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SOME PROPERTIES OF WRONSKIAN
IN D-R SPACES OF THE TYPE Q-L, I

In this paper we shall consider D-R spaces in the sense
of [4], which satisfy an additional condition, namely the
gso-called Quasi-Leibniz condition (shortly: Q-L condition,
ct. [3]).

Consider a D-R space (X,D,R), where X 1is a linear ring
over a field ¥.

Definition 1. The D-R space (X,D,R) is called
& D-R space of the type Q-L if -
1° X is a commutative linear ring over the field ¥.
2° The operator D satisfies the Q-L condition:

(1) D(xey) = xeDy+Dxey+deDxeDy for all x,y € Dy where de ¥ ,

If d = 0 then we get the D-R space of the Leibniz type
(see [3]). In the sequel we shall assume that d # O, and
we shall write X or (X,D) instead of (X,D,R). We may
do so, because all facts we are going to show do not depend
upon R but only upon X and D,

Proposition 1, If X is a D-R space of the
type Q=L then '

© s (o B ()
k=0 j=0

for all =x,ye Snn,n € N,
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2° (3) D Iglxj = Zf; gt :E::; T_T Dx v Xy,
GleC

j=1 1=1 je6l
ke61

for all xje o’BD, J = 1,..'.,n

DasesssP }
where we write: Cﬁ = 2{ 1 M1

s, Where pje {1,...,n},
j=1,oo.'l$n, )

1
611 = {1,2,...,!1}\61 for 61 € Cno

The proof is by induction.
1%, Let n =1 and let X,J € JD be arbitrarily fixed.

Then

D(xey) = XeDy+DXey+de+Dx+Dy

by our assumptions (1).
Suppose that formula (2) holds for an arbitrarily fixed
n =1, Then for n+1 we get

n+1 wh J = (-3 k+j_. o= =
D" (xy) =D ZE: 3 d kD ix 7y
i k=0

n-j , _
( k )Dk+1fjx_Dn+1 ky +

3=0 k=0
n n-j, _ o _
n) 5 n=3\ yi14j. DU Ky.pktdy pRtl-ky
+ j d K D X
3=0 %=0 _
n n+1=3 . Sif .
n\ . -J n+1=-k n-j : _
- )E: .)dJ ( ) pktdy D Y + pktigpntl ky +
3 k-1 %<0 k
j= k= =
1 1-
. n+ ( ) n+1-j (n+1'3\ k+Jx Dn+1'ky _
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n+1 n+1-J 1- _
e B (e

3=1 |

%

k=0

n-j

n\ . n+1-k .

(J)d3 E ( X )Dk+jx Dn+1'ky+Dn+1x-Djy+D3x-Dn+1y
j=0 =1

n n+l- .
n\ . n+1-3\ .
J 2 E ( \ik+d, etk
(j)d X /D xD y +
j=0 k=
n+1 n+1-3 :
n n+l1=j
20N 8 TS0 A e EE e
3 (5)s LA

3= k=0
o+l e o+1- n+1-3\ 1

- ( ; )dj ( y )D +ix poti-iy
3=0 k=0

for all x,y e pntt, which was to be proved,
2%, Let n =1, Then we have Dx1 = Dx1 for all Xq€ I
For n = 2, by our assumption (1) we get

D(xy*x,) = DXyeX,+X,+Dx,+d+Dx +Dx, for all X Xy Do

Suppose that formula (3) holds for an arbitrarily fixed
n>2. Then we get for n+l:

D(x1...xn-xn+1) =

D(x1...xn)-xn+1+x1...xn-Dxn+1+d-D(x1...xn)-Dxn+1 =

n

Y )
= d : | ijxkxn+1+x1...anxn+1 +
1=1 Glecn 366;'_

leGl
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n n n
1 .
+ Z. d Z I l ijkaxn+1 = Z ]—T ijxk Xn+1+x1...
1=1  6.eCy; Je6 J=1 k=1
k : k#]
66'1
x,Dx + dl' Dx; X, X +
T n o l | 3 *k En+1
1=2 G‘l\ECn Je6y
A keG'l
n -
+ L141 l I ijDxn+1xk+d Dx1‘Dx2010Dxn‘Dxn+1 = .
61-1¢%n J€01.9
keG"1_1
n+1 n+1 n L
-1 § : l I .
= Dxa-xk + E d . Dx X, +
J=1 k=1 1=2 jeo
k#j G1€Chs1 kes}
n+1¢61 1
n+1
n -
+ E - l | ijoxk+d UDxJ =
jec J:
15041 o7
n+1e61 1

"
a,
o
.
o™
3]
-
o
"
[N
L4
byl
w
+
I jai
n
a
]
1
-
=
[ ]
o]
=
=
M
=
+

1" “n+1 , 1" “n+1
.k661 kEG']_
. , T n+1
+ a" 2 I ] Dxjexy = E a1 E I | Dxj+x
n+1 kec 1=1 JjeO
01601 P G,eCy 4 2<%
J n+1 €61

which was to be proved,
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Some properties of Wronskien 5

In the sequel we shall assume that X has a unit e and
we will consider a polynomial Q(D) of some spectial form,
These conditions will be denoted by A1 and A2, So we have:
(A1) (X,D) is a D-R space of the type Q-L and X has a

unit e.
(A2) The polynomial Q(D) is of the form

8y Dk, where ay € X, ay = I.

k=0

™=

(4) Q(D) =

Our aim is to investigate the two following equations:
(5) AD)x = 0, x e X (1)

(6) Q(p)x =y, x,3 € X (1I)
We shall try* to solve them using the method of Wronskian,
which was applied in [2] for a D-R space of Leibniz type.
If the condition (A1) is fulfilled we get at once~.
(7) D(e) = D(ese) = esDe+Dese+deDesDe
so we have

(8) De{e+dDs) = O.

This implies that either

(9) De =0 (E1)
or

(10) | De ==te (B2
or

(11)  De(e+dDe) =0 and De #0 and De # =% (E3).
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6 Z.Dudek

In the case (E2) kerD = {O} and the theory becomes tri-
vial, so in this paper we consider the case (E2), leaving the
case (E3) to be considered in another paper,

Let A € L(X) and dim kerd # O,

Definition 2, The determinant

X1, x2,ocoooo’ xm
Ax ’ Ax ,ncoo-o,Ax
(12) VJ(X']!"’.’Xm) = '1 ..2 om ’
-1. -1 -1
e A A S

where Xq9¥preeesX 6 &Am'1

is called the Wronskian of elements XqsXpseee X € JAm_1.
Definition 3. A subset Xo C X 1is called
an A-modul if it is a kerA-modul in the sense of Johnson [5].
Definition 4 . The rank of an A-modul Xo
is called an A-dimension of Xo’ briefly A—dimXo or dimAXO.
Definition 5 . Elements X 9Xosene X, € X
are said to be A-~linearly dependent if there exist Z4s2pr000
eeey2 € kerA, non vanishing simultaneously such that the
A-linear combination of elements Xq9XpseeeyX, 1.6, the ele~
ment

(13) ' 24X +2oXpte s etB X

is equal to zero.

The elements Xq9XpseeeyX, are said to be A-linearly in-
dependent if the condition 24X +2oXotecets X = 0 implies
24=25=23%ec0=2p = 0.

Definition 6 . A system of elements X11Xpseee
belonging to ‘mAm_1 ia said to be fundamental if

.o.,xm

W(x ,X50000,x,) 1s invertible.
If J4sYp9e009¥, are generators for an A-modul X  then
we write
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Some properties of Wronskian

(14) <y1,....7n>A =Xo.

By € 34470900093 ,> We denote the linear span of elements
TyseeesTpe Taklng into account these definitions we get

Proposition 2. If the condition A1 is sa-
tisfied then we have

k

(15)  D¥(zex) = 2¢D¥x, for all z e kerD, k=0,1,2,s0s

Proof, Suppose that 2z e kerD and =z e‘ﬂD are
arbitrarily fixed. Then

D{2zx) = Dzex+z+Dx+deDz+Dx = z+Dx

k+1 Dk+1x =

X+D2z e

Dk+1(zx) = D(p¥zx) D(z-Dka = 20X 1x4Dz.D

Z.Dk+1XQ

Proposition 3. PForall neN kerD? is
a D-modul,
Proof. It suffices to check that
(16) zw ¢ kerD®, for all 2z e kerD, w e kerD",
But it is an immediate consequence of (15), because we have
Dn(zw) = 2 an = 0O,
Proposition 4, ILet the conditions A1 and
A2 be satisfied. Then we have: The set of all solutions of
equation (I), i.e. the set

(17) xerQ(D) = {x € X: Q(D)x = 0}

is a D-modul.
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Proof: It suffices to show that
(18) 2w ¢ kerQ(D) for all 2z e kerD, w ¢ kerQ(D).

But we have

Q(D)(zw) = aka(zw) = 2.Q(D)x = 0,

™=

k=0

It is well known that we have
Theorem 1. ILet A e L(X), dim kerA #£ 0,
X 9Xppere Xy € X and X be a commutative linear ring over ¥,
If the Wronskian W(xq,...,x ) is invertible, then the
elements Xq3XgyeeeyX, are A-linearly independent,
Corollary 1. If (X,D) is a D-R space of
the type Q-L and XqseeesXy € X are D-linearly independent
then the elements XqseeeyXy are linearly independent.
Proof: It follows from (E1) that De = 0, so we
have e € kerD. |
Corollary 2.

(19) dim kerD =1,

Proof: This is an immediate consequence of the
condition (E1), for De = 0 and <e> = <e>,C kerD,

Corollar vy 3. Let Xo be a D-modul in X,

Then we have
(20) dimX < dim X = dir X .

Proof: If the elements ‘XqseeesX, are generators
for a D-modul Xo then‘they are’ D-linearly independent, hence
linearly independent, Thus they belong to the basis of Xo.

Corollary 4., Let the Wronskian W(xq,e..e,xy)
be invertible. Then
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Some properties of Wronskian 9

(21) < XypeeesXy>p D <XqpeeesXpSy o
Proof: From (E1) we get
qXqteeetC X, = (c1e)x,‘+...+(cme)xm € <XyjeeesX Og

Proposition 5. Let x1;...,xr ¢ X be D-1i-
nearly independent. Then

(22) < xysenesX > = <Xyy000yX, >y if and only if
kerD =‘<e>34

Proof: Sufficiency. Let 2z € kerD and 2z ¢ <e>g5 .
Then we have

z2X, € <:x1,...,xr> D and 2X, ¢ <:x1,...,xr>b

because 2Xy = CqX teeetC X, implies (z-c1e)x1+...+crxr = O,
Thus 2z = cqe which contradicts our assumption. Necessity is

obvious.
Similarly, as in [2] we obtain
Theorem 2, Let the condition (A1) be satisfied

and let XyseansXpy be a fundamental system. Then there exists
an operztor Q{(D) of order N, such that

(23) kerQ(D) D <xyye0eyxg> pe

Proof: Assume that x = 24X tesetZy Xy Then we
infer that the Wronskian W(x1,...,xn,x)

is equal zero, for
we have
Xiseosy Xy Z1X4+eeet ZyXy
Dx1,..., DxN, z1Drx1+...+zNDxN
(24) W(X1,...,XN,X) = : : : —

iy N N bi)
D"Xyyeeey Dxy, 24D x1+...+zND‘xN
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10 Z.Dudek
11, 12,.'0' xN’ 0
Dx1, sz,..., DxN, 0
= = 0.
. e . .
L] L] *
DNx1, DNxzyoco,DNxN, 0
On the other hand we have
N : N
(25) W(x1.....xN,x) = E (=1 )i+1+N+1D11 Hi(x,',....xN)Dkx: W Z- akax,
. 1=0 k=0
where
Dx1 geesccsay Dle
e P K20,1,0 00 8
(26) W (xqreeerny) = .
1 pi+ly pl+1 Py
Xjsseevores Xg9Xss00e9Xy € DN
bNx,‘ grecccanny DNxN

(27)

(-1 )n+k Wk(x.‘ ,ooo,xN)

8y

Hence we obtain

(28)

and

(29) ay

V_ﬂx."...,xN)

-
Q(D)x = Z 8, eD¥ = 0
g

("1 )2N WN(x1 ;o ve ,IN)

W(I.‘,...,XN)

4w—(x1’.|.,xmr

We therefore conclude that

= Wlxyyeee Xyl - o

< XqyeeesXg>  C kexQ(D} and Q(D) satisfies (A2).
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Some properties of Wronskian 11

Corollary 1.
(30) r.‘im'DkerQ(D) < N.

This follows from the fact that Xqseee Xy are generators
for kerQ(D)., It is well known that in the case where the
elements of X are functions of one variable 1 ¢ ¥ the
condition W(xy,ess,Xy) # O 1is sufficient for the elements
XiseeesXy to be linearly independent,

Theorem 3. Let the condition (A1) be satisfied.

Then we have

(31) DW + (-)" ag oW = o,

rvjz

1=1

where a, are (as in (26)) obtained from W(x1,...,xN,x)
in the following way:

w.'—'w(x‘],ooo’xN)’
a, = W oW (x Xy )
k = il I e | R

Proof: We can rewrite the formula (31) in the form:

N-1
N-k~-1
(32) DW + E (-a) a, W=0
k=0
or
N-1
_ N-k-1 _
(33) oW = - E (~d) a, W.
k=0

To prove the firast equality we need some lemmas.
Lemmnma 1. Let

1 -1 :
6, €Cpy T, 7 € Cp”" be such that 6; N7, 1 # 4

- 1125 =
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Then

(34) W(Xk1,xk2,...,xkl,xr1,...,Xrn-1) = 0,

Where ' k1,0.' ’kl € 61, r1,..-,rn-l e Tn_l,x1,...,xn€ @Dn—1.

Proof: Let P, € 04 n Th-1° This means that
Py = ki = rj for some io, jo, such that 1 s;ib <1
) ) .
and 1< joé n-1., Then we have

(35) W(xkj,.",xkl’..‘,xrn_l) =

= W(Xk1,.-.,Xpo,-..,xkl,xr1,...,Xpo,...,xrn—l) =0

Lemna 2, Let GleCi,1$lén. Then we have

(36) T161m65' g if and only if 61={n4i+1,n—1+2,...,n-1,n},

where
(37) 764 =06, + 1 = {n-l+2,n-l+3,...,n,n+1} .

Proof: Necessity is obvious.

Sufficiency. Let T,6;N Gi =@ and 6, # {n—l+1,...,n}.
Then there exists Xk, such that k_ € 6 and n-l+1<k <n.
Let k4 = k,-1. If k4 ¢ G, then we take k, = k;-1 and
50 on., In this way after a finite number of steps we get the

element kjoe G, such that kjo + 1€6G,. Thus T7,6)N6] #4,
which contradicts with the assumption that T161 n 61 = ¢.

Proof of Theorem 3: Let SN denote the set of
all permutations of the set 1,2,...,N}, Froposition 1 and
Lemmas 1 and 2 imply together that
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Xqreeoener®y "y
(33) Du=D . . = sgnq-D(xa(,]).qu(z)...D xq(?;)>=

e -1 CTE
D 1x,|,...,b‘ X >N
_ 1~ 3 p&-?
} sgne /¢ 7 l l PP(3) P Fa)
€Sy =1 G ecl J€0)
L7 o
€5
= sgna DIx p*~x =
= gn a(3) P Fa(x) F
=1 61“111 weSy '
keﬁl
N
_ 2 1-1 2 2 ' I I 3 k=1 _
= d - sghx D xa(j) D x«(k) =
1=1 1 xeS je6
610y W N 1
(-1
N .
z 1-1}
= d sgno(-xo((1) Dxu(z) cee
1=1 SN
Ne-1-1 N-141 N _
eee D Xx(H-1) ° Xo(N-141) ¥ Foe(n) =
KypeeorennnnongXy
Dx,l,...........DxN
N N-1-1 Nel~d N
Y g P Feeed g §T
- DN—1+1 I‘l-1+'lx - N-1 7
=7 Xgpeeeo ¥ T3
N N
D xq..........,D Xy

N N
- Z:;d?‘1(-1)2n'1 ¥ = - Ei: (a0 e

1=1
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Thus
N
1-1
(39) DW= - Z (=a)""" ay_ 1 W
1=1
and
N1
DW= - E (-1 o w
k=0
which implies that
N1
(40) DW + E (-a)¥%1 o w - o0,
k=0

Let 'RD denote the set of all right inverses of D 1i.e,
‘
(41) xD={ReL(x1:aR=x and RX c&®p and DR:IJ.

Similarly as in [?] we obtain
Theorem 4. Let

1% (x,D,R) be a D-R space of the type Q-L with unit e,
2° P be an initial operator for D corresponding to
an operator Re R (eee [1]),
N=1
3° the operator I + &
k=0

(-d )N-k-‘l

a, be invertible.

k

Then we have
(42) W = W(xq,000,%y) = 0 if and only if F W = O.

PFroof : From {(4C) we obtain

31 N-1
(43) D W+D R ) (-a)¥a . =D(1+R z (ca ¥k g
k=0 k=0

- 1128 -
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Some properties of Wronskian

Thus we infer that
. N-1
{=k—~
(44) W+ RY  (-a)%a W - zexerd.
k=0

Taking into account that F is a projection onto kerD,
obtain

-1
(45) F¥ + FR E (-a)¥¥1a 7 = F2 = 2 =
k=0

N-1 :
=% +R E (-d)ﬂ'k‘1ak-w.
k=0
This means that

N1
(46) Fi = I+ R E (-d)N‘k'Wak-w.
k=0

Hence (46) is equivalent to the following statement:

(47) F& = 0 if and only if W = O,
N1

because I + R E (—d)k'k'1ak-w is invertible.
k=0

This finishes our proof.
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