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SUR UNE DEFINITION DES ALGEBRES DE LUKASIEWICZ
ET DE POST D’ORDRE n

Introduction

En 1941, Moisil [8] a introduit la notion d'algébre de
Lukasiewicz d!'ordre n. D'une part ces structures sont des
généralisations de la notion d'algébre de Lukasiewicz triva-
lente considérée par le méme auteur [7] en 1940, mais qui ne
sont pas fermées par rapport 4 ltimplication Eukasiewiczienne
[3]. D'autre part elles peuvent admettre, dans certains cas,
une chaine de constantes - déterminée d “une fagon univoque -
de maniére & devenir des algébres de Post d'ordre n [3].

Dans [4] une Géfinition des algébres de Lukasiewicz
d'ordre n a été donnée, ou l'implication intuitionniste
joue un r8le essentiel. Bien que cette définition ait été
obtenue d'une maniére naturelle, étant donnée la littérature
existante, elle ne refléte pas, & premiére vue, certaines
propriétés importantes des algébres de Lukasiewicz d‘'ordre n.

De fagon précise, nous pensons & la loi de Kleene [6]

() (@A-p)<(av=-q
en ce qui concerne la négation "-" et & l'axiome [15]

(T) Ty =py T, = ((pn-2=='Pn—’l) =>Dp,)=>T, 4 Ppour nz2

donné par I.Thomas en ce qui concerne l'ihplication intui-
tionniste " =",
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2 D.Becchio, L.Iturrioz

La loi de Kleene équivaut & une propriété (comparabilité)
de la famille des filtres premiers, faisant intervenir 1l'in-
volution de A.Bialynicki-Birula et H.Rasiowa dans les algé-

.bres de De Morgan ou algébres quasi-booléennes (voir 1.1
ci-dessous). L*axiome de I.Thomas équivaut & une autre pro-
priété (emboitement) de la famille des filtres premiers [11].

Dans le cas trivalent L,Monteiro [12] a donné une défi-
nition des algébres de bukasiewicz trivalentes au moyen de
l'implication intuitionniste et de la négation de De Morgan,
ol les deux propriétés mentionnées ci-dessus figurent parmi
les axiomes.

Nous nous sommes posés le probléme de trouver une défini-
tion des algébres de Eukasiewicz et de Fost d'ordre n ou
l'axiome de I.Thomas et la loi de Kleene soient explicitement
formulés. Nous avons ainsi été conduits & introduire une
structure, notée A , qui, d'une part coincide avec la no-
tion d'algébre de Lukasiewicz d'ordre n pour n < 4, et
d%autre part, dans le cas ou elle admet unc chaine de con-
stantes, vérifiant certaines conditions, est équivalente &
une algébre de Post d'ordre n. Par ailleurs, pour n = 3,
les opérations et les axiomes qui caractérisent l'algébre
A, donnent l'axiomatique fournie par L,Monteiro pour les
algébres de RLukasiewicz trivalentes.

Plusieurs démonstrations des résultats donnés font in-
tervenir la théorie des filtres premiers.

1. Définitions et propriétés

Nous allons tout d!abord rappeler la définition des al-
gébres de De Morgan et celle de Heyting symétriques, ainsi
que celles des algébres de Lukasiewicz et de Post d'ordre n
que nous utiliserons par la suite.

1.1. Une algébre de De Morgan est un systéme (4,0,1,A,V,~)
ou (A,0,1,A,V) est un treillis distributif avec un plus pe-
tit et un plus grand élément O et 1 et ou "-" est une opé-
ration unaire sur A (appelée négation de De Morgan) véri-
tiant les conditions suilvantes ([1}; [1}] Pe H4):
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Définition des algebres de Lukasiewicz

-X =X

~(XxXAy) ==xV -y

De [10] nous avons emprunté la définition suivante:

1.2, Une algébre de Heyting symétrique est un systéme
(4,01, A, vV, =>,-) o0 (4,0,1,A,V ,=>) est une algébre
de Heyting ([13] p.62) et "-" une négation de De Morgan
sur A. .

1.3. Une algébre de Lukasiewicz d'ordre n (n entier
=22) est un systéme (4,0,1, A,V ,-,S,],Sa,...,sn_,') ou
(A,0,1, A,V ,=~) est une algébre de De Morgan et S4185900.
seey8) 4 sont des opérateurs unaires définis sur A et vé-
rifiant les conditions suivantes, pour tous 1, = 1,eee,0=1
[e], [3]):

) Si(x vy) = 8;x vS;y
(L2) Six V—Six =1

(I3) 8;8;x = 8;x

(M) Si-x = -Sn_ix

(L5) Sqx SSX < eve < Sn-‘lx

(L6) Si 8;x = S;y pour tout i = 1,2,...,0~1 alors
x =y (principe de détermination de Moisil).

Une classe particuliérement intéressante dtalgébres de
Lukasiewicz d'ordre n est celle donnée par la définition
suivante:

1.4, Une algébre de Post d'ordre n (n entier =>2) est
une algébre de Lukasiewicz du méme ordre munie de n élé-

ments e, = 0,€4500058, 536, 4 = 1 satisfaisant & la condi~-
tion ([3] p.#1):

Sie;j =0 s1 1+j <n

Sie;j =1 s1 1+j = n.
four abréger les écritures nous noterons ALn pour. "al-
gebre de Lukasiewicz d'ordre n" et AP pour "algebre de
rost d'ordre =n".
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Dens une AL les propriétés suivantes sont satisfaites:

1.5, Pour tout i = 1,254e.,0~1 1'image par S; de AL,
eat, d'une part, l'algébre de Boole B(ALn) de tous les élé-
ments complémentés de ALn, et d'autre part l'ensemble des
éléments x de ALn tels gue Six = x. Les opérateurs 81
et S _, sont respectivement un opérateur d'intérieur et un
opérateur de fermeture sur AL ([3].p.8).‘

1.6. Toute AL ~ est une algébre de Heyting. L'implica-
tion intuitionniste est donnée au moyen de 1'égalité [4]:

n-1
X=>y =3V /\ (-ij v Sjy).
=1

1.7. L'ensemble des filtres premiers d'une ALn, ordonné
par inclusion, est la somme cardinale de chaines ayant chacune
au plus n-1 éléments ([3] p.22). '

1.8. Dans [11], L.Monteiro a montré que dans une algébre
de Heyting A pour que l*'égalité T, = ((xn_2 ==-xn_1)=>
~x)==T, 4 =100 T, =x, et n>=>2, soit vérifiée il
faut et il suffit que la famille de tous les systémes déduc-
tifs contenant un systéme déductif irréductible soit une
chaine ayant au plus ns éléments. ’

Rappelons que dans un treillis distributif les notions
de filtre premier et de filtre irréductible sont équivalen-
tes ([13], p.42-43) et que dans une algébre de Heyting les
notions de filtre et de systéme déductif sont aussi équiva-
lentes [9]. '

D'autre part, dans un treillis distributif, Varlet [16]
a donné l'équivalence des deux conditions suivantes:

(1) tout filtre propre contenant un filtre premier est

premier,

(2) la famille de tous les filtres premiers contenant un

filtre premier est une chaine.

Des résultats 1.7 et 1.8 on conclut que:

1.9. Dans toute ALn, 1'égalité T, =‘((xn_2==>xn_1)=>xJ

=T 4=1 ou T, =x, et n>2, est vérifige.
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Définition des algebres de Lukasiewicz 5

1.10. Toute ALn est une algébre de Kleene, c'est-a~dire
qu'elle vérifie la condition (E) X A-x <y v -y, comme ce-
la a 6té démontré de deux fagons différentes par Sicoe en
1967 ([14] p.727) et par Cignoli em 1970 ([3] p.23).

1411. Soit TT l'ensemble des filtres premiers d'une algé-
bre de De Morgan A. Si Pe M npotons -P = {-p, D e P}. Soit
g l'involution de T définie par A.Bialynicki-Birula et
H.Rasiowa .[1] au moyen de l'égalité g(P) = CA(-P). La con-
dition (K) est alors équivalente a la condition suivante:
étant doomés P et g(P), ona P c g(P) ou g(P) &
comme l'ont démontré A.BiaXtynicki-Birula et H.Rasiows pour
l'une des implications ([2] P.293) et A.Monteiro pour
1l'autre (non publié). De plus, A. Monteiro a montré que la
condition (K) entrafne la condition suivantet si 2z posséde
un complément 2’ alors -z =z’ ([12] P.454),

2. Définitions et propriétés des algébres A, et B,

Les travaux de Rousseau pour les algeébres de Post d'ordre
n [15] la caractérisation des AL, donnée dans [4], les
structures étudiées dans [5], et les résultats rappelés pré-
cédemment nous ont conduit a4 introduire la définition sui-
vante:

2.1, Un systéme (A4,0,1, A ,\/,=>,-,S,|,Sz,...,sn_1),
(n entier = 2), formé par un ensemble A, deux éléments O
et 1 distingués de A, trois opérations binaires A, V et=>
définies sur A et n opérations unaires - et 81,52;...
eoesSy 4 définies sur A est une algébre , 81 les axio-
mes suivants sont vérifiés: .

(41) (4,0,1, A,V ,=>,=-) e8t une algébre de Heyting

symétrique. '
- (A2) Tn=((x11 ==X, 1)=>x)= 9 =1 o T, =x

(43) . (x A-x) A (y v -y) X A X

(A4) s. (x v y) = 8;x v 8;3, i =1,e0eyn~1

(A5) 85 jx =8 5% 193 = 1geee,yn~1

(AG) S'-x = "{Sn_l * i 1’.00’11-1

o]
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(A7) S;x v 85 4% = 8; 4%, 1= 1y00e,yn-2
- (48) S;x A x =85;x

(49) Asqx v Tqu_z 1, ou x = x=>0.

Dés que la classe de toutes les algébres de Heyting symé-
triques est définie au moyen d'égalités cela est aussi le cas
pour la classe des algeébres An.

Guidés par la définition d'algébre de Post dtordre n
nous allons introduire la définition suivante:

2.2. Une algébre A  est dite une algébre B , si elle
est mqnie de n éléments e, = 0s849000,8, 5,8, 4 =1 tels
que:

S-e:l =0 s8i i+j <n,

S:e. =1 81 1i+j =n.

Remarquons qu'il s'agit d'une définition donnée au moyen
d'égalités. :

Dans une algébre A, on peut établir les propriétés sui-
vantes:

243 X < SpqXe Dtaprés (a8), S,I-x < -X. Bn tenant
compte de (A1) et (A46) ceci revient & dire que x<-S,-x =
= Sn_,]x.

2.4. 841= 1 pour tout i = 1,...,0-1. De 2.3 et (41)
on tire que, S, 41 =1. En appliquant 89 858, 41 = 8;1.
D'aprés (45), Sy 41 =1 = 8;1.

2.5. 8;0 = 0 pour tout i = 1,...,n-1. D'aprés (A1),
(A6) et 2.4, SiO = Si-’l = fSn_i’l = =1 = 0,

En vertu de (A4), (A5), 2.3 et 2.5, Sp-
rateur de fermeture sur A ([13] p.116).

2.6, Si(xz\y) = 8;X A S;y. D'aprés (A1), (A6) et (44),
S5i(xAy) = Si(-(-x v -y)) = =S, 17X A =S, _;-¥ = 8;% A 85;7.

Les conditions (45), (48), 2.4 et 2.6 entrainent que S,
est un opérateur d'intérieur sur A, ([13], p.115).

Soit 55 (A) 1t'image de A, par S;. Il découle de
(45) que:

n~1

est un opé-~
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Définition des algebres de Lukasiewicz ?

2.7. 84(A)) =8,(8,) = eee = S,_q(A) et 8;(A)) =
x e At 5;x =x| pour tout 1= 1y00e,n-1,

Soit B(An) lt'algébre de Boole des éléments complémen-
tés de An.

2.8. Si(An) = B(An) pour tout i = 1,...,0-1. En effet,
solit X € Si(%)‘ De 2.7 et (A9) on tire x vix =1, Or
dans une algébre de Heyting, X A1 X = O. Par conséquent
X e B(An). Inversement, soit X e B(An). I1 existe alors
b B(An) tel que x A X' =0 et xv x' = 1. En appli-
quant Sq et en tenant compte de 2.6, 2. 5, (A4) et 2.4,
qu A qu = S1O =0 et qu v qu = 511 = 1. Ainsi
(s,lx)' = §,x' et d'aprés (48), (s,lx)’ = S,x'<x'. OCela
revient a4 dire que x < 8,x. . Cependant on a toujours S.x £ %,
donc qu =X et x ¢ Sq(An) = Si(An)' ’ 3

2.9. Six v —Six = 1, Il résulte de l'assertion 2.8 que
S;x a un complément booléen, (Six)'. D'aprés (A3) et 1.11
-8;% = (Six)'.

2.10. 81 x <y, alors S;x < 8;y pour tout i=1,400,0-1.
Cette propriété se déduit immédiatement de (A4).

Les résultats suivants établissent les liens existants
entre les filtres premiers de A, et les. filtres premiers
(ultrafiltres) de B(Aﬁ).

ftant donné un filtre F de l'algébre A, on note
F*=Fn B(An). On montre aisément que:

2.11. F* est un filtre de B(An). De plus, F est
propre si et seulement si F* est propre. Si F est pre-
mier alors F* est premier.

Etant donné un filtre premier P* de B(A) on pose

* *
P ={aea, :SaeP}

i =

2.12. Les P (1 < n-1) sont des filtres premiers
de A . Deplus, *=P{N B(A) et P1QP S .o P .
En effet, 1€ P car,d'aprés 2.4y 841 =€ P*. si

a,b € P » ON & S i8> S. ;b e p*. Pp* étant un filtre de B(An),

d'apres 2*6, S;a A S. b = S (a A b) e P* et anbe P .
Si ace P, et a<x ona S;ae P* et S;a < 8;x d'aprés
2.10. Puisque P™ est un filtre de B(4,), S ;X € P ot
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X e PI. En outre P est propre car du fait que P* est .
premier on a 3,0 0 ¢ p* et 0 ¢ P . Montrons que les P,
sont premiers. Sl avbeP: i d'apres (A4), S. (a v b) =
S av S jbe P*, P* étant un filtre premier de B(A ),
S;a e p* ou S;b e P y c'est-a-dire a € P ou be P .
D'allleurs, en vertu de 2.7 et 2.8, p* P ﬂ B(A ) nIln,
soit a e P alors S;a e P*. Selon (A7), Siaﬂs S .
Comme P~ est un filtre de B(A,), S; 4ac¢€ P* et ae P:

2.13. BKtant donne un filtre premier P de A, on a
toujours P: £ps Pn T En eEfet, P étant un flltre pre-
mier de Ay, d'aprés 2.1, P =P N B(4,) est un filtre
premier de B(An); *il y a lieu ilors de considérer lei
filtres premiers P.. Soit a e Py, on a donc Sjae P et
Siae Po De Sja<a, P étant un filtre, il s'ensuit ae P.
Par ailleurs soit b ¢ P. D'aprés 2.3, b< 8§ 4b. Du fait
gue P est un filtre on déduit S,_q0 € P. En tenant compte
de 2 8, S,_qb € B(An). Par consequent Sp-qb € P* et
b e n 1
Moyennant les axiomes (41), (A2) et le résultat 1.8 on
peut établir ce qui suit:

2.14, La famille des filtres premiers de A, contenant
un filtre premier est une chaine d'au plus n-1 éléments.,

Compte tenu des 4noncés précédents nous arrivons au ré-
sultat suivant:

215, Théoréme ., Toute algébre de Lukasiewicz
d'ordre n est une algebre An'

En examinant les deux définitions et en tenant compte
des résultats 1.6, 1.9, 1.10 et 1.5 il suffit de démontrer
que S,x V'Tqu =1, c¢ce qui est immédiat en remplagant 1x
par sa définition (1.6) et en utilisant (L3), 1.5 et (L2).

En particulier nous pouvons énoncer:

216 Théoréme, Toute algébre de Post d'ordre
n est une algebre B.

3. Théoréme de caractérisation
Le résultat ci-dessous souligne la relation entre les
structures considérées:
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Définition des algebres de Lukasiewicz 9

3.1, Théoréme. Les notions d'algebre de Post
d'ordre rn et d'algébre B, sont respectivement équivalen-—
tes. D'autre part, pour n < 4, la notion d'algébre de Luka-
siewicz d'ordre n est respectivement équivalente & celle
d'algebre An‘

En regardant les définitions et les propriétés des AP,
et des algeébres Bn’ et en tenant compte de 2.16, il suffit,
pour établir le premier résultat, de montrer que le principe
de détermination de Moisil est satisfait dans les algebres Bpe
Supposons  S4x = S;3  pour 1 =1,2,eeey0n~-1 et x £y,
Il existe alors un filtre premier P tel que x e P et
y ¢ P. Soit PP=Pn B(Bn), et {P;} la chaine de fil-
tres premiers contruite .dans 2.12. Montrons gque dans Bn
nous avons plus précisément P: & P; $ oo § PZ_1' En effet

d'aprés la définition 2.2, pour 1i =2, S;en_ 1 =1 et

*
Si-1en—i = 0. P* 4tant un filtre de B(B ), i®pei = =1epP
et en-i € P . D'autre part, du fait que P est propre
S; 483 = O ¢ P* et en_i ¢ Pi-1'

En vertu de ce résultat et des assertions 2.13 et 2.14,
. .. * . :
P doit coincider avec ltun des Pi’ solt P; « De xeP =
o

* . . LS
= P. on dédult Si X = Si y € P*, clest-a—-dire y €

*
1 P =P,

) 0 ) 1o
d'ol une contradiction et par suite x = y.

Pour démontrer la seconde partie du théoréme supposons
n = 4, D'aprés les définitions et les propriétés des AL,
et des algébres A4, pour voir que ces deux notions sont
équivalentes il suffit, si 1l'on tient compte de 2.15, de
montrer le principe de détermination de Moisil dans 4,. Pour
cela, supposons que S;x = S;y pour tout 1i=1,2,3. 8Si
x £y, 1l existe un filtre premier P tel que x € P et
y ¢ P. Con31derons la famille des filtres premiers P*.

S1 tous les P sont distincts, par un ralsonnement
analogue a celui falt ci-dessus on établit x = y.

51 tous les P; ne sont pas distincts, en vertu de 2.42
on a affaire & l'une des trois possibilités que voici:
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10 D.Becchio, L.Iturrioz

1) P: = P, # PB,
e>ﬁ¢$=5,
(3) PI]‘ = P; = PB.

Soit T l'ensemble des filtres premiers de 4, et g
1'involution de T considérée par A.Bialynicki-Birula et
H.Rasiowa (1.11). P* étant un ultrafiltre de B(4,), il
découle de (A6) et 2.9 les équivalences sulvantes:
ae g(P’{)%a ¢—P;<:> -a ¢ P;%si-a ¢ Pl ‘sn—i ¢ Pl

*
*e

* ¥ *
<=5, ja € PPe==sa e P _;. Donc g(Pi) =P _;

n-1i

En particulier, g(P:) = P}, g(P;) = P; et g(P;) = P:.
Il y a incompatibilité entre ce fait et les cas (1) et
(2)s En effet, dans le cas (1), g(P ) = g(Pa); g étant
une involution de T on conclut P3 P2. Dans le cas (2),
§(P}) = g(®]), d'ot P, = Pj. Le cas (3), P} =P = P;
est donc le seul p0331ble. En tenant compte de 2.13 on peut
affirmer que P = P1 = P2 = P3. N

Par hypothése x e P, donc s € Pi pour tout 1 = 1,2,3,
et par suite S; ;X = 8;7 ¢ P* (i =1,2,3), c'est-a-dire
y € P (i-= 1,2,3), d'ol une contradiction et on a bien

y.

Pour n = 3 notre axiomatique est la méme que celle
donnée par L.Monteiro dans ([12] p.1+59).

Enfin, pour n = 2 nous retrouvons bien entendu une algé-
bre de Boole. En effet, d'aprés (A8) et 2.3, dans une algebre
A2 on a qu = X et en vertu de (A1), 2.7 et 2.8 une algée-
bre A, est un treillis distributif complémenté.

La démonstration du théoréme est ainsi achevée.

32 Remarques. Pour n>=5 il peut exister
des algeébres An qui ne sont pas des ALn. Par exemple pour
n = 5 considérons l'algébre de Lukasiewicz d'ordre 4,

(L4,0;1,A, V1=18,155,83) ol I, est une chaine & quatre
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Définition des algebres de hukasiewicz M

éléments. Posons S% =5, =8, et Sé =8, = 83. Le systéme
(L 30,15 A4V, == ,=,5, ,S'E,S'B,SA)_, ol == est l'opération
d'implication habituelle dans une chaine, est une algébre A5
qui ne vérifie pas le principe de détermination de Moisil,
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