

Anna Romanowska

ON FREE ALGEBRAS IN SOME EQUATIONAL CLASSES DEFINED BY REGULAR EQUATIONS

Introduction

Let K be an equational class of algebras of some fixed type τ without nullary operations. Let $x \cdot y = x$ be an identity in K , where $x \cdot y$ is a term of τ , in which the variable y occurs. Following J. Płonka [3] an identity $f = g$ in K is called regular if the set of variables occurring in the term f is the same as that in g . Let $R(K)$ denote the equational class of algebras defined by all regular identities holding in K . It is known (see [5]) that any algebra in $R(K)$ is the Płonka sum of a semilattice-ordered system of algebras from K (see § 1 for definitions). J. Płonka [6] proved that a free algebra in $R(K)$ is the sum of a semilattice-ordered system of finitely generated free algebras from K . In this paper we give a necessary and sufficient condition for the algebra \mathcal{A} to be free in the class $R(K)$. Our theorem gives a characterization of free algebras in the classes of distributive quasilattices, Padmanabhan quasilattices and sums of Boolean algebras (see [2], [4], [7] for definitions).

1. Preliminaries

Let K denote an equational class of algebras of some fixed type τ without nullary operations. (For these and other standard algebraic notions see [1]).

By a semilattice-ordered system of algebras in K we mean a triple

$$\langle \mathcal{D}, \langle \alpha_i \rangle_{i \in I}, \langle \varphi_{i,j} \rangle_{i, i, j \in I} \rangle,$$

where $\mathcal{D} = (I, \vee)$ is a join semilattice, $\langle \alpha_i \rangle_{i \in I}$ is a family of algebras in K indexed by the set I , and if $i \leq j$, $i, j \in I$, then $\varphi_{i,j}$ is a homomorphism from α_i into α_j satisfying the following two conditions.

- (i) $\varphi_{i,i}$ is the identity mapping on α_i .
- (ii) If $i \leq j \leq k$, then $\varphi_{j,k} \circ \varphi_{i,j} = \varphi_{i,k}$.

Given such a family of algebras in K , J. Płonka (see [3]) constructed an algebra of type τ in the following manner.

Let $A = \bigcup_{i \in I} A_i$, the disjoint sum of the carriers of the carriers of the algebras α_i . For an n -ary operation symbol f of τ we define its realization on A by setting

$$f(x_1, \dots, x_n) = f(\varphi_{i_1,j}(x_1), \dots, \varphi_{i_n,j}(x_n)),$$

where $j = i_1 \vee \dots \vee i_n$, $x_r \in A_{i_r}$, $r = 1, \dots, n$. We call the resulting algebra $\alpha = (A, F)$ the Płonka sum of the semilattice-ordered system $\langle \mathcal{D}, \langle \alpha_i \rangle_{i \in I}, \langle \varphi_{i,j} \rangle_{i \leq j, i, j \in I} \rangle$.

Theorem 1. [5] If there is a term $x \cdot y$ of τ in which the variable y occurs such that $x \cdot y = x$ is an identity in K , then $R(K)$ consists of all isomorphic copies of Płonka sums of semilattice-ordered systems of algebras in K .

From now, we will assume that $x \cdot y = x$ is an identity in K . Now, let $\{a_j, j \in J\}$ be free generators of a free algebra $\mathcal{F}_{R(K)}$. Let $J_0 = \{k_1, \dots, k_n\}$ be a finite subset of J . Let \mathcal{F}_{J_0} be the subalgebra of $\mathcal{F}_{R(K)}$ generated by all elements of the form

$$g_i = a_{k_1} \cdot a_{k_2} \cdot \dots \cdot a_{k_{i-1}} \cdot a_{k_i} \cdot a_{k_{i+1}} \cdot \dots \cdot a_{k_n},$$

where $i = 1, 2, \dots, n$. If $n = 1$, then $g_1 = a_{k_1}$.

Lemma 2. [6] \mathcal{F}_{J_0} is a free algebra in K with n free generators g_i .

Lemma 3 [6] $\mathcal{F}_{R(K)}$ is the Płonka sum of the semi-lattice-ordered system of algebras \mathcal{F}_{J_0} , where J_0 ranges over all non-void finite subsets of J .

Theorem 4 [6] A free algebra in $R(K)$ is the Płonka sum of a semilattice ordered system of finitely generated free algebras from K .

The following example shows that the converse of Theorem 4 is not true. Consider distributive quasilattices, i.e. algebras with two binary operations $+$ and \cdot satisfying the following axioms

$$\begin{array}{ll} x+x = x & x \cdot x = x, \\ x+y = y+x, & x \cdot y = y \cdot x, \\ (x+y)+z = x+(y+z), & (x \cdot y) \cdot z = x \cdot (y \cdot z), \\ x+(y \cdot z) = (x+y) \cdot (x+z), & x \cdot (y+z) = (x \cdot y) + (x \cdot z). \end{array}$$

It is known (see [4]), that every distributive quasilattice is the Płonka sum of the semilattice-ordered system of distributive lattices. Let $\alpha = (\{a_1, a_2, a_3\}+, \cdot)$ be an algebra satisfying all mentioned axioms and $x+y = x \cdot y$. α is the Płonka sum of the semilattice-ordered system $\langle \mathcal{O}, \langle \alpha_i \rangle_{i \in I}, \langle \varphi_{i,j} \rangle_{i \leq j, i, j \in I} \rangle$, where $I = \{1, 2, 3\}$, $1, 2 \leq 3$, $A_i = \{a_i\}$. α is the sum of one element lattices, it is generated by a_1 and a_2 , but it is not a free distributive quasilattice with two generators, because of the following lemma.

Lemma 5. [8] A free distributive quasilattice with two generators has six elements.

2. Main result

The following theorem gives a characterization of free algebras in the class $R(K)$.

Theorem 6. An algebra α is a free algebra in the class $R(K)$ with α free generators $\{g_j, j \in J\}$ iff it is the

Płonka sum of the semilattice-ordered system $\langle \mathcal{J}, \langle \alpha_i \rangle_{i \in I}, \langle \varphi_{i,j} \rangle_{i < j, i, j \in I} \rangle$ such that

- 1) \mathcal{J} is the free semilattice with the set J of free generators,
- 2) every algebra α_i is a finitely generated free algebra from the class K , moreover α_i has exactly n free generators g_j^i ($j = 1, \dots, n$) iff $i = i_1 \vee \dots \vee i_n$, where $i_1, \dots, i_n \in J$, $i_j \neq i_k$ for $i \neq k$ and if $i \in J$, then α_i is freely generated by $g_1^i = g_{i_1} = g_i$,
- 3) for $i \leq k$, $\varphi_{i,k}: \alpha_i \rightarrow \alpha_k$ is a monomorphic extension of the mapping $\varphi_{i,k}^o$ defined by $\varphi_{i,k}^o(g_j^i) = \varphi_{i,j}(g_{i_j}) = g_j^k$, where $j = 1, \dots, n$.

Proof. (\Rightarrow) Let α be a free algebra in the class $R(K)$ with free generators $g_j, j \in J$. By Lemmas 2,3 and Theorem 4, α is the Płonka sum of the semilattice-ordered system $\langle \mathcal{J}, \langle \alpha_i \rangle_{i \in I}, \langle \varphi_{i,j} \rangle_{i < j, i, j \in I} \rangle$, where every α_i a finitely generated free algebra from the class K and \mathcal{J} is the join semilattice of all finite subsets of J . We will prove now, that \mathcal{J} is a free semilattice generated by one element subsets. Let \mathcal{G} be a semilattice. Let f_o be a mapping of one element subsets of J into \mathcal{G} . Let us define $f(\{i_1, \dots, i_k\}) = f_o(\{i_1\}) \vee \dots \vee f_o(\{i_k\})$, $i_1, \dots, i_k \in J$. It is easy to see that f is a homomorphism from \mathcal{J} into \mathcal{G} extending f_o . Hence \mathcal{J} is a free semilattice. If $i \leq j$, then $\varphi_{i,j}^o(g_k^i) = \varphi_{i,j}(g_{i_k} \cdot g_{i_2} \cdot \dots \cdot g_{i_{k-1}} \cdot g_{i_1} \cdot g_{i_{k+1}} \cdot \dots \cdot g_{i_r}) = g_{i_k} \cdot g_{i_2} \cdot \dots \cdot g_{i_{k-1}} \cdot g_{i_1} \cdot g_{i_{k+1}} \cdot \dots \cdot g_{i_r} \cdot \dots \cdot g_{i_n} = g_j^k$, where $k = 1, \dots, r$, g_1^i, \dots, g_r^i are all free generators of α_i and g_1^j, \dots, g_n^j are all free generators of α_j .

(\Leftarrow) Let α be the Płonka sum of the semilattice-ordered system described in the Theorem. By Theorem 1, α belongs to the class $R(K)$. Let $a \in A_i$, $b \in A_j$. Since $x \cdot y$ is a term,

$$(1) \quad a \cdot b = \varphi_{i,i \vee j}(a) \cdot \varphi_{j,i \vee j}(b) = \varphi_{i,i \vee j}(a)$$

Using (1), it is easy to check that $x \cdot y$ define a P -function (for the definition see [3]). Moreover, for $a, b \in A_i$, we have $a \cdot b = a$, $b \cdot a = b$, furthermore if $a \in A_i$, then $\varphi_{i,j}(a) = a \cdot b$ for $i \leq j$, $b \in A_j$ and finally $i \leq j$ iff $g_k^j \cdot g_k^i = g_k^j$. Hence, by Theorem 2 in [3], the decomposition α into the described sum can be obtained by means of $x \cdot y$. Therefore, $\varphi_{i_k, i}(g_{i_k}) = g_{i_k} \cdot x$, where x is an arbitrary element of α_i and $i = i_1 \vee \dots \vee i_k \vee \dots \vee i_n$, $i_1, \dots, i_n \in J$. Let g_1^i, \dots, g_n^i be all free generators of α_i . Since $g_{i_1} \cdot \dots \cdot g_{i_n} = \varphi_{i_1, i}(g_{i_1}) \cdot \dots \cdot \varphi_{i_n, i}(g_{i_n}) = g_1^i \cdot \dots \cdot g_n^i \in \alpha_i$, we can assume that $x = g_{i_1} \cdot \dots \cdot g_{i_n}$. Hence $g_k^i = \varphi_{i_k, i}(g_{i_k}) = g_{i_k} \cdot (g_{i_1} \cdot \dots \cdot g_{i_n}) = g_{i_k} \cdot g_{i_1} \cdot \dots \cdot g_{i_{k-1}} \cdot g_{i_1} \cdot g_{i_{k+1}} \cdot \dots \cdot g_{i_n}$. Therefore, for $i \in I$, all generators of α_i can be expressed by generators g_j with help of \cdot . Hence α is generated by the set $\{g_j, j \in J\}$.

Let \mathcal{B} be an algebra from $R(K)$. By Theorem 1, \mathcal{B} is the Płonka sum of a semilattice-ordered system $\langle \mathcal{L}, \langle \mathcal{B}_i \rangle_{i \in I}, \langle \psi_{i,j} \rangle_{i \leq j, i, j \in I} \rangle$. Let $f_0: J \rightarrow L$. Since \mathcal{J} is a free semilattice, f_0 can be extended to a homomorphism $f: \mathcal{J} \rightarrow \mathcal{L}$. We prove now that any mapping $h_0: \{g_j, j \in J\} \rightarrow \mathcal{B}$ can be extended to a homomorphism $h: \alpha \rightarrow \mathcal{B}$. We define a mapping h as follows:

$$h(a) = h^i(a) \quad \text{for } a \in A_i,$$

where $h^i: A_i \rightarrow \mathcal{B}_{f(i)}$ is a homomorphic extension of the mapping

$$h_0^i(g_j^i) = \psi_{f(i_j), f(i)}[h_0(g_{i_j})], \quad i = i_1 \vee \dots \vee i_n.$$

h_0^i can be extended to a homomorphism because α_i is free in K . Let $F_t \in F$ be a fundamental n -ary operation of the algebra α . Let $x_r \in A_{i_r}$ for $r = 1, \dots, n$, $i = i_1 \vee \dots \vee i_n$,

$i_r = r_1 \vee \dots \vee r_{k_r}$, where $r_1, \dots, r_{k_r} \in J$, let $g_1^{i_r}, \dots, g_{k_r}^{i_r}$

be all free generators of α_{i_r} . Then $x_r = f_r(g_1^{i_r}, \dots, g_{k_r}^{i_r})$ for some term f_r .

$$h[F_t(x_1, \dots, x_n)] = h^i[F_t(\varphi_{i_1, i}(x_1), \dots, \varphi_{i_n, i}(x_n))] =$$

$$= F_t\left[h^i \varphi_{i_1, i}(x_1), \dots, h^i \varphi_{i_n, i}(x_n)\right] =$$

$$= F_t\left\{h^i \varphi_{i_1, i}\left[f_1(g_1^{i_1}, \dots, g_{k_1}^{i_1})\right], \dots, h^i \varphi_{i_n, i}\left[f_n(g_1^{i_n}, \dots, g_{k_n}^{i_n})\right]\right\} =$$

$$= F_t\left\{f_1\left[h^i \varphi_{i_1, i}(g_1^{i_1}), \dots, h^i \varphi_{i_{k_1}, i}(g_{1_{k_1}}^{i_1})\right], \dots\right.$$

$$\left.\dots, f_n\left[h^i \varphi_{i_1, i}(g_{n_1}^{i_1}), \dots, h^i \varphi_{i_{k_n}, i}(g_{n_{k_n}}^{i_1})\right]\right\} = F_t\left\{f_1\left[h^i(g_1^{i_1}), \dots,\right.\right.$$

$$\left.\left.h^i(g_{k_1}^{i_1})\right], \dots, f_n\left[h^i(g_1^{i_1}), \dots, h^i(g_{k_n}^{i_1})\right]\right\} = F_t\left\{f_1\left[\psi_{f(i_1), f(i)} \circ h_0(g_{1_{k_1}})\right], \dots,\right.$$

$$\left.\dots, \psi_{f(i_{k_1}), f(i)} \circ h_0(g_{1_{k_1}})\right], \dots, f_n\left[\psi_{f(i_1), f(i)} \circ h_0(g_{n_1})\right], \dots,$$

$$\left.\psi_{f(i_{k_n}), f(i)} \circ h_0(g_{n_{k_n}})\right\} = F_t\left\{f_1\left[\psi_{f(i_1), f(i)} \circ h^{i_1}(g_1^{i_1}), \dots,\right.\right.$$

$$\left.\left.\psi_{f(i_1), f(i)} \circ h^{i_1}(g_{k_1}^{i_1})\right], \dots, f_n\left[\psi_{f(i_1), f(i)} \circ h^{i_n}(g_1^{i_n}), \dots,\right.\right.$$

$$\left.\left.\psi_{f(i_n), f(i)} \circ h^{i_n}(g_{k_n}^{i_n})\right]\right\} = F_t\left\{\psi_{f(i_1), f(i)} \circ h^{i_1}\left[f_1(g_1^{i_1}, \dots, g_{k_1}^{i_1})\right], \dots,\right.$$

$$\left.\left.\psi_{f(i_n), f(i)} \circ h^{i_n}\left[f_n(g_1^{i_n}, \dots, g_{k_n}^{i_n})\right]\right]\right\} = F_t\left[h(x_1), \dots, h(x_n)\right].$$

This result applies, of course, to equational classes of distributive quasilattices, Padmanabhan quasilattices and sums of Boolean algebras (see [2], [4], [7] for definitions). Added in print. After the submission of this paper the author have learned that a similar result was proved independently by A. Mitschke in her doctoral thesis.

REFERENCES

- [1] G. Grätz er: Universal algebra, Amsterdam 1968.
- [2] R. Padmanabhan: Regular identities in lattices, Trans. Amer. Math. Soc. 158 (1971) 179-188.
- [3] J. Płonka: On a method of construction of abstract algebras, Fund. Math. 61 (1967) 183-189.
- [4] J. Płonka: On distributive quasi-lattices, Fund. Math. 60 (1967) 191-200.
- [5] J. Płonka: On equational classes of abstract algebras defined by regular equations, Colloq. Math. 64 (1969) 241-247.
- [6] J. Płonka: On free algebras and algebraic decompositions of algebras from some equational classes defined by regular equations. Algebra Universalis 1 (1971) 261-264.
- [7] J. Płonka: On sums of direct systems of Boolean algebras, Colloq. Math. 20 (1969) 209-214.
- [8] A. Romanowska: On distributivity of quasilattices with one distributive law, submitted to Proc. Coll. Univ. Alg. Esztergom, 1977.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF WARSAW,

Received February 3, 1978.

