x<k les projections
des solutions entrent dans G. En effet, [}a1,b1] est un
vecteur non nul, orthogonal & la droite (4.2) et qui est
dirigé vers l'intérieur du domaine G. Considéromns sur le
segment H de la droite (4.2) correspondant & k;, < x £ k,
le produit scalaire du vecteur ['-a,‘,b1 et du vecteur
Eg(t),g(ti] (c'est le vecteur du champs (1.1)). Vu (4.1) et
y < 0, nous aurons

(4.5) ['aq ’b1:| . [ﬁ(t) :é(t)] IH = -a,];:c‘(t) + b,]j(t)lH =

= ~a,a(t)x - a,b()y + byg(t)x + bqg(t)y|H >
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2 2 = 2_.2
> —a1x+0+b1x+b1a1y‘H = (b1-a.I Jx + ajb,y . >

> @2 - a)(k = 21) - ayby = a,by - aby = 0
17 % gy )" 801 T 801 T 8qBq = %

Il s'ensuit que par (4.2) pour k, < x < k les projec-
tions des solutions entrent dans ‘G.

De m8me par le segment (4.3) les projections des solu-~
tions entrent dans G.

5° Dpe (4.4) et de (4.5) 1il s'ensuit que par le point
(k1, -1) 1les projections des solutions entrent dans G. De
méme elles entrent par le point (1,-k1).

6° De (4.5) et de (3.1) il s'ensuit que le point (k,0)
est un point de glissement extérieur par rapport au domaine G
des projections des solutions. De m8me le point (0,-k) est
un point de glissement extérieur.

En résumant: par les points appartenant & l'ensemble 4
les projections des solutions du systéme (1.1) entrent dans
le domaine G; sauf par les points (0,0), (k,0), (0,-k)
(qui sont des points de glissement par rapport au domaine G)
les projections des solutions sortent du domaine G par les
points appartenant a 1’'ensemble B,

Supposons que la fonction u = p(x,y) donne une corres-—
pondance biunivoque et continue desﬂpoints (x,5) ¢ A et des
nombres u & (0,k). Par exemple, si nous désignons par L
la droite y = x -— k et si nous supposons que le point
(u,u=k) € L soit la projection paralléle a la droite 3 = -x
du point (x,y) € 4 sur la droite L, alors on peut poser
u = p(x,y).

Four les points (xo,yo) € A désignons par I l'ensem-
ble des nombres u, = g(xo,yo) tels que les projections des
solutions x = x(t), y = y(t) du systéme (1.1) vérifiant les
conditions initiales ~

(4.6) %(0) =x,, y(0) =y,
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16 XK.Tatarkiewicz

sont contenues pour des +t suffisamments grands dans le pre-
mier quart du plan des (x,y) (c'est-a-dire des solutbions
x=z(8), 5y = g(t) vérifiant les conditions (4.6) et teliles
qu'il existe un t - dépendant, en générsl, de la solution
considérée - tel que z(t) > C et y(t)> 0 pour t > %).

De méme désignons par J l'ensemble des nombres ug =
= E(Xo’yo) (ou (xc,yo) € i) tels que les projections des
solutions du systeme (1.1) vérifiant les condition initizles .
(4.6) sont contenues pour des t suffisamment grand dans le
troisiéme quart du plan des (x,y) (c'est-a-dire des solu~
tions x = x(%), 3= y(t) vérifiant les conditions (4.6) et
telles qu'il existe un % - dépendant, en générzl, de _a so-
lution considérée - tel que x(t) < 0 et y(t) <0 pour
t> t). "

Vu le lemme 1, la solution x = x(%), y = y(t) gqui véri-
fie la condition x(0) =k, y(0) =0 ‘vérifie sussi la con-
dition x(%) > 0, y(t) >0 Bour t > 0. Vu la continuité
de la dépandence d;s solutions de leurs conditions initiales,
il existe un € > 0 tel que (k-¢) € I. Donc I # @. De
méme il existe un & > O tel que (03;e)C J et J # £.
fvidemment I + J C (O;k). Supposons que

(4.7) I+ J = (03k)
et posons
(4.8) U := Inf I.

Vu (03e) ¢ J, ona ue€ (0;k). Soit le point (X,5)
tel que u = p(X,y) et supposons que la solution x = X(%),
y = (%) vérifie 1la condition initiale

(4.9 Z(0) =%, 3(0) = 7.

a) Supposons que u € I, Il existe alors un t > O tel
que X(%¥) > 0, F(¥) > o.
Soit une suite de nombres (0;0) » w —aq Vu la sup-
position (4.7) et la définition (4.8), on a w, € J. Suppo-
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sons que les points (xn,yn) vérifient lg condition w, =

= g(xn,yn) (ils sont déterminés univoguement) et supposons
que les solutions x = £, (), ¥ = Ia(t) (n = 1,25000) VEri-
fient les conditions

x,(0) =%, y,(0) =y,.

~

Alors

£® —x® > 0, 3. (B — F® >o.

I1 existe un n » 1 tel que, si n » #, alors
gn(t) >0 et Zn(t) > 0.

Mais 11 s'ensuit gue §n(t) > 0, gn(t) >0 pour t> t
et pour n » n. Donc u, € I pour n > a. Vula définition
(4.8), c'est contraire & notre supposition que u, < 1. Donc
u € I,

b) Supposons donc que le nombre u défini par la formule
(4.3) acvartient a l'ensemble J. De mdme gue sous a) nous
pouvons démontrer qu'il s'ensult que U € J.

Donc notre supposition (4.7) est fausse et on a I+J £
(03k). 31 I +J # (03k), alors - étant donné que
+ J € (03k) - 1l existe au moins un nombre u tel gque
€ (C3k) = (L + J). La fonction p étant biunivoque, il
existe alors un point exactement (%,i) € A tel que U =
= p(X,¥). Considérons la solution x = Z(t), y = z(t) qui
vérifie lz condition initiale (4.9). Htsant domné que si une
projection de solution entre dans le premier ou bien dans
le troisisme guart du plan des (x,y), elle y reste, la
solution x = (), ¥ = g(t) ne peut pas sortir de l'ensenm-

Iy

ble G - c'est-i-dire qu'il existe un t > C +tel que

N

[~1)

(Z(£),3(t)) € G pour ¢t > t. L'ensemble G est borné, donc

lz sciuvion x = Z(t), y = F(t) est aussi bornée - donc c¢ est
. - ~ ~

lz sclution cherchee.
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5. La croissance exponnentielle
Soit w un nombre réel. Posons

a(t) := a(t) - w, d(t) = d(t) - w.

En substituant
£(6) = u(t) e, y(t) = y(t) o

dans le systéme (1.1) nous allons obtenir le systéme d!équa-
tions différentielles linéaires

4 =8+ by

(5.1) . =
Vv = ¢x + du.

~ry ~~

Si les hypothéses (1.2) sont vérifiées, alors

18] = [a(8) - wl<[a®)] + [w] < ay + |wl,
3] = [ace) - wl<lace)| + [w] < ay + |w]
si
(5.2) W] < b=, -a,

(o0 h est le nombre défini par la formule (1.4)), alors
0<a,]4-|'w|<b1.
Posons aussi

8, 1= a, + | w|.

Si les coefficients du systéme d'équations différentiel-
les (1.1) vérifient les conditions (1.2) et (1.3) ét si la
condition (5.2) est vérifiée, alors les coefficients du syste-
me (5.1) satisfont aux inégalites |§(t)| < Eﬁ, b, < b(t),
by < g(8), ldc)] < 3, ou 0< &y < by,

Vu les résultats du n®® 3 et 4, pour chaqué nombre w qui
vérifie la condition (5.2) le systéme (5.1) admet au moins
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une solution bornée, non banale u = gw(t), v gw(t) et au
moins une solution non bornée u = gw(t), v = xw(t). Nous
avons donc démontré que pour chaque w € < O;h) il existe
une solution non banale x = %w(t)’ y = Zw(t) du systéme

(1.1) telle que les forctions

%W(t) QWt = g_w(t), Zw(t) GWt = g_w(t)

sont bornées et il existe une solution x
du systéme (1.1) telle que les fonctions

T (8)s 7 = Ty(h)

wt

Z (0 e = F (), F(8) &M = G(t)
tendent vers +eo pour t—= +o, On montre d'ailleurs fa-
cilement que méme gw(t) —0, Zw(t) —=— 0 pour t —= +oo,
Etant donné que le systéme (1»1) est linéaire, par un
raisonnement bien connu (voir ~ par exemple - [2], n° 4.,4)
nous pouvons démontrer, qu’il existe alors deux solutions
X = %(t), y = g(t) et x = X(t), y = z(t) du systéme (1.1),
telles que pour chaque w € ¢ O;h) on a (1.5) et (1.6), ce
qui achéve la démonstration du théoréme 1.

6. Les systemes non nécessairement linéaires
Considérons un systéme de deux équations différentielles
ordinaires du premier ordre, non nécessairement linéaires

2,“ =ax + by + Z(j:?st)’
(6.1) \ 8 mRivis
3 =gx +dy +8(3%:3),

ot C° 3 g,b,c,d4 :* <Oj+ee) —R, Cl3a £,8 ¢ <O;+ee)xR,—=R
et j est la fonction-identité. Supposons gue les solutions
du s§stéme (6+1) sont déterminées univoguement par leurs con-
ditions initiales.

En plus supposons qu'il existe deux fonctions C°s f,g :
t < Oj+o0)—=R telles que pour toutes les valeurs t 2 OxX7y
on a
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'.f:(tsx)Y)l < g(t)DXI + I)’l]

(6.2) ~
| 8Ctyx,9)| < BB [|x] + |7]]

(il s'ensuit que le systéme (6.7) admet alors la solution ba-

nale x =Q, y = 0) et telles que

(643) lin £(t) =0, lim E(t) =0

t—+too t—+=+oo

(donc (6.1) est un systéme "presque’ linéaire, "aomogéne").

En employant des calculs un peu plus compligués que les
calculs des n°® 3 - 5 on obtient un théoréme gqui est une gé-
néralisation du théoreme 1, & savoir:

Théoreme 3. Si les fonctions a,8,¢,d véri-
fient les hypothéses (1.2) et (1.3) et les fonctions f£,8
vérifient les hypothéses (6.2) et (6.3), alors le systém;
(6.1) d'éguations différentiellies non nécéssairement liné-
aires admet une famille & un paramétre de solutions x = x(t7,
y = z(t) sul vérifient les conditions

x(%) eWb — 0, y(%) et w ¢

2

1,

pour t —=+o0 et pour chzgue w € < C3;h) le nombre h
étant donné pa2r la formule (1.4)) et il existe des solutions
x = x(8), y = y(t) telles gue

~

5(1) ety () eVt oo

PA ,
pour t —=—+ o0 et sussi pour chague w € (Cjz;ha).
On peut encore zénérzliser ce résultat, en supposznt & 1a

place de l'hypothése (5.2) gue

[£em] < Z@ [0+ 131] + 5o,
| st | € B [1] + (51] + Z;(t).
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des

Les résultags obtenus dépendront des propriétés supposées
fonctions £,

Wl
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