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LES PROPRIÉTÉS ASYMPTOTIQUES DES SOLUTIONS 
DE CERTAINS SYSTÈMES D'ÉQUATIONS DIFFÉRENTIELLES 

1. In t roduct ion 
Considérons a.e système de deux équations d i f f é r e n t i e l l e s 

o rd ina i r e s du premier o rdre , l i n é a i r e s , nomogènes 

(1.1) ï = « + 5Z 

i = s s + 

Supposons que l e s fonc t ions C° 9 a,b. ,c ,d s <0;+<») 
v é r i f i e n t l e s condi t ions 

•H 

(1.2) 
| a ( t ) | < & 1 ^ < b ( t ) 

< | â ( t ) | < a . 
pour t 6 < 0; + oo)=:H+, 

où l e s constantes a^ e t b^ s a t i s f o n t à l ' i n é g a l i t é 

(1 .3) 

Posons 

0 < a,, < b,,. 

(1 .4) h := b^ - a^. 

I l e s t bien connu que l e s so lu t ions sa tu rées des systèmes 
l i n é a i r e s sont d é f i n i e s dans l e s mômes i n t e r v a l l e s que l eu r s 
c o e f f i c i e n t s e t q u ' i l s sont déterminées univoquement par l eu rs 
condi t ions i n i t i a l e s . 
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2 K.Tatarkiewioz 

Ce travail est consacré à la démonstration du théorème 
suivant. 

T h é o r è m e 1. Si les hypothèses (1.2) et (1.3) 
sont vérifiées, alors le système (1.1) d'équations différen-
tielles admet deux solutions saturées non banales x = x(t), 
y = y(t) et x = x(t), y = y(t), telles que pour chaque <C ** oj 
w e < Ojh) (où le nombre h est donné par la formule (1.4)) 
on a 

(1.5) lim x(t)ew^ = 0, lim y i ^ e ^ = 0 
t-» + <*> ** t—- + oo~ 

et 

(1.6) lim x(t)e - w t = + <*>, lim |(t)e - w t = + °o . 
t — + OO t-"- + oo"J 

La démonstration du théorème 1 sera donnée aux n o s 3 - 5 « 
Son extension aux systèmes non nécessairement lineaires sera 
formulée au n° 6. 

2. Quelques remarques 
2.1. Introduisons la définition suivante. 
D é f i n i t i o n . S'il existe un nombre k > 0 

tel que 

lim f(t)ekt = 0, 
t — + OO ~ 

nous dirons que la fonction f : <0;+oo) — R tend expo-
nentiellement vers zéro et s'il existe un nombre h > 0 tel 
gué 

lim f(t)e~ht = +oo (- °o), 
t —•+ OO 

nous dirons que la fonction f tend exponentiellement vers 
+ OO (- oo). 
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Propriétés aaymptotiquea 3 

En employant cette définition on peut formuler le théorè-
me 1 d'une autre manière (moins précise), à savoir: 

T h é o r è m e 2 . Si les conditions (1.2) et (1.3) 
sont vérifiées, alors le système (1.1) admet une famille à 
un paramètre exactement de solutions telles que toutes les 
deux fonctions les formant tendent exponentiellement vers 
zéro. Les autres solutions sont formées de deux fonctions 
qui tendent exponentiellement ou bien simultanément vers + oo 
ou bien simultanément vers -«>• 

2.2. Dans le cas particulier où les fonctions a,b,c,d 
¿sont constantes et les conditions (1.2) et (1.3) sont véri-
fiées, c'est-à-dire que 

max p a |, | d f] < min [b ,c J 

les projections sur le plan (x,y) des solutions x = x(t), 
y = y(t) (les caractéristiques) du système (1.1) forment 

A* 

un col (voir la fig.1). 
2.3. Considérons - un autre cas 

particulier, à savoir le cas où 
a(t) = 0, b(t) = 1. Alors le sy-
stème d'équations différentiel-
les (1.1) équivaut à une équa-
tion différentielle du second 
ordre 

(2.1) z - dz - cz = 0, M M M ' 

ou 

|d(t)| < a v b/| < c(t) et Fig.1 

et 0 désigne la fonction-zéro (c'est-à-dire une telle fon-
ction qu'on a 0(x) = 0 pour tous les x - ou ici plus exac-
tement - pour tous les x e < 0;+00)). 

Ainsi - vu l'hypothèse (1.3) - pour l'équation (2.1) nous 
n'allons pas retrouver les résultats du travail [ 2 ] , où -
à la place de l'hypothèse (1.3) - nous n'avons supposé que 
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4 K.Tatarkiewicz 

0 < a^ , et 0 < b/j (voir la fig.2, où sont montrés les do-
maines dans lesquells - sous l'hypothèse (1.3) - doit être 

contenue la projection de la 
courbe a = d(t), b = c(t) 
sur le plan (a,b)l). évidemment 
- à plus forte raison - les 
résultats du travail [4] con-
cernant l'équation (2.1) ne 
seront pas des cas particu-
liers de notre théorème 1. 

2.4. Supposons que les 

Fig.2 

constantes a ^ v é r i f i e n t 
les conditions (1.2) et (1.3). 
Alors chaque constante â  
telle que a^ ^ a^ < b^ vé-

rifiera aussi les conditions (1,.2) et (1.3) dans lesquelles 
on a substitué êL à la place de Sans diminuer la gé-
néralité de nos raisonnements nous pouvons donc dans la suite 
supposer que la constante a^ soit suffisamment grande pour 
vérifier,sauf (1.3)> l'inégalité suivante 

(2.2) ^ 1 1 b^ < a^ 

(la vérification de cette inégalité sera nécessaire dans la 
démonstration du n° 4). 

2.p. Posons 

p := a + d, q : = 
a b 
c d 

Il serait intéressant de savoir, si la condition qu'il 
existe deux constantes p^ et q^ telles que pour tout 
t 6 < 0, + oo) on a 

I P(t) I < P/, » N I 1 q(t) < -q, < 0 

n'entraîne t>as la thèse du théorème 1? 
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j-ropriétés asyciptotiqués 5 

2.6. On peut facilement montrer seulement un résultat 
1 = beaucoup "olus faible. Surrcosons jue a.b.c.d 6 C (n.) et 

• - ~ -1- h# ' < * » ' p j + 

que b(t) ^ 0. En éliminant y du système (1.1) on obtient 
une équation différentielle du second ordre. En appliquant 
les résultats de [ 2 ] on voit que, s'il existe deux constan-
tes p„ > 0 et q/| > C, telles que 

|a(t) + d(t) + [ln b(t)]'| < p^ 

et 

(5.5) 
a(t) b(t) 
c(t) d(t) 

< q^ + b(t) 
â(t) 
b(t) 

alors la thèse du théorème 1 est vraie (on obtient un résul-
tat semblable en éliminant x dans le cas, où c(t) i 0). 

2.7« La littérature concernant les propriétés asymptoti-
ques des. systèmes (1-1) dans lesquels les coefficients sont 
des fonctions "presque constantes" compte - vraisemblable-
ment - des centaines de travaux (pour l'histoire et pour un 
choix de bibliographie voir - par exemple - le travail [?])• 
Cependant il y a peu de travaux qui sont consacrés aux 
systèmes dont les coefficients ne sont pas des fonctions 
"presque constantes". Il faut noter ici le travail Radzikow-
ski [ 1 ] - ses résultats sont contenus dans le nôtres. En 
effet son auteur suppose que les fonctions a,b,c,d e C^ (et 
non e C ), admet non seulement les inégalités (1.2) et (1.3)» 
mais en plus il suppose que les fonctions a,b,c,d sont bornées 
et vérifient deux inégalités différentielles (ressemblant à 
(2.3)» mais beaucoup plus compliquées). Enfin - sous ces hy-
pothèses - il demontre seulement que les solutions considé-
rées tendent vers zéro (et non qu elles tendent exponentielle-
ment vers zéro). 
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6 K.Tatarkiewicz 

3. L'existence des solutions non bornées 
Remarquons, que le couple de fonctions x = 0, y = 0 

forme la solution (banale) du système (1.1).Donc aucune pro-
jection de solution non banale x = x(t), y = y(t) sur le 
plan des (x,y) ne passe pas par le point (0,0). 

Dans les points de l'espace (t,x,y) tels que t ̂  0, 
x > 0 et y = 0 on a 

(3.1) y(t) = c(t)x > b.x > 0 
M ~ 1 

et dans les points (t,x,y) tels que 
y > 0 on a 

t ̂  0, x = 0 et 

•f 

Fie. 3 

x-(t) = b(t)y > biy > 0. 

Donc par la frontière du premier quart 
du plan des (x,y) (sauf par le point 
(0,0)) les projections des solutions du 

< système (1.1) entrent dans ce quart (voir 
la fig.3). Il s'ensuit le lemme suivant. 

L e m m e 1. Si pour un t^ ̂  0 
on a xit,,) ̂  0, y(ty|) £ 0, et x2(tn) + 
+ y 2 ^ ) > 0, alors x(t) > 0 et 
£(t) > 0 pour t > t^. 

Autrement dit si la projection d'une solution non banale 
est, pour un t^ ̂  0, contenue dans la fermeture du premier 
quart du plan, alors elle restera dans ce quart pour tous 
les t > t, 1* 

De môme si x(^) ^ 0, y(t>,). 4 0, + y (t,,) > 0, 
alors x(t) < 0 et y(t) < 0 pour t > t,,. 

On peut renforcer ce résultat. Posons 

R := {(x,y) s x=r, y ^ s}, S := {(x,y) : x ̂  r, y=s } 

et 

V(r,Ts) := {(x,y) î x > r, y > s} . 
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Propriétés asymptotiques 7 

Evidemment l'ensemble R+S forme l a f r on t i è re de l ' en -
semble V( r ,s ) ( vo i r l a f i g . 4 ) . Nous avons supposé que l a 

F ig .4 

condi t ion (1.3) so i t v é r i f i é e - dono a^îb^ < 1 < b^sa^. 
Supposons que 

(3.2) 

Alors 

b 1 
0 < t-1- r < a < —1 r . 

1 a1 

y ( t ) | = c ( t ) x + d ( t ) y = c ( t ) x + d ( t ) s l > 
Is S ls 

a1b1 > b^r - a,,s > b^r r = 0, 

¿ ( t ) | = a ( t ) x + b ( t ) y I = a ( t ) r + b ( t ) y | > 
IR IH IR 

> - a . r + b.s > -a^r + 
a„b. 1"1 r = 0 
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8 K.Tatarkiewicz 

(où le symbole et | c signifie qu'il faut prendre la 
valeur de la fonction considérée dans les points de l'ensemble 
R et S respectivement). Kous avons donc démontré eue si la 
condition (3.2) est vérifiée, alors par chaque point de la 
frontière du domaine V(r,s) x(0;+oo) les solutions du sys-
tème (1.1) entrent dans ce domaine. Il s'ensuit immédiatement 
le lemme suivant. 

L e m m e 2 . di x = x(t), y = y(t) est une sola-
tion du systeme (1.1) telle que ) = r > 0, ̂ (t^ ) = s > 0 (ou 
t* > 0) et la condition (3.2) soit vérifiée, alors ::(t) > r, I ** 

y(t) > s pour tout t > t„. «o i 
Soit x = x(t), y = y(t) la solution du système (1.1) 

telle que 

(3.5) x(t.) = r* , y(t,) = 1 + = : s„ 

OÙ = 0 CO J.OO UUlUUiCO X1 ' 
(3.2) pour r = r^ et 3 = 3^. 

Vu le leaime 2, nous aurons 

et les nombres vérifient la condition 

(3.4) x(t) > r^ et y(t) > s1 

pour- t > t/j =0. Nous avons 

1 2 1 + < 1 < j 1 +• 

Il existe donc un plus grand t2 > t^ = 0 (où il peut 
être tg = + tel qu'on a 

1 + a 1 
x(t) y(t) < ± 

CM C. 

pour t e := <t^;t 2). Donc si t2 < +oo, alors 

by, (3.5) y(t9) = £ 1 + a 1 
x(t2). 
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Propriétés asymptotiques 

tour t 6 Îi nous aurons 

y(t) = c(t)x(t) + d(t)y(t) > b.x(t) - a.y(t)> rsj rsj ~ I rsj I ̂ 
a1 >bl5(t) - ^ [1 + iq-J s(t) = 

= (b,. - a1) — — > (b,, - a^) -J- =: k^. 

Vu (1.3), nous avons k^ > 0, et, vu (3.3), on a 

(3.6) y(t) ^ k^(t - t^) + s,, pour tel.,. 

Supposons que tg = + <*> (c'est-à-dire que = 
= <0; + oo)). Alors de (3.6) il s'ensuit que y(t) —— + °° Al 
pour t——+oo. Mais d'autre part 

x(t) = a(t)x(t) + b(t)y(t) > -a^xCt) + b ^ t ) , 

donc pour t > t^ nous aurons 

x(t) > z(t), 

où z = z(t) est la solution de l'équation différentielle 

z = -a^z + b.y 

telle que z(t„) = x(t,,() = r^ > 0. Il est bien connu (nous 
rappelons que t^ = 0) que 

^ a^v 
' dv. 

-a.* h -a, x, f 
;(t) = r.e ' + b.e ' I y(v)e I I v /\t 

\ , 
A l'aide du théorème de l'Hôpital en montre facilement 

que z ( t ) — — + oo, donc, que x(t) — + «» pour t — + 
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10 K.Tatarkiewicz 

Supposons maitenant que t 2 < Posons (voir (3.5)) 

b„ 
(3.7) x(t 2) =: r 2 , y(t2) = 

Vu (3.4) et (3.6) nous aurons 

1 
®1 2 _ s s2* 

r £ > r 1 f s2 > X , ( t 2 - t,,) + s,, > s,, 

et 

y(t2) = s2 = 1 + 2 > 1 
"2" > 2" 1 + 

I l existe donc un plus grand t j > t 2 ( i l peut être 

t j = + oo) t e l que 

y(t) > J M C, 
1 + x(t) 

pour t 6 Ig := < t 2 ; t j ) . Donc s i t^ < +<*>, alors 

î< V « i 

Nous avons donc 

1 + s c t 3 ) . 

2b.y(t) 
< ; ^ p o u r 6 h-

Vu le lemme 2, nous aurons x(t) > r 2 et y(t) > s2 

pour t e ( t 2 ; t j ) et 

x(t) = a(t)x(t) + b(t)y(t) > - a l S ( t ) + b,,y(t)> 

2b. b.(b. - a.) 

> " a i z p r V ¿ ( t ) + b l X ( t ) > \ * b, So > 

> - a,,) =: k 2 . 
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Propriétés asymptotiques 11 

Nous avons kg > ]C| > 0 et, vu C3»7) 

(3.8) £ kg(t - t2) + r 2 pour t e I2. 

Si tj = + oo(, alors x(t) — » + » pour t — » + oo et on 
peut montrer facilement què de même y(t)—— + oo pour 
t — + OO. 

Si tj < + oo nous répétons notre raisonnement. Nous ob-
tenons ainsi une suite croissante de nombres t^ , t 2, ... et 
une suite d'intervalles , I 2, ... leurs correspondants 
dans lesquels sont valables les estimations (qui généralisent 
les estimations (3.6) et (3.8)) 

(3.9) y(t) ^ ^ ( t - t ^ ) + a 2 n_ 1 pour t e 

et 

(3.10) x(t) ^ k 2 n(t - t ^ ) + r2n P o u r fc 6 I2n' 

où les suites s^,s2>..., r^,r2,... et k^tk2>... sont 
croissantes. 

Si pour un k on a t^ = + oo» alors la suite t^,t2>... 
...jtjç est finie est la démonstration est achevée. Si la 
suite ainsi construite t^jt2,... est infinie, alors il est 
facile à voir qu'il doit être t n — + oo. En effet, la suite 
^»"tg,... est croissante. Si elle ne tendait pas à l'infini, 
elle serait bornée et elle aurait une limite finie t. Vu la 
définition des points (x(tn) »y(tn)), du théorème de la 
moyenne il s'ensuivrait que 

lim ¿(t) = + oo = lim y(t) 
t — t - ~ t — t " ~ 

ce qui est impossible. Donc 
oo 

I k = <0;+oo). 
k=1 
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12 K.Tatarkiewicz 

Vu I-'I. = 0 pour i ^ 3, il s'ensuit que ou bien «J l'ensemble 

oo 
£ ^ 
n=1 

ou bien l'ensemble 
oo 

I2n-1 
n=1 

a une mesure infinie. Vu (5.9) et (3.10), il s'ensuit qu'au 
A 

moins une des fonctions x = x(t), y = y(t) croit à l'infini 
pour t —»- + oo. il est facile a montrer que l'autre croit 
aussi à +<*. 

Nous avons donc démontré qu'il existe au moins une so-
lution x = x(t), y = y(t) du système (1.1) telle que les 
deux fonctions x et y qui la forment croissent à + oo 
pour t — — + oo. 

4. L'existence des solutions bornées 
Posons 

b^ b^ â b,. 
(4.1) k , o ' o, + 

â Ctff - ab a1 b^ - aj 

Soit l'ensemble B formé par deux segraents y = 0 pour 
0 < x < k et x = 0 pour -k ^ y < 0 (voir la fig.5). 

Posons 

b^ 
k -i—̂  k - — ^ • — o ? _ c, K - a? 

(vu (2.2), on a 1 < k, < k) et soit l'ensemble A formé 
par quatre segments : 



Propriétés asymptotiques 13 

Fig.5 

(4.2) y = v — (x - k) pour k, 4 x < k 

(pour ce segment on a -1 ^ y < 0), 

y = -1 pour 1 ^ x < k^, 

x = 1 pour -X, < y < -1 

et enfin par 

(4.3) x = (y + k) pour -k < y 4 -l^ 

(pour ce dernier segment on a 0 < x ^ 1). 

Soit G le domaine borné« ayant comme frontière l'ensen 
ble A+B. Éludions par quels points de la frontière A+B 

- 307 -



14 K.Tatarkiewicz 

les projections des solutions du système (1.1) sur le plan 
des (x,y) entrent et par lesquels elles sortent du do-
maine G. 

1° Le point (0,0) est - comme nous le savons déjà -
la projection de la solution banale et aucune projection de 
solution n'entre ni ne sort de G par lui. 

2° Nous savons aussi que par y = 0 pour x > 0 et par 
x = 0 pour y < 0 les projections des solutions sortent du 
quatrième quart du plan (x,y), dono-à plus forte raison -
par y = 0 pour 0 < x < k et par x = 0 pour -k < y < 0 
les projections des solutions sortent du domaine G. 

3° Sur la demi-droite L donnée par les formules y = -1, 
x ^ 1 nous avons 

(4.4) y(t)| L = c(t)x - d(t)|L > ^ x - & 1 > " al > o. 

Donc par le segment y = -1 pour 1 < x < k^ les pro-
jections des solutions entrent dans G. De même elles en-
trent dans G par le segment x = 1 pour -k^ < y < -1. 
De (4.4) et d'une estimation analogue pour x(t) il s'en-
suit que par le point (-1,-1) les projections des solutions 
entrent aussi dans le domaine G. 

•4° Par la droite (4.2) pour k^ ^ x < k les projections 
des solutions entrent dans G. En effet, ,b,J est un 
vecteur non nul, orthogonal à la droite (4.2) et qui est 
dirigé vers l'intérieur du domaine G. Considérons sur le 
segment H de la droite (4.2) correspondant à k^ 4 x ^ k, 
le produit scalaire du vecteur ^-a^jb^ et du vecteur 
OsC^O»y("fc)J (c'est le vecteur du champs (1.1)). Vu (4.1) et 
y 4 0, nous aurons 

(4.5) [ - a v b i ] * [ ¿ W t y C ^ | H =
 + biZ ( t )| H = 

= -a1a(t)x - a1b(t)y + b/,c(t)x + b1d(t)y| > 
IH 
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Propriétés asymptotiques 15 

>-8^x + 0+bfac + b1a1y = (b^-a^)x + a ^ y _ > 

2 2 > ("bxj - a^ ) - a^b^ = a^b^ - a^b^ = 0. 

Il s'ensuit que par (4.2) pour k^ < x < k les projec-
tions des solutions entrent dans |G. 

De môme par le segaent (4.3) les projections des solu-
tions entrent dans G. 

5° De (4.4) et de (4.5) il s'ensuit que par le point 
(k^, -1) les projections des solutions entrent dans G. De 
même elles entrent par le point (1,-k^). 

6° De (4.5) et de (3.1) il s'ensuit que le point (k,0) 
est un point de glissement extérieur par rapport au domaine G 
des projections des solutions. De même le point (0,-k) est 
un point de glissement extérieur. 

En résumant: par les points appartenant à l'ensemble A 
les projections des solutions du système (1.1) entrent dans 
le domaine G} sauf par les points (0,0), (k,0), (0,-k) 
(qui sont des points de glissement par rapport au domaine G) 
les projections des solutions sortent du domaine G par les 
points appartenant à l'ensemble B. 

Supposons que la fonction u = p(x,y) donne une corres-M 
pondance biunivoque et continue des points (x,y) 6 A et des 
nombres u 6 (0,k). Par exemple, si nous désignons par L 
la droite y = x - k et si nous supposons que le point 
(u,u-k) e L soit la projection parallèle à la droite y = -x 
du point (x,y) 6 A sur la droite L, alors on peut poser 
u = P(x,y). 

Pour les points ( x
0>7 0) e A désignons par I l'ensem-

ble des nombres u Q = p(xQ,y0) tels que les projections des 
solutions x = x(t), y = y(t) du système (1.1) vérifiant les ** M 
conditions initiales 

(4.6) x(0) = x Q, y(0) = y Q 
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16 K.Tatarkiewicz 

sont contenues pour des t suffisamments grands dans le pre-
mier quart du plan des (x,y) (c'est-à-dire des solutions 
x = x(t), y = y(t) vérifiant les conditions (4-.6) et telles ^ ro __ 
qu'il existe un t - dépendant, en général, de la solution 
considérée - tel que x(t) > 0 et y(t) > 0 pour t > t). 

De même désignons par J l'ensemble des nombres u0 = 
= P(x

0»y0) (xc,y0) 6 A) tels que les projections des 
solutions du système (1.1) vérifiant les condition initiales 
(4.6) sont contenues pour des t suffisamment grand dana le 
troisième quart du plan des (x,y) (c'est-à-dire des solu-
tions x = x(t), y = y(t) vérifiant les conditions (4.6) et 
telles qu'il existe un t — dépendant, en générai., de _a so-
lution considérée - tel que x(t) < 0 et y(t) < 0 pour 
t > t). 

"Vu le lemme 1, la solution x = x(t), y = y(t) qui véri-
fie la condition x(0) = k, y(0) = 0 vérifie aussi la con-pj 
dition x(t) > 0, y(t) > 0 pour t > 0. Vu la continuité ^ PJ 
de la dépandence des solutions de leurs conditions initiales, 
il existe un t > 0 tel que (k-e) e I. Donc 1 ^ 0 . De 
môme il existe un e > 0 tel que (0;£) C J et J ^ 0. 
Évidemment I + J C (0;k). Supposons que 

(4.7) I + J = (0;k) 

et posons 

(4.8) ïï := Inf I. 

Vu (0;e) C J, on a u e (0;k). Soit le point (x,y) 
tel que û = p(x,y) et supposons que la solution x = jCt)i 
y = y(t) vérifie la condition initiale «M 

(4-.9) x(0) = x, y(0) = y. 

a) Supposons que ïï 6 I. Il existe alors un t > 0, tel 
que x(t) > 0, y(t) > 0. ^ m 

Soit une suite dé nombres (Oju) 3 un — u. Vu la sup-
position (4.7) et la définition (4.8), on a u^s J. Suppo-

- 310 -
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sons que les points (x
n»yn) vérifient la condition u n = 

= P(xn,yn) (ils sont déterminés univoquement) et supposons 
que les solutions x = ̂ (t), y = yn(t) (n = 1,2,...) véri-
fient les conditions 

= xn' = V 

Alors 

x (t) — x(t) > 0, y (t) — y(t) > 0. 
^ 11 rO 

Il existe un n ^ 1 tel que, si n ^ n, alors 

xn(t) > 0 et yn(t) > 0. 

?.Iais il s'ensuit que x„(t) > 0, y_(t) > 0 pour t > t •"n i u B 

et pour n ^ n. Donc u n e I pour n > n. Vu la définition 
(4.8), c'est contraire à notre supposition que u n < ïï. Donc 
u ê I. 

b) Supposons donc que le nombre u défini par la formule 
(4.3) appartient à l'ensemble J. De même que sous a) nous 
pouvons démontrer qu'il s'ensuit que u 6 J. 

Donc notre supposition (4.7) est fausse et on a I+J ^ 
£ (0;k). Si I + J ^ (0;k), alors - étant donné que 
I + J C (0;k) - il existe au moins un nombre u tel que 
ïï £ (0;k) - (I. + J). La fonction p étant biunivoque, il 
existe alors un point exactement (x,y) e A tel que ïï = 
= p(x,y). Considérons la solution x = x(t), y = y(t) oui 

^ r o " 

vérifie la condition initiale (4.9). ¿tant donné que si une 
projection de solution entre dans le premier ou bien dans 
le troisième quart du plan des (x,y), elle y reste, la 
solution x = x(t), y = y(t) ne peut pas sortir de l'ensem-
ble G - c'est-à-dire qu'il existe un t > C tel que 
(x(t),y(t)) e G pour t > t. L'ensemble G est borné, donc 
la sciuûion x = x(t), y = y(t) est aussi bornee - donc c est 
la solution cherchee. 

3/i A 
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5 . La croisaanoe exponnentielle 
Soit w un nombre réel. Posons 

§(t) := a(t) - w, g(t) s = d(t) - w. 

En substituant 

x(t) = u(t) e™*, Z(t) = v(t) e ^ 

dans le système (1.1) nous allons obtenir le système d'équa-
tions différentielles linéaires 

û = au + bv 
( 5 . 1 ) : ~~ r 

v = ex + du. <s» «OrO 

Si les hypothèses (1.2) sont vérifiées, alors 

l K ^ I = lâCt) - w| ̂  |a(t) | + | w | < + |w|, 

là(t)| = |â(t) - w U |d(t)| + [ w | < + |w|. 

Si 

(5.2) |w| < h = b,, - a/j 

(où h est le nombre défini par la formule (1.4-)), alors 
0 < a^ | w | < b,,. 

Posons aussi 

S : = a^ + | w|. 

Si les coefficients du système d'équations différentiel-
les (1.1) vérifient les conditions (1.2) et (1.5) ét si la 
condition (5.2) est vérifiée, alors les coefficients du systè-
me (5.1) satisfont aux inégalités |â(t)| < , b^ < b(t), 
^ < c(t), |d(t)| < où 0 < il, C b r 

Vu les résultats du n 0 3 3 et 4, pour chaquê nombre w qui 
vérifie la condition (5.2) le système (5*1) admet au moins 

- 512 -



Propriétés asymptotiques 19 

une solution bornée, non banale u = u_,(t), v = v„(t ) et au 
53 W 3 W 

moins une solution non bornée u = û ( t ) , v = v„ ( t ) . Nous «w ' ' -»w _ ' 
avons donc démontré que pour chaque w e < Of-h) i l existe 
une solution non banale x = x_ ( t ) , y = ym ( t ) du système 
(1.1) t e l l e que l e s fonctions 

e W t " ' ^ e W t = S-w<*> 

sont bornées et i l existe une solution x = x m ( t ) , y = y m ( t ) 
du système (1.1) t e l l e que l es fonctions 

x f t ) e _ w t = u ( t ) , y ( t ) e _ w t = v i t ) 

tendent vers + oo pour t — + «>. On montre d ' a i l l eu r s f a -
cilement que même — " - 0 » ŷ Ĉ O — ' ® pour t — — + « o . 

Étant donné que l e système (1*1) est l i néa i r e , par un 
raisonnement bien connu (voir - par exemple - [2J , n° 4 .4) 
nous pouvons démontrer, , qu ' i l existe alors deux solutions 
x = x ( t ) , y = y ( t ) et x = x ( t ) , y = y ( t ) du système (1 .1 ) , 

m ¡ s 

t e l l e s que pour chaque w e < 0;h) on a (1.5) et (1 .6 ) , ce 
qui achève l a démonstration du théorème 1. 

5. Les systèmes non nécessairement l inéa i res 
Considérons un système de deux équations d i f f é r en t i e l l e s 

ordinaires du premier ordre, non nécessairement l inéa i r e s 

( 6 # 1 ) t = m + & 

ï = ss + âz + g<â»5»z>» 

où C° 3 a ,b ,c ,d : < 0;+»«>) —~-R, C1 3 f , g : < 0: + o®)*Ro—^R 
et j est l a fonct ion-identi té . Supposons que les solutions 

M * 

du système (6.1) sont déterminées univoquement par leurs con-
ditions i n i t i a l e s . 

En plus supposons q u ' i l existe deux fonctions C°9f,jg : 
s < 0; + o o ) — » - R t e l l e s que pour toutes l e s valeurs t > Opc,y 
on a 

- 5 1 3 -
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li(t,x,y)| 4 f(t)[|*| + |y|] 

|g(t,*,y)| < |(t) [| x | + |y|] 

(il s'ensuit que le système (6.1) admet alors la solution ba-

nale x = 0, y = 0) et telles que 

(6.3) lim f(t) = 0, lim g(t) = 0 
t-»- + o o t-»- + o o " 

(donc (6.1) est un système "presque!" linéaire, "homogène"). 

En employant des calculs un peu plus compliqués que les 
os • 

calculs des n 3 - 5 on obtient un theorème qui est une gé-
néralisation du théorème 1, à savoir: 

T h é o r è m e 3 . Si les fonctions a.b.c.d véri-
« rt) ÎW (V 

fient les hypothèses (1.2) et (1.3) et les fonctions f,g 
^ /s* 

vérifient les hypothèses (6.2) et (6.3), alors le système 

(6.1) d'équations différentielles non nécéssairement liné-

aires admet une famille à un paramètre de solutions x = x(t), 

y = y(t) qui vérifient les conditions 
r\i 

x(t) evrt — 0, y(t) e** — - C 

pour t — — + oo et pour chaque w e < 0;h) le nombre h 

étant donné par la formule (1.4)) et il existe des solutions 

x = x(t), y - y(t) telles que 

:-:(t) e - v / t — — + oo, y(t) e " r t — - + oo 

pour t — — + oo et aussi pour chaque w e. (0;h). 

On peut encore généraliser ce résultat, en supposant à lu 

place de l'hypothèse (S.2) que 

|f(t,;:,y)| < f(t)[|::| + |y|] + f(t), 

I i(t ,",y) ! < e(t) |~| /: I + I y |] + ::Ct). 
] r s j | L —i r>» 
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Les r é s u l t a t s obtenus dépendront des p r o p r i é t é s supposées 
des fonc t ions f , g . 

M ' j Q 
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