

Zbigniew Dudek

SOME PROPERTIES OF WRONSKIAN IN D-R SPACES OF THE TYPE Q-L, I

In this paper we shall consider D-R spaces in the sense of [4], which satisfy an additional condition, namely the so-called Quasi-Leibniz condition (shortly: Q-L condition, cf. [3]).

Consider a D-R space (X, D, R) , where X is a linear ring over a field \mathcal{F} .

Definition 1. The D-R space (X, D, R) is called a D-R space of the type Q-L if

1° X is a commutative linear ring over the field \mathcal{F} .

2° The operator D satisfies the Q-L condition:

$$(1) D(x \cdot y) = x \cdot Dy + Dx \cdot y + d \cdot Dx \cdot Dy \text{ for all } x, y \in \mathcal{A}_D, \text{ where } d \in \mathcal{F}.$$

If $d = 0$ then we get the D-R space of the Leibniz type (see [3]). In the sequel we shall assume that $d \neq 0$, and we shall write X or (X, D) instead of (X, D, R) . We may do so, because all facts we are going to show do not depend upon R but only upon X and D .

Proposition 1. If X is a D-R space of the type Q-L then

$$1° (2) D^n(x \cdot y) = \sum_{k=0}^n \binom{n}{k} d^k \sum_{j=0}^{n-k} \binom{n-k}{j} (D^{k+j}x) \cdot (D^{n-j}y),$$

for all $x, y \in \mathcal{A}_D$, $n \in \mathbb{N}$,

$$2^0 (3) \quad D \left(\prod_{j=1}^n x_j \right) = \sum_{l=1}^n d^{l-1} \sum_{\sigma_l \in C_n^l} \prod_{\substack{j \in \sigma_l \\ k \in \sigma_l}} D x_j \cdot x_k,$$

for all $x_j \in \mathcal{A}_D$, $j = 1, \dots, n$

where we write: $C_n^l = \{p_1, \dots, p_l\}$, where $p_j \in \{1, \dots, n\}$,
 $j = 1, \dots, l \leq n$,

$$\sigma_l = \{1, 2, \dots, n\} \setminus \sigma_l \quad \text{for } \sigma_l \in C_n^l.$$

The proof is by induction.

1^o. Let $n = 1$ and let $x, y \in \mathcal{A}_D$ be arbitrarily fixed.
 Then

$$D(x \cdot y) = x \cdot Dy + Dx \cdot y + d \cdot Dx \cdot Dy$$

by our assumptions (1).

Suppose that formula (2) holds for an arbitrarily fixed $n \geq 1$. Then for $n+1$ we get

$$\begin{aligned} D^{n+1}(xy) &= D \left(\sum_{j=0}^n \binom{n}{j} d^j \sum_{k=0}^{n-j} \binom{n-j}{k} D^{k+j} x D^{n-k} y \right) = \\ &= \sum_{j=0}^n \binom{n}{j} d^{j+1} \sum_{k=0}^{n-j} \binom{n-j}{k} D^{k+1+j} x \cdot D^{n+1-k} y + \\ &+ \sum_{j=0}^n \binom{n}{j} d^j \sum_{k=0}^{n-j} \binom{n-j}{k} D^{k+1+j} x D^{n-k} y + D^{k+j} x D^{n+1-k} y = \\ &= \sum_{j=0}^n \binom{n}{j} d^j \left[\sum_{k=1}^{n+1-j} \binom{n-j}{k-1} D^{k+j} x D^{n+1-k} y + \sum_{k=0}^{n-j} \binom{n-j}{k} D^{k+j} x D^{n+1-k} y \right] + \\ &+ \sum_{j=1}^{n+1} \binom{n}{j-1} d^j \sum_{k=0}^{n+1-j} \binom{n+1-j}{k} D^{k+j} x D^{n+1-k} y = \end{aligned}$$

$$\begin{aligned}
 &= \sum_{j=1}^{n+1} \binom{n}{j-1} d^j \sum_{k=0}^{n+1-j} \binom{n+1-j}{k} D^{k+j} x D^{n+1-k} y + \\
 &+ \sum_{j=0}^n \binom{n}{j} d^j \left[\sum_{k=1}^{n-j} \binom{n+1-k}{k} D^{k+j} x D^{n+1-k} y + D^{n+1} x \cdot D^j y + D^j x \cdot D^{n+1} y \right] = \\
 &= \sum_{j=0}^n \binom{n}{j} d^j \sum_{k=0}^{n+1-j} \binom{n+1-j}{k} D^{k+j} x D^{n+1-k} y + \\
 &+ \sum_{j=1}^{n+1} \binom{n}{j-1} d^j \sum_{k=0}^{n+1-j} \binom{n+1-j}{k} D^{k+j} x D^{n+1-k} y = \\
 &= \sum_{j=0}^{n+1} \binom{n+1}{j} d^j \sum_{k=0}^{n+1-j} \binom{n+1-j}{k} D^{k+j} x D^{n+1-k} y
 \end{aligned}$$

for all $x, y \in D^{n+1}$, which was to be proved.

2°. Let $n = 1$. Then we have $Dx_1 = Dx_1$ for all $x_1 \in \mathcal{D}_D$.
 For $n = 2$, by our assumption (1) we get

$$D(x_1 \cdot x_2) = Dx_1 \cdot x_2 + x_1 \cdot Dx_2 + d \cdot Dx_1 \cdot Dx_2 \quad \text{for all } x_1, x_2 \in \mathcal{D}_D.$$

Suppose that formula (3) holds for an arbitrarily fixed $n \geq 2$. Then we get for $n+1$:

$$D(x_1 \dots x_n \cdot x_{n+1}) =$$

$$= D(x_1 \dots x_n) \cdot x_{n+1} + x_1 \dots x_n \cdot Dx_{n+1} + d \cdot D(x_1 \dots x_n) \cdot Dx_{n+1} =$$

$$= \sum_{l=1}^n d^{l-1} \sum_{G_l \in C_n^l} \prod_{\substack{j \in G_l \\ l \in G_l}} Dx_j x_k x_{n+1} + x_1 \dots x_n Dx_{n+1} +$$

$$+ \sum_{l=1}^n d^l \sum_{\sigma_1 \in C_n^1} \prod_{\substack{j \in \sigma_1 \\ k \in \sigma'_1}} D x_j x_k D x_{n+1} = \sum_{j=1}^n \prod_{\substack{k=1 \\ k \neq j}}^n D x_j x_k x_{n+1} + x_1 \dots$$

$$\dots x_n D x_{n+1} + \sum_{l=2}^n d^{l-1} \sum_{\sigma_1 \in C_n^1} \prod_{\substack{j \in \sigma_1 \\ k \in \sigma'_1}} D x_j x_k x_{n+1} +$$

$$+ \sum_{\substack{6l-1 \in C_n^{l-1} \\ 6l-1 \in C_n^1}} \prod_{\substack{j \in \sigma_1 \\ k \in \sigma'_{l-1}}} D x_j D x_{n+1} x_k + d^n D x_1 \cdot D x_2 \dots D x_n \cdot D x_{n+1} =$$

$$= \sum_{j=1}^{n+1} \prod_{\substack{k=1 \\ k \neq j}}^{n+1} D x_j \cdot x_k + \sum_{l=2}^n d^{l-1} \sum_{\substack{\sigma_1 \in C_{n+1}^1 \\ n+1 \notin \sigma_1}} \prod_{\substack{j \in \sigma_1 \\ k \in \sigma'_{l-1}}} D x_j \cdot x_k +$$

$$+ \sum_{\substack{\sigma_1 \in C_{n+1}^1 \\ n+1 \in \sigma_1}} \prod_{\substack{j \in \sigma_1 \\ k \in \sigma'_{l-1}}} D x_j \cdot x_k + d^n \prod_{j=1}^{n+1} D x_j =$$

$$= d^0 \sum_{\sigma_1 \in C_{n+1}^1} \prod_{\substack{j \in \sigma_1 \\ k \in \sigma'_{l-1}}} D x_j \cdot x_k + \sum_{l=2}^n d^{l-1} \sum_{\sigma_1 \in C_{n+1}^1} \prod_{\substack{j \in \sigma_1 \\ k \in \sigma'_{l-1}}} D x_j \cdot x_k +$$

$$+ d^n \sum_{\sigma_{n+1} \in C_{n+1}^{n+1}} \prod_{\substack{k \in \sigma_{n+1} \\ j \in \sigma'_{n+1}}} D x_j \cdot x_k = \sum_{l=1}^{n+1} d^{l-1} \sum_{\sigma_1 \in C_{n+1}^1} \prod_{\substack{j \in \sigma_1 \\ k \in \sigma'_{l-1}}} D x_j \cdot x_k$$

which was to be proved.

In the sequel we shall assume that X has a unit e and we will consider a polynomial $Q(D)$ of some special form.

These conditions will be denoted by A1 and A2. So we have:

(A1) (X, D) is a D-R space of the type Q-L and X has a unit e .

(A2) The polynomial $Q(D)$ is of the form

$$(4) \quad Q(D) = \sum_{k=0}^N a_k D^k, \quad \text{where} \quad a_k \in X, \quad a_N = I.$$

Our aim is to investigate the two following equations:

$$(5) \quad Q(D)x = 0, \quad x \in X \quad (\text{I})$$

$$(6) \quad Q(D)x = y, \quad x, y \in X \quad (\text{II})$$

We shall try to solve them using the method of Wronskian, which was applied in [2] for a D-R space of Leibniz type.

If the condition (A1) is fulfilled we get at once.

$$(7) \quad D(e) = D(e \cdot e) = e \cdot De + De \cdot e + d \cdot De \cdot De$$

so we have

$$(8) \quad De(e + dDe) = 0.$$

This implies that either

$$(9) \quad De = 0 \quad (\text{E1})$$

or

$$(10) \quad De = \frac{-1}{d} e \quad (\text{E2})$$

or

$$(11) \quad De(e + dDe) = 0 \quad \text{and} \quad De \neq 0 \quad \text{and} \quad De \neq \frac{-e}{d} \quad (\text{E3}).$$

In the case (E2) $\ker D = \{0\}$ and the theory becomes trivial, so in this paper we consider the case (E2), leaving the case (E3) to be considered in another paper.

Let $A \in L(X)$ and $\dim \ker A \neq 0$.

Definition 2. The determinant

$$(12) \quad W(x_1, \dots, x_m) = \begin{vmatrix} x_1, & x_2, \dots, & x_m \\ Ax_1, & Ax_2, \dots, & Ax_m \\ \vdots & \vdots & \vdots \\ A^{m-1}x_1 & A^{m-1}x_2, \dots, & A^{m-1}x_m \end{vmatrix},$$

where $x_1, x_2, \dots, x_m \in \mathcal{A}_{A^{m-1}}$

is called the Wronskian of elements $x_1, x_2, \dots, x_m \in \mathcal{A}_{A^{m-1}}$.

Definition 3. A subset $X_0 \subset X$ is called an A -modul if it is a $\ker A$ -modul in the sense of Johnson [5].

Definition 4. The rank of an A -modul X_0 is called an A -dimension of X_0 , briefly $A\text{-dim } X_0$ or $\dim_A X_0$.

Definition 5. Elements $x_1, x_2, \dots, x_m \in X$ are said to be A -linearly dependent if there exist $z_1, z_2, \dots, z_m \in \ker A$, non vanishing simultaneously such that the A -linear combination of elements x_1, x_2, \dots, x_m i.e. the element

$$(13) \quad z_1x_1 + z_2x_2 + \dots + z_mx_m$$

is equal to zero.

The elements x_1, x_2, \dots, x_m are said to be A -linearly independent if the condition $z_1x_1 + z_2x_2 + \dots + z_mx_m = 0$ implies $z_1 = z_2 = z_3 = \dots = z_m = 0$.

Definition 6. A system of elements x_1, x_2, \dots, x_m belonging to $\mathcal{A}_{A^{m-1}}$ is said to be fundamental if $W(x_1, x_2, \dots, x_m)$ is invertible.

If y_1, y_2, \dots, y_n are generators for an A -modul X_0 then we write

$$(14) \quad \langle y_1, \dots, y_n \rangle_A = X_0.$$

By $\langle y_1, y_2, \dots, y_n \rangle_S$ we denote the linear span of elements y_1, \dots, y_n . Taking into account these definitions we get

Proposition 2. If the condition A1 is satisfied then we have

$$(15) \quad D^k(z \cdot x) = z \cdot D^k x, \text{ for all } z \in \ker D, \quad k=0,1,2,\dots$$

Proof. Suppose that $z \in \ker D$ and $z \in \mathcal{D}_D$ are arbitrarily fixed. Then

$$D(zx) = Dz \cdot x + z \cdot Dx + d \cdot Dz \cdot Dx = z \cdot Dx$$

$$\begin{aligned} D^{k+1}(zx) &= D(D^k zx) = D(z \cdot D^k x) = z D^{k+1} x + Dz \cdot D^{k+1} x + Dz \cdot D^{k+1} x = \\ &= z \cdot D^{k+1} x. \end{aligned}$$

Proposition 3. For all $n \in \mathbb{N}$ $\ker D^n$ is a D -modul.

Proof. It suffices to check that

$$(16) \quad zw \in \ker D^n, \text{ for all } z \in \ker D, w \in \ker D^n.$$

But it is an immediate consequence of (15), because we have

$$D^n(zw) = z \cdot D^n w = 0.$$

Proposition 4. Let the conditions A1 and A2 be satisfied. Then we have: The set of all solutions of equation (I), i.e. the set

$$(17) \quad \ker Q(D) = \left\{ x \in X: Q(D)x = 0 \right\}$$

is a D -modul.

Proof : It suffices to show that

$$(18) \quad zw \in \ker Q(D) \text{ for all } z \in \ker D, w \in \ker Q(D).$$

But we have

$$Q(D)(zw) = \sum_{k=0}^N a_k D^k(zw) = z \cdot Q(D)w = 0.$$

It is well known that we have

Theorem 1. Let $A \in L(X)$, $\dim \ker A \neq 0$, $x_1, x_2, \dots, x_m \in X$ and X be a commutative linear ring over \mathcal{F} . If the Wronskian $W(x_1, \dots, x_m)$ is invertible, then the elements x_1, x_2, \dots, x_m are A -linearly independent.

Corollary 1. If (X, D) is a D -R space of the type Q-L and $x_1, \dots, x_m \in X$ are D -linearly independent then the elements x_1, \dots, x_m are linearly independent.

Proof : It follows from (E1) that $De = 0$, so we have $e \in \ker D$.

Corollary 2.

$$(19) \quad \dim \ker D \geq 1.$$

Proof : This is an immediate consequence of the condition (E1), for $De = 0$ and $\langle e \rangle = \langle e \rangle_{\mathcal{F}} \subset \ker D$.

Corollary 3. Let X_0 be a D -modul in X . Then we have

$$(20) \quad \dim_D X_0 \leq \dim_{\mathcal{F}} X_0 = \dim X_0.$$

Proof : If the elements x_1, \dots, x_m are generators for a D -modul X_0 then they are D -linearly independent, hence linearly independent. Thus they belong to the basis of X_0 .

Corollary 4. Let the Wronskian $W(x_1, \dots, x_m)$ be invertible. Then

$$(21) \quad \langle x_1, \dots, x_m \rangle_D \supset \langle x_1, \dots, x_m \rangle_F.$$

Proof: From (E1) we get

$$c_1x_1 + \dots + c_mx_m = (c_1e)x_1 + \dots + (c_m e)x_m \in \langle x_1, \dots, x_n \rangle_F.$$

Proposition 5. Let $x_1, \dots, x_r \in X$ be D-linearly independent. Then

$$(22) \quad \langle x_1, \dots, x_r \rangle_D = \langle x_1, \dots, x_r \rangle_F \text{ if and only if } \ker D = \langle e \rangle_F.$$

Proof: Sufficiency. Let $z \in \ker D$ and $z \notin \langle e \rangle_F$. Then we have

$$zx_1 \in \langle x_1, \dots, x_r \rangle_D \text{ and } zx_1 \notin \langle x_1, \dots, x_r \rangle_F$$

because $zx_1 = c_1x_1 + \dots + c_rx_r$ implies $(z - c_1e)x_1 + \dots + c_rx_r = 0$. Thus $z = c_1e$ which contradicts our assumption. Necessity is obvious.

Similarly, as in [2] we obtain

Theorem 2. Let the condition (A1) be satisfied and let x_1, \dots, x_m be a fundamental system. Then there exists an operator $Q(D)$ of order N , such that

$$(23) \quad \ker Q(D) \supset \langle x_1, \dots, x_N \rangle_D.$$

Proof: Assume that $x = z_1x_1 + \dots + z_Nx_N$. Then we infer that the Wronskian $W(x_1, \dots, x_N, x)$ is equal zero, for we have

$$(24) \quad W(x_1, \dots, x_N, x) = \begin{vmatrix} x_1, \dots, x_N, & z_1x_1 + \dots + z_Nx_N \\ Dx_1, \dots, Dx_N, & z_1Dx_1 + \dots + z_NDx_N \\ \vdots & \vdots \\ D^N x_1, \dots, D^N x_N, & z_1D^N x_1 + \dots + z_N D^N x_N \end{vmatrix} =$$

$$= \begin{vmatrix} x_1, & x_2, \dots, & x_N, & 0 \\ Dx_1, & Dx_2, \dots, & Dx_N, & 0 \\ \vdots & \vdots & \vdots & \vdots \\ D^N x_1, & D^N x_2, \dots, & D^N x_N, & 0 \end{vmatrix} = 0.$$

On the other hand we have

$$(25) W(x_1, \dots, x_N, x) = \sum_{i=0}^N (-1)^{i+1+N+1} D^i x \cdot W_i(x_1, \dots, x_N) D^k x = W \sum_{k=0}^N a_k D^k x,$$

where

$$(26) W_k(x_1, \dots, x_N) = \begin{vmatrix} Dx_1, \dots, & Dx_N \\ \vdots & \vdots \\ D^{k-1} x_1, \dots, & D^{k-1} x_N \\ D^{k+1} x_1, \dots, & D^{k+1} x_N \\ \vdots & \vdots \\ D^N x_1, \dots, & D^N x_N \end{vmatrix}, \quad k=0, 1, \dots, N$$

$x_1, x_2, \dots, x_N \in \mathcal{D}^N$

$$(27) a_k = \frac{(-1)^{n+k} W_k(x_1, \dots, x_N)}{W(x_1, \dots, x_N)}.$$

Hence we obtain

$$(28) Q(D)x = \sum_{k=0}^N a_k \cdot D^k = 0$$

and

$$(29) a_N = \frac{(-1)^{2N} W_N(x_1, \dots, x_N)}{W(x_1, \dots, x_N)} = \frac{W(x_1, \dots, x_N)}{W(x_1, \dots, x_N)} = 1.$$

We therefore conclude that

$$\langle x_1, \dots, x_N \rangle_D \subset \ker Q(D) \quad \text{and} \quad Q(D) \text{ satisfies (A2).}$$

Corollary 1.

$$(30) \quad \dim_D \ker Q(D) \leq N.$$

This follows from the fact that x_1, \dots, x_N are generators for $\ker Q(D)$. It is well known that in the case where the elements of X are functions of one variable $t \in \mathbb{F}$ the condition $W(x_1, \dots, x_N) \neq 0$ is sufficient for the elements x_1, \dots, x_N to be linearly independent.

Theorem 3. Let the condition (A1) be satisfied. Then we have

$$(31) \quad D^N W + \sum_{l=1}^N (-d)^{l-1} a_{N-l} \cdot W = 0,$$

where a_k are (as in (26)) obtained from $W(x_1, \dots, x_N, x)$ in the following way:

$$W = W(x_1, \dots, x_N),$$

$$a_k = W^{-1} \cdot W_k(x_1, \dots, x_N).$$

Proof: We can rewrite the formula (31) in the form:

$$(32) \quad DW + \sum_{k=0}^{N-1} (-d)^{N-k-1} a_k W = 0$$

or

$$(33) \quad DW = - \sum_{k=0}^{N-1} (-d)^{N-k-1} a_k W.$$

To prove the first equality we need some lemmas.

Lemma 1. Let

$\sigma_1 \in C_n^1, \tau_{n-1} \in C_n^{n-1}$ be such that $\sigma_1 \cap \tau_{n-1} \neq \emptyset$.

Then

$$(34) \quad W(x_{k_1}, x_{k_2}, \dots, x_{k_1}, x_{r_1}, \dots, x_{r_{n-1}}) = 0,$$

where $k_1, \dots, k_1 \in \mathcal{G}_1$, $r_1, \dots, r_{n-1} \in \mathcal{G}_{n-1}$, $x_1, \dots, x_n \in \mathcal{D}^{n-1}$.

P r o o f : Let $p_0 \in \mathcal{G}_1 \cap \mathcal{G}_{n-1}$. This means that $p_0 = k_{i_0} = r_{j_0}$ for some i_0, j_0 , such that $1 \leq i_0 \leq 1$ and $1 \leq j_0 \leq n-1$. Then we have

$$(35) \quad \begin{aligned} W(x_{k_1}, \dots, x_{k_1}, \dots, x_{r_{n-1}}) &= \\ &= W(x_{k_1}, \dots, x_{p_0}, \dots, x_{k_1}, x_{r_1}, \dots, x_{p_0}, \dots, x_{r_{n-1}}) = 0 \end{aligned}$$

L e m m a 2. Let $\mathcal{G}_1 \in \mathcal{C}_n^1$, $1 \leq 1 \leq n$. Then we have

$$(36) \quad T_1 \mathcal{G}_1 \cap \mathcal{G}'_1 = \emptyset \text{ if and only if } \mathcal{G}_1 = \{n-1+1, n-1+2, \dots, n-1, n\},$$

where

$$(37) \quad T_1 \mathcal{G}_1 = \mathcal{G}_1 + 1 = \{n-1+2, n-1+3, \dots, n, n+1\}.$$

P r o o f : Necessity is obvious.

Sufficiency. Let $T_1 \mathcal{G}_1 \cap \mathcal{G}'_1 = \emptyset$ and $\mathcal{G}_1 \neq \{n-1+1, \dots, n\}$. Then there exists k_0 such that $k_0 \in \mathcal{G}'_1$ and $n-1+1 \leq k_0 \leq n$. Let $k_1 = k_0 - 1$. If $k_1 \notin \mathcal{G}_1$ then we take $k_2 = k_1 - 1$ and so on. In this way after a finite number of steps we get the element $k_{j_0} \in \mathcal{G}_1$ such that $k_{j_0} + 1 \in \mathcal{G}'_1$. Thus $T_1 \mathcal{G}_1 \cap \mathcal{G}'_1 \neq \emptyset$, which contradicts with the assumption that $T_1 \mathcal{G}_1 \cap \mathcal{G}'_1 = \emptyset$.

P r o o f of Theorem 3: Let S_N denote the set of all permutations of the set $\{1, 2, \dots, N\}$, Proposition 1 and Lemmas 1 and 2 imply together that

$$\begin{aligned}
 (38) \quad D \cdot W = D \begin{vmatrix} x_1, \dots, x_N \\ \vdots \\ D^{N-1}x_1, \dots, D^{N-1}x_N \end{vmatrix} &= \sum_{\alpha \in S_N} \operatorname{sgn} \alpha \cdot D \left(x_{\alpha(1)} \cdot D x_{\alpha(2)} \cdots D^{N-1} x_{\alpha(N)} \right) = \\
 &= \sum_{\alpha \in S_N} \operatorname{sgn} \alpha \sum_{l=1}^N d^{l-1} \sum_{\sigma_1 \in C_N^l} \prod_{\substack{j \in \sigma_1 \\ k \in \sigma_1'}} D^j x_{\alpha(j)} D^{k-1} x_{\alpha(k)} = \\
 &= \sum_{l=1}^N d^{l-1} \sum_{\sigma_1 \in C_N^l} \sum_{\alpha \in S_N} \operatorname{sgn} \alpha \prod_{\substack{j \in \sigma_1 \\ k \in \sigma_1'}} D^j x_{\alpha(j)} D^{k-1} x_{\alpha(k)} = \\
 &= \sum_{l=1}^N d^{l-1} \sum_{\sigma_1 \in C_N^l} \sum_{\alpha \in S_N} \operatorname{sgn} \alpha \prod_{\substack{j \in \sigma_1 \\ k \in \sigma_1'}} D^j x_{\alpha(j)} D^{k-1} x_{\alpha(k)} = \\
 &= \sum_{l=1}^N d^{l-1} \sum_{S_N} \operatorname{sgn} \alpha \cdot x_{\alpha(1)} D x_{\alpha(2)} \cdots \\
 &\quad \cdots D^{N-1-1} x_{\alpha(N-1)} D^{N-1+1} x_{\alpha(N-1+1)} D^N x_{\alpha(N)} = \\
 &= \sum_{l=1}^N d^{l-1} \begin{vmatrix} x_1, \dots, x_N \\ D x_1, \dots, D x_N \\ \vdots \\ D^{N-1-1} x_1, \dots, D^{N-1-1} x_N \\ D^{N-1+1} x_1, \dots, D^{N-1+1} x_N \\ \vdots \\ D^N x_1, \dots, D^N x_N \end{vmatrix} = \sum_{l=1}^N d^{l-1} W_{N-1} =
 \end{aligned}$$

$$\begin{aligned}
 &= \sum_{l=1}^N d^{l-1} (-1)^{2N-1} a_{N-1} \cdot W = - \sum_{l=1}^N (-d)^{l-1} a_{N-1} \cdot W.
 \end{aligned}$$

Thus

$$(39) \quad D \cdot W = - \sum_{l=1}^N (-d)^{l-1} a_{N-l} W$$

and

$$D \cdot W = - \sum_{k=0}^{N-1} (-d)^{N-k-1} a_k W$$

which implies that

$$(40) \quad D \cdot W + \sum_{k=0}^{N-1} (-d)^{N-k-1} a_k W = 0.$$

Let \mathcal{R}_D denote the set of all right inverses of D i.e.

$$(41) \quad \mathcal{R}_D = \left\{ R \in L(X) : \mathcal{D}_R = X \text{ and } RX \subset \mathcal{D}_D \text{ and } DR = I \right\}.$$

Similarly as in [2] we obtain

Theorem 4. Let

1° (X, D, R) be a D-R space of the type Q-L with unit e ,
 2° F be an initial operator for D corresponding to
 an operator $R \in \mathcal{R}_D$ (see [1]),

3° the operator $I + R \sum_{k=0}^{N-1} (-d)^{N-k-1} a_k$ be invertible.

Then we have

$$(42) \quad W = W(x_1, \dots, x_N) = 0 \text{ if and only if } F \cdot W = 0.$$

Proof: From (40) we obtain

$$(43) \quad D \cdot W + D \cdot R \sum_{k=0}^{N-1} (-d)^{N-k-1} a_k \cdot W = D \left(I + R \sum_{k=0}^{N-1} (-d)^{N-k-1} a_k \right) W = 0.$$

Thus we infer that

$$(44) \quad W + R \sum_{k=0}^{N-1} (-d)^{N-k-1} a_k \cdot W = z \in \ker D.$$

Taking into account that F is a projection onto $\ker D$, we obtain

$$(45) \quad FW + FR \sum_{k=0}^{N-1} (-d)^{N-k-1} a_k \cdot W = Fz = z = \\ = W + R \sum_{k=0}^{N-1} (-d)^{N-k-1} a_k \cdot W.$$

This means that

$$(46) \quad FW = I + R \sum_{k=0}^{N-1} (-d)^{N-k-1} a_k \cdot W.$$

Hence (46) is equivalent to the following statement:

$$(47) \quad FW = 0 \text{ if and only if } W = 0,$$

because $I + R \sum_{k=0}^{N-1} (-d)^{N-k-1} a_k \cdot W$ is invertible.

This finishes our proof.

REFERENCES

- [1] D. Przeworska-Rolewicz: Algebraic theory of right invertible operators, Studia Math. 48 (1973) 129-144.
- [2] D. Przeworska-Rolewicz: A generalization of Wrciski theorems, Math. Nachrichten (to appear).

- [3] D. Przeworska - Rolewicz : On trigonometric identity for right invertible operators. Comment. Math. 21 (1978) 268-278.
- [4] H. von Trotha : Structure properties of D-R vector spaces. Preprint No 102, Institute of Mathematics, Polish Academy of Sciences, Warszawa 1977.
- [5] M.A. Goldberg : The derivative of a determinant. Amer. Math. 79 (1972) 1124-1126.
- [6] M. Machover : On the Wronskian formula. Math. Mag. 47 (1974).

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF WARSAW

Received February 2nd, 1978.