

Jan Musiałek

ON THE CAUCHY PROBLEM FOR THE n -CALORIC EQUATION
AND FOR THE TIME-PLANE

1. Let $x = (x_1, x_2)$, $X = (x_1, x_2, t)$. In this paper we shall construct a continuous function $u = U(X)$ defined for $t \geq 0$ and all x_1, x_2 which is the solution $u(X)$ for the n -caloric equation

$$(1) \quad P^n u(X) = 0,$$

where n is a positive integer, $n \geq 2$

$$P = D_{x_1}^2 + D_{x_2}^2 - D_t, \quad P^n = P(P^{n-1}), \quad P^0 = \text{Id}$$

in the domain

$$(2) \quad W = \left\{ X: |x_i| < \infty, \quad i = 1, 2; \quad t > 0 \right\}$$

and satisfies the initial conditions

$$(3) \quad D_t^i u(X) = f_i(x) \text{ for } X \in S = \left\{ X: |x_j| < \infty, \quad j = 1, 2, \quad t = 0 \right\},$$
$$(i=0, 1, \dots, n, 1).$$

2. Let $Y = (y_1, y_2, s)$, $y = (y_1, y_2)$, and let

$$r = |x, y| = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}.$$

Let us consider the function

$$(4) \quad G_n(X, Y) = (t-s)^{n-1} U(X, Y),$$

where

$$(5) \quad U(X, Y) = \begin{cases} (t-s)^{-1} \exp((4(t-s))^{-1}(-r)^2) & \text{for } s < t \\ 0 & \text{for } s \geq t, X \neq Y \end{cases}$$

is the fundamental solution of the equation $Pu(X) = 0$.

Let P_X^n denote the operator P^n acting on the variables x_1, x_2, t .

Lemma 1. The function $G_n(X, Y)$ given by formulas (4), (5) satisfies the n -caloric equation $P_X^n G(X, Y) = 0$.

Proof. We shall prove this lemma by induction

1° For $n = 2$ we have $G_2(X, Y) = (t-s)U(X, Y)$, then

$$\begin{aligned} P_X(t-s)U(X, Y) &= \Delta_X(t-s)U(X, Y) - D_t(t-s)U(X, Y) = \\ &= (t-s)P_X U(X, Y) - U(X, Y) \text{ and consequently} \end{aligned}$$

$$P_X^2 G_2(X, Y) = -P_X U(X, Y) = 0.$$

2° Let us assume that the function $G_{k-1}(X, Y) = (t-s)^{k-2}U(X, Y)$ satisfies the equation $P_X^{k-1} G_{k-1} = 0$. We shall prove that the function $G_k = (t-s)^{k-1} U(X, Y)$ satisfies the equation $P_X^k G_k = 0$. Namely

$$\begin{aligned} P_X^k G_k(X, Y) &= P_X^{k-1}(P_X(t-s)^{k-1} U(X, Y)) = P_X^{k-1}((t-s)^{k-1} \Delta_X U(X, Y) - \\ &- (t-s)^{k-1} D_t U(X, Y) - (k-1)(t-s)^{k-2} U(X, Y)) = \\ &= P_X^{k-1}((t-s)^{k-1} P_X U(X, Y) - (k-1)(t-s)^{k-2} U(X, Y)) = 0, \end{aligned}$$

because

$$P_X U(X, Y) = 0 \quad \text{and} \quad P_X^{k-1}(t-s)^{k-2} U(X, Y) = 0.$$

L e m m a 2. The function $U_1(X, y) = U(X, Y)|_{s=0} = t^{-1} \exp((-4t)^{-1} r^2)$ satisfies the equation

$$(6) \quad D_t^i U_1(X, y) = \Delta_x^i U_1(X, y) \quad (i = 1, 2, \dots, n-1).$$

P r o o f. Since $D_t U_1(X; y) = \Delta_x U_1(X; y)$ thus

$$D_t^2 U_1(X; y) = D_t D_t U_1(X; y) = D_t \Delta_x U_1(X; y) = \Delta_x D_t U_1(X; y) = \Delta_x^2 U_1(X; y).$$

We shall assume that the function $U_1(X, y)$ satisfies the equation (6) for $i = k < n-1$, then for $i = k+1$ we have

$$D_t^{k+1} U_1(X, y) = D_t^k D_t U_1(X, y) = D_t^k \Delta_x U_1(X, y) = \Delta_x D_t^k U_1(X, y) = \Delta_x^{k+1} U_1(X, y).$$

We shall prove the following

L e m m a 3. Let the function $f(y)$ be of the class C^{2n} in the set $E_2 = \{x: |x_i| < \infty, i = 1, 2\}$ and bounded with its derivatives up to the order $2n$ on E_2 . Then

$$\lim D_t^i (4\pi)^{-1} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(y) U_1(X; y) dy = \Delta^i f(x_0) \quad (i = 1, \dots, n)$$

when

$$X \rightarrow (x_0, 0) \in S, \quad x_0 = (x_1^0, x_2^0).$$

P r o o f. At first we shall prove that the integrals

$$I(X) = \iint_{E_2} f(y) D_t^i U_1(X, y) dy \quad (i = 0, 1, 2, \dots, n-1)$$

are uniformly convergent in every set

$$W_1 = \left\{ X: |x_i| \leq a_i, i = 1, 2; t_1 \leq t \leq t_2 \right\},$$

a_i, t_i ($i = 1, 2$) being arbitrary positive numbers. The derivatives $D_t^1 U_1(X; y)$ are linear combinations of the functions

$$t^\alpha (r^2)^\beta \exp((-4t)^{-1} r^2),$$

where β is nonnegative number, and α is negative number. Consequently it is sufficient to prove that the integrals

$$J(X) = \iint_{E_2} f(y) t^\alpha (r_1^2)^\beta \exp((-4t)^{-1} r^2) dy$$

are uniformly convergent in the set W_1 . For the integral $J(X)$ we have the following estimation

$$|J(X)| \leq M \iint_{E_2} t^\alpha (r^2)^\beta \exp((-4t)^{-1} r^2) dy,$$

where $M = \sup |f(y)|$.

Upon the change of variables

$$x_1 - y_1 = 2\sqrt{t} u \cos \varphi, \quad x_2 - y_2 = 2\sqrt{t} u \sin \varphi$$

we get

$$\begin{aligned} |J(X)| &\leq M \int_0^{2\pi} d\varphi \int_0^\infty 4(4tu^2)^\beta t^{\alpha+1} u \exp(-u^2) du = \\ &= 2M\pi 4^{\beta+1} t^{\alpha+\beta+1} \int_0^\infty u^{2\beta+1} \exp(-u^2) du \leq M_1 t^{\alpha+\beta+1} \text{ for } X \in W_1, \end{aligned}$$

where M_1 is a convenient positive constant.

It follows from the above inequality that the integral $J(X)$ is uniformly convergent in W_1 . Let $K(x_0, R)$ denote the circle with center at x_0 and radius $R > 0$. By uniform convergence of the integrals $I(X)$ and by Lemma 2 for $X \in W_2$ we have

$$D_t^i \frac{1}{4\pi} \iint_{E_2} f(y) U_1(X, y) dy = B_1^i(X) + B_2^i(X) \quad (i = 1, 2, \dots, n-1),$$

where

$$B_1^i(X) = \frac{1}{4\pi} \iint_{E_2 \setminus K(x_0, R)} f(Y) D_t^i U_1(X, y) dy,$$

$$B_2^i(X) = \frac{1}{4\pi} \iint_{K(x_0, R)} f(Y) \Delta_Y^i U_1(X, y) dy, \quad i = 1, 2, \dots, n-1.$$

Since $\lim_{i=1,2,\dots,n-1} B_k^i(X) = B_k^i(x_0, t)$ as $x \rightarrow x_0$, $0 < t < \infty$ ($k=1,2$), it is sufficient to prove, that

(a) $\lim_{i=1,2,\dots,n-1} B_1^i(x_0, t) = 0$ as $t \rightarrow 0_+$,
 (b) $\lim_{i=1,2,\dots,n-1} B_2^i(x_0, t) = \Delta^i f(x_0)$ as $t \rightarrow 0_+$.

Ad (b). Since the functions $f(y)$ and $\Delta_Y^i U_1(X, y) \Big|_{x=x_0}$ are of class C^{2i-2} ($i=1,2,\dots,n-1$) in the circle $K(x_0, R)$, thus [1]

$$\iint_{K(x_0, R)} \left(f(y) \Delta_Y^i U_1(X, y) \Big|_{x=x_0} - \Delta^i f(y) U_1(X, y) \Big|_{x=x_0} \right) dy =$$

$$= - \sum_{k=0}^{i-1} \int_{\partial K(x_0, R)} (\Delta^k f(y) D_{n_y} (\Delta_Y^{i-k-1} U_1(X, y)) \Big|_{x=x_0} -$$

$$- \Delta_Y^i U_1(X, y) \Big|_{x=x_0} D_{n_y} \Delta^{i-k-1} f(y)) d\sigma_y,$$

where n is the inward normal to the boundary $\partial K(x_0, R)$, of the domain $K(x_0, R)$.

Therefore we have

$$(7) \quad B_2^i(x_0, t) = B_3^i(x_0, t) - \sum_{k=0}^{i-1} C_k^i(x_0, t) + \sum_{k=0}^{i-1} L_k^i(x_0, t),$$

where

$$B_3^i(x_0, t) = \iint_{K(x_0, R)} \Delta^i f(y) U_1(x, y) \Big|_{x=x_0} dy \quad (i=1, 2, \dots, n-1),$$

$$C_k^i(x_0, t) = \int_{\partial K(x_0, R)} \Delta^k f(y) D_n \Delta_y^{i-k-1} U_1(x, y) \Big|_{x=x_0} d\sigma_y \quad (k=0, 1, \dots, i-1; i=1, 2, \dots, n-1),$$

$$L_k^i(x_0, t) = \int_{\partial K(x_0, R)} D_n \Delta^{i-k-1} f(y) \Delta_y^i U_1(x, y) \Big|_{x=x_0} d\sigma_y \quad (k=0, 1, \dots, i-1; i=1, 2, \dots, n-1).$$

Expanding the function $\Delta^i f(y)$ by formula

$$\Delta^i \bar{f}(y) = \begin{cases} \Delta^i f(y) & \text{for } y \in K(x_0, R) \\ 0 & \text{for } y \in E_2 \setminus K(x_0, R) \end{cases}$$

and by Weierstrass theorem we have

$$\lim B_3^i(x_0, t) = \Delta^i f(x_0) \quad \text{as } t \rightarrow 0_+.$$

We must still prove that the other integrals in formula (7) tend to zero when $t \rightarrow 0_+$. Since $D_n \Delta_y U(x, y) = - D_x U$ for $y \in \partial K(x_0, R)$ and by Lemma 2 we get

$$\begin{aligned}
 C_k^i(x_0, t) &= - \int_{\partial K(x_0, R)} \Delta^k f(y) D_R(\Delta^{i-k-1} U_1(x; y)) \Big|_{x=x_0} d\sigma_y = \\
 &= \int_{\partial K(x_0, R)} \Delta^k f(y) D_t^{i-k-1} D_R(U_1(x; y)) \Big|_{x=x_0} d\sigma_y = \\
 &= \int_{\partial K(x_0, R)} \Delta^k f(y) D_t^{i-k-1} (R(-2t^2)^{-1} \exp((-4t)^{-1} R^2)) d\sigma_y.
 \end{aligned}$$

Since the derivatives $D_t^{i-k-1}((-2t^2)^{-1} R \exp((-4t)^{-1} R^2))$ are linear combinations of the functions

$$t^{-\alpha} R^{2\beta} \exp((-4t)^{-1} R^2) \quad (\beta \geq 0, \alpha > 0)$$

we must show that the functions

$$S(x_0, t) = \int_{\partial K(x_0, R)} \Delta^k f(y) t^{-\alpha} R^{2\beta} \exp((-4t)^{-1} R^2) d\sigma_y$$

tend to zero when $t \rightarrow 0_+$.

For that purpose we present $S(x_0, t)$ in the form

$$S(x_0, t) = M_2 \sqrt{t} \int_{\partial K(x_0, R)} f(y) ((4t)^{-1} R^2)^{\frac{\alpha}{2} + \frac{1}{2}} \exp((-4t)^{-1} R^2) d\sigma_y,$$

where M_2 is the convenient constant. By the assumptions of Lemma 3 and by the inequality

$$(8) \quad A^a e^A \leq a^a e^{-a} \quad \text{for } A \geq 0, \quad a > 0$$

we obtain

$$|S(x_0, t)| \leq M_3 \sqrt{t} \rightarrow 0 \quad \text{when } t \rightarrow 0_+;$$

M_3 being the convenient positive constant.

Arguing similarly as for the integrals $C_k^i(x_0, t)$ we may prove that the integrals $L_k^i(x_0, t)$ ($k=0, 1, \dots, i-1$; $i=1, 2, \dots, n-1$) tend to zero as $t \rightarrow 0_+$, which implies (b).

In order to prove (a) we observe that the functions $D_t^i U_1(X, y)$ are the linear combinations of the functions

$$t^{1-\beta} ((t)^{-1} r^2)^\alpha \exp((-4t)^{-1} r^2) \quad (\alpha \geq 0, \beta \geq 2).$$

Then the functions $B_1^i(X)$ are also linear combinations of the integrals

$$g(x_0, t) =$$

$$= M_4 t \iint_{E_2 \setminus K(x_0, R)} f(y) ((4t)^{-1} r^2)^{\alpha+\beta} (r^{2\beta})^{-1} \exp((-4t)^{-1} r^2) \Big|_{x=x_0} dy,$$

M_4 being the convenient positive constant.

Now we have by (8)

$$|g(x_0, t)| \leq M_5 t \iint_{E_2 \setminus K(x_0, R)} r^{-2} \Big|_{x=x_0} dy \leq M_6 t \rightarrow 0 \text{ as } t \rightarrow 0_+,$$

where M_5, M_6 are the convenient positive constants. Therefore the condition (a) is satisfied.

Let

$$(9) \quad Q(X) = \sum_{i=0}^{n-1} t^i u_i(X),$$

where

$$(9a) \quad u_i(X) = (4\pi)^{-1} \iint_{E_2} h_i(y) U_1(X, y) dy, \quad X \in W, \quad (i=0, 1, \dots, n-1).$$

Now we shall prove the following

L e m m a 4. Let the functions $f_i(y)$, $h_i(y)$ be of the class $C^{2n-2i-2}$ ($i=0,1,\dots,n-1$) in E_2 and bounded with their derivatives up to the order $2n-2i-2$ in the set E_2 . Let the function $Q(X)$ given by the formulas (9), (9a) satisfy the initial conditions (3). Then the functions f_k , h_k ($k=0,1,\dots,n-1$) satisfy the system of the equations

$$(10) \frac{1}{k!} f_k(x) = \frac{1}{k!} \sum_{i=0}^k \Delta^{k-i} h_i(x) \binom{k}{i} i! \quad (k=0,1,\dots,n-1) \text{ for } x \in E_2.$$

P r o o f. Making use of the initial conditions (3) and of Lemma 3 we can prove the formula (10). In virtue of Weierstrass' theorem and by the initial conditions (3) for $i = 0$, we have

$$f_0(x_0) = \lim Q(X) = h_0(x_0) \text{ when } X \rightarrow (x_0, 0_+).$$

From the initial conditions (3), for $i = 1$, we get

$$\lim D_t Q(X) = f_1(x_0) \text{ as } X \rightarrow (x_0, 0_+).$$

On the other hand we have

$$D_t Q(X) = u_1(X) + D_t u_0(X) + t D_t u_1(X) + \sum_{i=2}^{n-1} (it^{i-1} u_i(X) + t^i D_t u_i(X)),$$

where $u_i(X)$ ($i=0,1,\dots,n-1$) are given by formula (9a). Now it follows from Weierstrass theorem and lemma 3, that

$$\lim D_t Q(X) = \lim D_t u_0(X) + \lim u_1(X) = \Delta h_0(x_0) + h_1(x_0)$$

when $X \rightarrow (x_0, 0_+)$. Hence

$$f_1(x_0) = \Delta h_0(x_0) + h_1(x_0).$$

In view of the initial conditions (3), for $i = k \leq n-1$, $2 \leq i$, we have

$$\lim D_t^k Q(X) = f_k(x_0) \quad \text{when} \quad X \rightarrow (x_0, 0_+).$$

On the other hand we have

$$\begin{aligned} D_t^k Q &= \sum_{i=0}^{n-1} D_t^k(u_i t^i) = D_t^k u_0 + \dots + D_t^k(t^k u_k) + \\ &+ \sum_{i=k+1}^{n-1} D_t^k(t^{k+1} u_{k+1}). \end{aligned}$$

Moreover we obtain

$$\begin{aligned} D_t^k(t u_1) &= t D_t^k u_1 + \binom{k}{1} D_t^{k-1} u_1 \\ D_t^k(t^2 u_2) &= \binom{k}{0} t^2 D_t^k u_2 + \binom{k}{1} 2 t D_t^{k-1} u_2 + \binom{k}{2} 2! D_t^{k-2} u_2 \\ &\dots \\ D_t^k(t^k u_k) &= \sum_{i=0}^k \binom{k}{i} D_t^i(t^k) D_t^{k-i} u_k = \sum_{i=0}^k \binom{k}{i} k(k-1)\dots(k-i+1) t^{k-i} D_t^{k-i} u_k \end{aligned}$$

Thus we have

$$\begin{aligned} \lim D_t^k Q &= \lim \sum_{i=0}^k D_t^k(t^i u_i) = \lim(D_t^k u_0 + \binom{k}{1} D_t^{k-1} u_1 + \\ &+ 2! \binom{k}{2} D_t^{k-2} u_2 + \dots + \binom{k}{k} k! u_k). \end{aligned}$$

Now by Lemma 3 and Weierstrass' theorem we obtain

$$\begin{aligned} \lim_{X \rightarrow (x_0, 0_+)} D_t^k Q &= \Delta^k f_0(x_0) + \binom{k}{1} \Delta^{k-1} h_1(x_0) + \binom{k}{2} 2! \Delta^{k-2} h_2(x_0) + \dots + \\ &+ \binom{k}{k} k! h_k(x_0) \quad (k=0, 1, \dots, n-1). \end{aligned}$$

This proves our Lemma 5. Now we shall prove the following lemma.

Lemma 5. Let the functions f_k, h_k ($k=0, 1, \dots, n-1$) satisfy the assumptions of Lemma 4 and satisfy the system (10). Then we have

$$(10a) \quad h_k(x) = (k!)^{-1} \sum_{i=0}^k (-1)^k \binom{k}{i} \Delta^i f_{k-i}(x) \quad (k=0, 1, \dots, n-1).$$

P r o o f. Substituting the functions h_i ($i=0, 1, \dots, k$) defined by formula (1a) into the right hand side of the k -th equation of system (10) we get

$$\begin{aligned} P_k &= \frac{1}{k!} \sum_{i=0}^k \binom{k}{i} i! \Delta^{k-i} \left(\frac{1}{i!} \sum_{s=0}^i (-1)^s \binom{i}{s} \Delta^s f_{i-s} \right) = \\ &= \frac{1}{k!} \sum_{i=0}^k \binom{k}{i} \Delta^{k-i} \left(\sum_{s=0}^i (-1)^s \Delta^s f_{i-s} \right) \quad (k=0, 1, \dots, n-1). \end{aligned}$$

If $k = 0$, then $P_k = f_0$. Let $k \geq 1$. It can easily be checked that the sum P_k is a linear combination of the functions $\Delta^{k-1} f_l$ ($l=0, 1, \dots, k$) with the coefficients α_l^k ($l=0, 1, \dots, k$) of the form

$$(11) \quad P_k = \alpha_k^k f_k + \sum_{l=0}^{k-1} \alpha_l^k \Delta^{k-l} f_l,$$

where

$$(11a) \quad \begin{cases} \alpha_k^k = \frac{1}{k!} \\ \alpha_l^k = \frac{1}{k!} \frac{1}{l!} \sum_{j=1}^k \binom{k}{j} \binom{j}{j-l} (-1)^{j+1} = \frac{1}{k! l!} \sum_{j=1}^k \binom{k}{j} j(j-1) \dots \\ \dots (j-l+1) (-1)^{j+1} \quad (l=0, 1, \dots, k-1). \end{cases}$$

In order to prove (10a) it is enough to show that $\alpha_1^k = 0$ ($l=0,1,\dots,k-1$). Since

$$(12) \quad (x+b)^k = \sum_{j=0}^k \binom{k}{j} x^j b^{k-j},$$

we have

$$(12a) \quad D_x^l (x+b)^k = \sum_{j=1}^k \binom{k}{j} k(k-1)\dots(k-l+1) x^{j-1} b^{k-j} = \\ = k(k-1)\dots(k-l+1)(x+b)^{k-1} \quad \text{for } l=1,2,\dots,k-1.$$

If we substitute $x = -1$, $b = 1$ in (12) and (12a) we obtain

$$0 = \sum_{j=0}^k \binom{k}{j} (-1)^j, \\ 0 = \sum_{j=1}^k \binom{k}{j} k(k-1)\dots(k-l+1)(-1)^{j-1} = k! l! \alpha_1^k = k! \alpha_0^k \\ \text{for } l=1,2,\dots,k-1.$$

Lemma 6. Let the functions h_i ($i=0,1,\dots,n-1$) be bounded and measurable in the set E_2 and let

$$I(X) = \int_{-\infty}^{+\infty} dy \int_{-\infty}^{+\infty} h_1(y) D_{x_2}^{\alpha_1} D_{x_2}^{\alpha_2} D_t^\alpha (t^i U_1(X,y)) dy,$$

where $\alpha_1, \alpha_2 = 0, 1, \dots, 2n$; $\alpha = 0, 1, \dots, n$; $i = 0, 1, \dots, n-1$. Then the integrals $I(X)$ are uniformly convergent in the set

$$W_1 = \left\{ X: |x_1| \leq a_1, t_1 \leq t \leq t_2 \right\},$$

where a_i ($i=1,2$), t_i ($i=1,2$) are positive numbers and $U_1(X,y) = U(X,Y)|_{s=0}$.

Proof. The integral $I(X)$ is a linear combination of the integrals

$$H(X) = t^{\beta_1} \int_{-\infty}^{+\infty} dy_1 \int_{-\infty}^{+\infty} h_i(y) r^{\beta_2} (x_1 - y_1)^{\beta_3} (x_2 - y_2)^{\beta_4} \exp((4t)^{-1} r^2) dy_2,$$

where $\beta_i \geq 0$ ($i=2,3,4$), $\beta_1 \leq n-2$.

Let us observe that the function $H(X)$ may be written in the form

$$H(X) = t^{m_0} M_1 \int_{-\infty}^{+\infty} dy_1 \int_{-\infty}^{+\infty} h_i(y) \frac{\beta_2}{((t)^{-1} r^2)^2} \exp((-16t)^{-1} r^2) ((t)^{-1} \times \\ \times (x_1 - y_1)^{\frac{\beta_3}{2}} \exp((-16t)^{-1} (x_1 - y_1)^2) ((t)^{-1} (x_2 - y_2)^{\frac{\beta_4}{2}} \exp((-16t)^{-1} x \\ \times (x_2 - y_2)^2) \exp((-8t)^{-1} r^2) dy_2,$$

where $m_0 = \beta_1 - \frac{1}{2} \sum_{i/2}^4 \beta_i$, M_1 is a convenient constant.

Using the inequality (8) and assumptions of lemma 6 we get

$$|H(X)| \leq M_2 t^{m_0} \int_{-\infty}^{+\infty} dy_1 \int_{-\infty}^{+\infty} \exp((-8t_2)^{-1} r^2) dy_2, \text{ for } X \in W_2.$$

M_2 being the convenient positive constant. It follows from the above inequality that the integral $H(X)$ is uniformly convergent in W_1 .

Now we shall prove

Theorem 1. Let the functions f_i, h_i ($i=0,1,\dots,n-1$) be of the class $C^{2n-2i-2}$ and be bounded with their derivatives up to the $2n-2i-2$ order in the set E_2 and satisfy the equations (10a). Then the function $Q(X)$ given by formulas (9), (9a) is the solution of the problem (1), (2), (3).

Proof. By Lemmas 1 and 6 we have

$$P^n Q(X) = ((4\pi)^{-1} \sum_{i=0}^{n-1} \iint_{E_2} h_i(y) P^n(t^i U_1(X, y)) dy) = (4\pi)^{-1} x$$

$$\times \sum_{i=0}^{n-1} \iint_{E_2} h_i(y) P_X^{n-i-1}(P_X^{i+1}(t^i U_1(X, y))) dy = 0$$

for $X \in W$ and for $i=0, 1, \dots, n-1$.

By Lemma 4 and by assumptions of Theorem 1 we obtain

$$\lim_{X \rightarrow (x_0, 0) \in S} D_t^1 Q(X) = f_i(x_0) \quad (i=0, 1, \dots, n-1).$$

BIBLIOGRAPHY

[1] M. Niculescu: Ecuatia iterata a calduri. Stud. Cerc., Mat., 3-4 (1954) 243-332.

INSTITUTE OF MATHEMATICS, ACADEMY OF MINING AND METALLURGY,
KRAKÓW

Received January 12, 1978.