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Jan Musiatek

ON THE CAUCHY PROBLEM FOR THE n-CALORIC EQUATION
AND FOR THE TIME-PLANE

1e Tet x = (xq,x,), X = (xq,x,,t). in this paper we shall
construct a continuous function u = U(X) defined for t =0
and all x,,x, which is the solution u(X) for the n-caloric
equation

(1) PPu(x) = 0,
where n is a positive integer, n 32

14

2 2 -1 0
P-Dx1+Dx2-Dt, P! = p(P?'), P
in the domain

(2) w={x: |x1|<°°’ 1:1,2;t>o}

and satisfies the initial conditions

(3) Diu(x)

£, (x) for Xe S = {I;‘,le<°° y 3 =1,2, t = 9}.
(1=0,1,000y8,1),

2. Let Y = (3,,3,48), 7 = (v, +¥5), and let

H

= =3 =\[("1‘71)2 + (x50
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2 JeMusiazek

Let us consider thé function
(4) 6, (x,Y) = (t-8)2" u(x,Y),
where

(t-g)"1 exp((4(t-s))-1(-r)2 for 8 <t

(5) u(x,Y) =
0 fors&t, X £Y

is the fundamental solution of the equation Pu(X) = 0,

Let Pi denote the operator pt acting on the variables
x1,x2,t.

Lemma 1, The function G, (X,Y} given by formu-
las (4), (5) satisfies the n-caloric equation BnG(X Y) = 0.

Proof., We shall prove this lemma by induction
1°© For n = 2 we have Gy (x,Y) = (t-8)U(X,Y), then

Py(t-8)U(X,Y) =4 (t-s)U(x Y) - Dt(t-s Ww({x,Y) =

= (t-s)P u(x,Y) - U(X Y) and consequently

2 = =
P3G, (X,Y) = -PyU(X,Y) = O.

2% let us assume that the function Gk_1(X,YJ =(t-s)k'2U(X,Y)

satisfies the equation P§'1 G4 = O. We shall prove that

the function G, = (t—s)k_1

PXG (x,Y) = 0. Namely
4
" - -1 k-3 k=1
PG, (X,Y) = PE™T (e (6-8)%"" u(x, 1)) = PE"3((t-8) a U(x,Y) -

U(X,Y) satisfies the equation

- (t=-8)5"1 DU(X,¥) = (k=1)(t-8)5"2 U(X,Y)) =
= B ((-0)%T pUa,Y) - (k-1)(8-0)%72 U(X,Y)) =

because

PU(X,Y) =0 and P57 (t-5)%72 U(x,Y) =
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On the Cauchy problem

Lemma 2., The function U1(X,y) = U(X,Y)|s=o =
= t'1exp((-4t)-1r2) satisfies the egquation

(6) Dy U, (X,3) =alu (x,3) (1 =1,2,000,0-1),
Proof. Since D.U,(X;3) =4,U,(X55) thus
2 . — - -
DU, (X;3) = DgD U (X53) = Dya Ua(X53) = 4,D U (X53) =

=a2u, (x33).

7e shall assume that the function U1(X,y) satisfies the
equation (6) for i = k < n-1, then for i = k+1 we have
k+1

, .k _ ok _
Dy' U4 (X,y) = DyD4U4(X,y) = Dia, U, (x,5) =

k+1

k
=A DU, (X,5) =a)

U,y (X,3).
e shall prove the following
Lemma 3,. ILet the function f(y) be of the class
2" in the set E, = {x: | 24|< o0, 1= 1,2} and bounded
with its derivatives up to the order 2n on E2. Then
. +00 400

1im D} (4x)7" / j £(y)U, (X37)dy = a'f(x ) (1 = 1,...,n)
-t ==gO

when
X — (x,,0) e85 =x

o ° (x?,xg);

Proof. At first we shall prove that the integrals

I{x) = jf f(y)D%U1(x,y)dy (inv= 0,1,24000,yn-1)

Ey
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4 J.Musiazek

are uniformly convergent in every set

Wy

{x: |xy| S8y 1=1,2; 4,51 st2,} ,

8y, ti (i 1,2)  being arbitrary positive numbers, The de-
rivatives Di’U1 (X3y) are linear combinations of the functions

2 (22)® exp((-4t)~1 22),

where B is nonnegative number, and « is negative number., Con-
sequently it is sufficient to prove that the integrals

J(x) = ff f(y)t“(r?)'e 6Xp((-4t)-1r2)dy
E
2

are uniformly convergent in the set W1. For the integral
J(X} we have the following estimation

lax)| s u ff £*(x2® exp((-4t)"1r2)ay,
E2 '
where M = sup If(y)l.
Upon the change of variables

Xy =Yg = 2Vt u cosg, Xy=J, = 2¥t u sing

we get
2 o0 P
[3(x)] =M | dp f4(4tu2) t**1 4 exp(-u?)du =
. J .

*]

o

= 2Bl B [ 2P rp(en®lau s M gor xe Wy,

o\g

where M, is a convenient positive constant.
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On the Cauchy problem 5

It follows from the above inequality that the integral
J(X) 1is uniformly convergent in W,. Iet K(xo,R) denote
the circle with center at X, and radius R > 0, By uniform
convergence of the integrals I(X) and by Lemma 2 for XesW2
we have

nl ﬁfj‘f(y)m(x,y)dy - h(x) + BL(x) (1 = 1,2,000,0=1),
B
2

where

Bix) = -2 £(Y)piu, (x,7 )4y,
1 T 3Uq
E\K(x_,R)

B} (X) =711F ff £(1)a3U, (X,3)dy, 1 = 1,2,00s,n-1.
K(xo,R)

Since 1lim Bi(X) = Bi(xo,t) a8 X —=X, 0 <t (k=1,2;
1=1,2,e0e,n=1), 1it is sufficient to prove, that

(a) 1im Bi(x,,t) =0 as t-—=o0,,

i (i=1,2,o..,n‘-1’
(b) 1im Bi(x_,t) = al £(x)) as t—o0,.

1
Ad (b). Since the functions f(y) and A3y, (x,y)|x=x°

are of class C21~2 (1=1,2,e¢4,n=1) in the circle K(xo,R),
thus [1]

fj (f(y)A;'U.‘ (X;

- a1 £(3)v,(x,3) dy =
x=x° X=! O

K(x,R)
)
- - (a¥ £(3)p, (a17*1 u, (x;3)) -
k=0 2K(x_,R) R B =Xo
i-k-1
-4 u1(xm, rex, Dy 4 £(y))ds,
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6 J.MusiaXek

where n 1is the inward normal to the boundary aK(xo,R), of
the domain K(xo,R).
Therefore we have
i~ i=1

(1) Bylxg,t) = By(xy,t) - Z clx,,t) + ZO tix,,t),
k=0 k=

where

Biicget) = ff ot eGiunmy) e (a2,
K(xo,R) =
k-

! U, (X,Y) a6

i k i
Ci(x s t) a” £(y)Dpay y

X=
xO

aK(xo,R)
(k=0,1,...,i-1; i=1'2,-oo,n-1),

i

i
Lk(xo,t) D, A

k-1 2y )A§U1 (X,y )I a6y
9K (x ,R) X=Xo

(k=o,1,uoo,i-1; i=1,2,ooo,n-1)o
Expanding the function Al £(y) by formula

al £(y) for ye K(x,R)

£(y) =
0 for e Ez\\K(xo,R)

and by Weierstrass theorem we have

lim B%(xo,t) = st f(x) as t-—=0,.

We must still prove that the other integrals in formula
(7) tend to zero when t —=0,. Since D U(x,Y) = - DU

for y € aK(xo,R) and by Lemma 2 we get
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On the Cauchy problem T

cix,t) == [ a¥ ez at u(xiy)) L, -
aK(xo,R) =%
- [ a¥ ek o0y a6, =

XFX

aK(xo,R) )

- f A% e (-2t2)7! exp((-at)”" B2)) g,
aK(xo,R)

Since the derivatives DI ¥~1((-2t2)"1 R exp((-4t)! 8?))

are linear comblnations of the functions
+~° %8 exp((-4t)71 %) (B=0, «= o)

we must show that the functions

S(x,,t) = ¥ £(3)47% 8P exp((-4t)~" R?)asy

aK(xo,R)

tend to zero when t —*-O+.
For that purpose we present S(xo,t) in the form

.
X+
S(xy,t) = WVE £(y)((at)™" ®2) 2 exp((-4t)7! R%)asy,
3K(x,,R)

where M2 is the convenient constant. By the assumptions of
Lemma 3 and by the inequality

(8) A5 a28% for Az 0, a>0
we obtain

|s(x,t)| ﬁMBV?--O when t—=0_;

M3 being the convenient positive constant,
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8 J.MusiaZek

Arguing similarly as for the integrals Ci(xo,t) we may
prove that the integrals Li(x,,t) (k=0,1,..s,i-1; 1=1,2,...
vesyn=1) tend to zero as t —= 0 , which implies (b).

In order to prove (a) we observe that the functions
D%U.] (X,y) are the linear combinations of the functions

$17R((£)"122)™ exp((-4t)~'r?) (x2 0, Bz 2).

Then the functions B}(x) are also linear combinations of
the integrals

g(xost) =

= Myt f/ f(y)l((4t)'1r2)°+ﬁ(r25)'1exp((-41:)'11-2)‘ dy,
ENK(x,R) X=X

M4 being the convenient positive constant.
Now we have by (8)

lg(xo,t)| = Mgt f 2
EZ\K(xo,R)

= M6t —0 as t——0+,

dy
X=X

where MS’ Mg are the convenient positive constants., There-
fore the condition (a) is satisfied.

Let
n-1
(9) atx) = )+t u(x),
i=0
where

(9a) u,(x)= (4,)-1ffhi(y)u1(x,y)ay, XeW, (1=0,1,000,0-1).
E
2

Now we shall prove the following
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On the Caunchy problem 9

Lemaa 4., Let the functions f,(y), hy(y) be of
the class €2%21"2 (3.0,1,...,0-1) 1in E, and bouaded with
their derivatives up to the order 2n-2i-2 in the set E2.
Let the function Q(X) given by the formulas (9), (9a) satisfy
the initial conditions (3). Then the functions f,, h,
(k=0,1,+00,n~1) satisfy the system of the equations

X
(10) %— =L Y At n ) (§)1r (0,1,..0,n-120r x € B,
i=0

Proof. Making use of the initial conditions (3)
and of Lemma 3 we can prove the formula (10)., In virtue of
Weierstrass” theorem and by the initial conditions (3) for
1 =0, we have

fo(xo) = 1im Q(X) = ho(xo) when X —-/(xo,0+).
Prom the initial conditions (3), for 1 =1, we get
lim th-(x) = £, (xo) as X -— (x°,0+).

On the other hand we have

n=-1
D,Q(X] = uy (X}+Dyuy (X)+4Dyn (X) + ) (181w, (X)+t'Dyny (X)),
=2

where u,(X) (1=0,1,...,0~1)are given by formula (9a), Now it
follows from Weierstrass theorem and lemma 3, that '

1lim th(x) = 1im Dtuo(X) + lm u, (x) = Aho(xo) + h, (x'ol

when X —-(xo,0+). Hence

£, (xo) =Ah°(x°) + h1(x°)_.
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10 J.Musiatek

In view of the initial conditions (3), for 1 = k S n-1, 2 5 1,

we have

1im D% Q(x) = £,(x,) when X— (x,0,).

On the other hand we have

n-1
z : k i k k. k
= Dt(uit ) = D.t uo +oeet Dt(t uk) +

n=1

Z : k+1
D (t uk+1)o

1=k+1

Moreover we obtain
k k k\ k-1

k;.2 k\.2.k k k-1 k k-2
Dt(t u2) = (O)t Diu, + (1)2tDt u, + (2)2'Dt iy

0028 00RO PPPPOSCPLDOODNBOIGNEBINDOISRNIONOERNSEIIILOIOLOSYS

D (+0, ) = i( )Dt(t Iy - i (li)k(lm Yoo (k-is1)tipltt
1=

i=0

Thus we have

lim DY ¢ = lim E p¥(tt ;) = Lim(0 u + (k>Dk"1 uy +

k\ ~ k=2 k
+ 2'( )Dt Uy + eee + (k)k!uk).

Now by Lemma 3 and Weierstrass® theorem we obtain

1im ok o= Akf (x )+( ) k=1 h (x )+(k)2zAk‘2h (X )4eeot
. 1'% 2 2'70
}r-(xo,o+

+ (B)rinylxy)  (k=0,1,.00,n-1),
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On the Cauchy problem 11

This proves our Lemma 5. Now we shall prove the following
lemma.

Lemma 5, Let the functions fy, hy (k=0,1y0004,0=1)
satisfy the assumptions of Lemma 4 and satisfy the system
(10). Then we have

~

(10a) by (x) = ()" ) " (n¥(%) a2,y (x) (k0,1,000,0-10
i=0

Proof. Substituting the functions h; (1=0,1,...,k)
defined by formula (1a} into the right hand side of the k-th
equation of system (10) we get

P, = 11{— 2(k)l'Ak- (i, 2 (-1) A £y g =
-4 Z() k-1 (Z (-1)% 4% £, s)) (k=0,7,000,n-1).

If k¥ =0, then Pk f o Let k 2 1., It can easily
be checked that the sum Pk is a linear combination of the
functions a¥~' £, (1=0,1,...,k) with the coefficients o
(1=0,1,+e.,k) of the form

J=1

(11) P, =k £, + iallf Akl g,
I=0
where
“¥ =1
T L L 30 (9 () 0 jz"l;(g)m-n...

ceel3=141) (=1)9*1  (120,1,.00,k~1).
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12 J.Mugiatek

In order to prove (10a) it is enough to show that oy =
(1=O'1,ooo,k"’1)| Since

(12) (x+b)¥ = i ( )x pE-d,
j=0

we have

r“jw

(12a)  Di(x+b)¥ = (’g)k(k-ﬂ;..(k-m Jxd—1 pk=d o

J=1
= k(k-1)u.o(k=241)(x40)5 1 for 1=1,2,...,k~1.

If we substitute x = -1, b =1 in (12) and (12a) we obtain
k
FONHEN
k

( )k(k—l)...(k-1+1)(-1)3'1 ktlte = k1o

0=

Cle
||[\’1w
—-—d]

for 1=1,2,ooo,k-1o

Lemma 6, Let the functions hy (i=0,1,...,n-1)
be bounded and measurable in the set E2 and let

+

1x) = [ ay [ b3, 2Dt(t U, (X,5))4y,,

o0 - 0O

+
3

where G1,a2 30,1,...,211; o = 0,1,...,11; 1 =0,1,ooo,n-1.
Then the integrals I(X) are uniformly convergent in the set

W, = {x: |x| < &y, 8,5 t S t2] ,
where a; (i=1,2), t; (1=1,2) are positive numbers and
U, (X,y) - ulx Y)[ B_o.
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On the Cauchy problem 13

Proof. The integral I(X) is a lineer combination
of the integrals

+

ﬂ [ +o00 _
H(X)=1t | dy1Jf hi(y)rﬁz(x1—y1)ﬂ3(x2—y2)ﬁ4exp((4t) 1r2)dy2,

where A; £ 0 (i=2,3,4), By = n-2,
Let us observe that the function H(X) may be written in
the form

n +00 + o0 ﬁ_Z
H(X) =t ° W, f dy,lf By (¥ )((6) %) exp((=16t ) "e2 )((£)7 *
o By,

2.2 Ca g Co
x(x,=y,)%)%  exp((-16t) 1(xq-yq>2>(<t)'“(x2-y2>2)2 exp((-16t )" x

x(xg-yz)2)exp(<-8t>'1r2>dy2.

where m = g4 -5 Z/&i, M, 1is a convenient constant.

i/2
Using the inequality (8) and assumptions of lemma 6 we get

400
m
-1
[H(xX)| < Mt ° a7, fexp((-8t2) rz)dy2, for XeW,.
- 00

8

M2 being the convenient positive constant. It follows from
the above inequality that the integral H(X) is uniformly
convergent in W1.

Now we shall prove

Theorem 1. ILet the functions f;, hy (1=0,1,.0.
eee,n=1) be of the class c2n-21=2 o134 ve bounded with their
derivatives up to the 2n-2i-2 order in the set E2 and sa-
tisfy the equations (10a). Then the function Q(X) given by
formulas (9), (9a) is the solution of the problem (1), (2),
(3).
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14 J.Musiatek

Proof. By Lemmas 1 and 6 we have

n=-1
PR(X) = ((4x)7" E./;./' by (7)22 (430, (X,3) )y = (4x) 7 'x

o 2
n-~1
11 pitl (41
x;j;f hy (70281 (ef (t1u, (x,3)) 08y = 0

B2
for X e W and for 1i=0,1,...,0-1,

By Lemma 4 and by assumptions of Theorem 1 we obtain

i
1im Dy Q(X) = £,(x_ ) (i=0,1,¢00,n=1),
X~(x,,0)es 1™ vt
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