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SUR UNE DÉFINITION DES ALGÈBRES DE LUKASIEWICZ 
ET DE POST D'ORDRE n 

Introduction 
En 194-1» Moisil [8] a introduit la notion d'algèbre de 

Lukasiewicz d'ordre n. D'une part ces structures sont des 
généralisations de la notion d'algèbre de Lukasiewicz triva-
lente considérée par le même auteur [7] en 1940, mais qui ne 
sont pas fermées par rapport à l'implication Lukasiewiczienne 
[3]. D'autre part elles peuvent admettre, dans certains cas, 
une chaîne de constantes - déterminée d'une façon univoque -
de manière à devenir des algèbres de Post d'ordre n [3]. 

Dans [4] une définition des algèbres de Lukasiewicz 
d'ordre n a été donnée, où l'implication intuitionniste 
joue un rôle essentiel. Bien que cette définition ait été 
obtenue d'une manière naturelle, étant donnée la littérature 
existante, elle ne reflète pas, à première vue, certaines 
propriétés importantes des algèbres de Lukasiewicz d'ordre n. 

De façon précise, nous pensons à la loi de Kleene [êj 

(K) (p A -p) < (q V -q) 

en ce qui concerne la négation et à l'axiome [15] 

(T) ^ = p 0, T n = ( ( p ^ ^ P n . ï ) -**P 0>=>
Tn-1 P o u r 

n-2 
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La lloi de Kleene équivaut à une propriété (comparabilité) 
de la famille des filtres premiers, faisant intervenir l'in-
volution de A.Bialynicki-Birula et H.Rasiowa dans les algè-
bres de De Morgan ou algèbres quasi-booléennes (voir 1.11 
ci-dessous). L'axiome de I.Thomas équivaut à une autre pro-
priété (emboîtement) de la famille des filtres premiers [il]. 

Dans le cas trivalent L.Monteiro [ 12] a donné une défi-
nition des algèbres de tukasiewicz trivalentes au moyen de 
l'implication intuitionniste et de la négation de De Morgan, 
où les deux propriétés mentioanées ci-dessus figurent parmi 
les axiomes. 

Nous nous sommes posés le problème de trouver une défini-
tion des algèbres de lukasiewicz et de Fost d'ordre n où 
l'axiome de I.Thomas et la loi de Kleene soient explicitement 
formulés. Nous avons ainsi été conduits à introduire une 
structure, notée A^, qui, d'une part coïncide avec la no-
tion d'algèbre de Lukasiewicz d'ordre n pour n ¿s 4-, et 
d*autre part, dans le cas où elle admet une; chaîne de con-
stantes, vérifiant certaines conditions, est équivalente à 
une algèbre de Post d'ordre n. Par ailleurs, pour n = 3, 
les opérations et les axiomes qui caractérisent l'algèbre 
An donnent 11axiomatique fournie par L.Monteiro pour les 
algèbres de Eukasiewicz trivalentes. 

Plusieurs démonstrations des résultats donnés font in-
tervenir la théorie des filtres premiers. 

1. Définitions et propriétés 
Nous allons tout d'abord rappeler la définition des al-

gèbres de De Morgan et celle de Heyting symétriques, ainsi 
que celles des algèbres de tukasiewicz et de Post d'ordre n 
que nous utiliserons par la suite. 

1.1. Une algèbre de De Morgan est un système (A,0,1,A,V,-) 
où (A,0,1,A,V) est un treillis distributif avec un plus pe-
tit et un plus grand élément 0 et 1 et ou "-" est une opé-
ration unaire sur A (appelée négation de De Morgan) véri-
fiant les conditions suivantes ([l]» [13] P» 44): 
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-x = x 

-(x A y) = -x V -y. 

De [10] nous avons emprunté la définition suivante: 
1.2. Une algèbre de Heyting symétrique est un système 

(A,0,1, A , V , ,-) où (A,0,1 , A , V , =**») est une algèbre 
de Heyting ([13] p.62) et "-" une négation de De Morgan 
sur A. 

1.3» Une algèbre de Lukasiewicz d'ordre n (n entier 
»2) est un système (A,0,1,A ,v . S g , . . . o ù 
(A,0,1,A,v,-) est une algèbre de De Morgan et S^.Sg,... 

sont des opérateurs unaires définis sur A et vé-
rifiant les conditions suivantes, pour tous i,j = 1,...,n-1 
( M , [3]): 

(L1) S i(xvy) = SjX vS^y 

(L2) S^x V-S^x = 1 

(L3) S ^ x = S^x 

(IA) Si-x = -S n_ ix 

(L5) S/jX s£ S2x ¿g ...
 s

n_/j
x 

(L6) Si S^x = S^y pour tout i = 1,2,...,n-1 alors 
x = y (principe de détermination de Moisil). 

Une classe particulièrement intéressante d'algèbres de 
Lukasiewicz d'ordre n est celle donnée par la définition 
suivante : 

1.4. Une algèbre de Post d'ordre n (n entier > 2 ) est 
une algèbre de Lukasiewicz du môme ordre munie de n élé-
ments e Q = O.e^,...»®n_2»

en-1 = ^ satisfaisant à la condi-
tion ([3] p.41): 

S-e . = 0 si i+j < n 
J 

S.ea = 1 si i+j > n. 

ïour abréger les écritures nous noterons ALn pour "al-
gèbre de Lukasiewicz d'ordre n" et APn pour "algèbre de 
!rost d'ordre n". 

- 1C8? -
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Dans une ALq les propriétés suivantes sont satisfaites: 
1.5. Pour tout i = 1,2»,..,n-1 l'image par S^ de Aln 

est, d'une part, l'algèbre de Boole B(ALn) de tous les élé-
ments complémentés de ALn, et d'autre part l'ensemble des 
éléments x de ALQ tels que S^x = x. Les opérateurs S^ 
et sont respectivement un opérateur d'intérieur et un 
opérateur de fermeture sur ALq ([3] p.8). ' 

1.6. Toute ALQ est une algèbre de Heyting. L'implica-
tion intuitionniste est donnée au moyen de l'égalité [4]s 

n-1 
x=s»y = y V A (-SjX v S ..y). 

3=1 

1.7« L'ensemble des filtres premiers d'une ALn, ordonné 
par inclusion, est la somme cardinale de chaînes ayant chacune 
au plus n-1 éléments ([3] p.22), 

1.8. Dans [il] , L.Monteiro a montré que dans une algèbre 
de Heyting A pour que l'égalité Tn = ((*n_2

 x
n-1^ 

-*-x0) Tn_/j = 1, o)ù T̂  = xQ et n > 2, soit vérifiée il 
faut et il suffit que la famille de tous les systèmes déduc-
tifs contenant un système déductif irréductible soit une 
chaîne ayant au plus n« éléments. 

Rappelons que dans un treillis distributif les notions 
de filtre premier et de filtre irréductible sont équivalen-
tes ([13], p.42-43) et que dans une algèbre de Heyting les 
notions de filtre et de système déductif sont aussi équiva-
lentes [9]. 

D'autre part, dans un treillis distributif, Varlet [lô] 
a donné l'équivalence des deux conditions suivantes: 

(1) tout filtre propre contenant un filtre premier est 
premier, 

(2) la famille de tous les filtres premiers contenant un 
filtre premier est une chaîne. 

Des résultats 1.7 et 1.8 on conclut que: 
1.9« Dans toute ALn, l'égalité Tn = C(

x
n_2

=s*xn_i)
=**x(P 

=£»• =1, où T̂  = xQ et n > 2, est vérifiée. 
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1.10. Toute ALq e s t une algèbre de Kleene, c ' e s t - à - d i r e 
q u ' e l l e v é r i f i e l a condit ion (K) x A -x ^ y v -y» comme ce-
l a a é té démontré de deux façons d i f f é r e n t e s par Sicoe en 
1967 ( [14] p.727) e t par Cignoli en 1970 ([3] p .23) . 

1 .11. Soi t TT l 'ensemble des f i l t r e s premiers d'une a lgè-
bre de De Morgan A. Si P e TT njotons -P = | - p , p t p j . Soit 
g l ' i n v o l u t i o n de H dé f in i e par A.Biaïynicki-Birula e t 
H.Rasiowa , [ l ] au moyen de l ' é g a l i t é g(P) = CA(-P). La con-
d i t i o n (K) e s t a l o r s équivalente à l a condit ion su ivante : 
é t an t donnés P e t g(P), on a P i g(P) ou g(P) £ P, 
comme l ' o n t démontré A.Biaiynicki-Birula e t H.Rasiowa pour 
l ' u n e des impl ica t ions ([2] p.293) e t A.Monteiro pour 
l ' a u t r e (non p u b l i é ) . De p l u s , A. Monteiro a montré que l a 
condi t ion (K) en t ra îne l a condi t ion su ivante : s i z possède 
un complément z ' a lo r s - z = z ' ( [12] p .454) . 

2. Déf in i t ions e t p ropr i é t é s des algèbres An e t Bn 

Les travaux de Rousseau pour l e s algèbres de Post d 'o rdre 
n [13]» l a c a r a c t é r i s a t i o n des ALn donnée dans [4 ] , l e s 
s t ruo tu re s é tudiées dans [5]» e t l e s r é s u l t a t s rappelés p r é -
cédemment nous ont conduit à i n t rodu i re l a d é f i n i t i o n s u i -
vante : 

2 .1 . Un système (A,0,1,A ,V , , - , S 1 , S 2 , . . . » S n - 1 ) , 
(n e n t i e r > 2 ) , formé par un ensemble A, deux éléments 0 
e t 1 d i s t ingués de A, t r o i s opérat ions b i n a i r e s A, v et 
dé f i n i e s sur A e t n opérat ions unaires - e t S^ ,8g , • . • 
. . . , S n _ / | d é f i n i e s sur A e s t une algèbre Ap . s i l e s axio-
mes su ivants sont v é r i f i é s : 

(A1) ( A , 0 , 1 , A , v , =>-,-) e s t une algèbre de Heyting 
symétrique. 

(A2) Tn = ( (* n _ 2 ) = - * 0 ) =*> V l = o ù T1 = x o 
(A3) . (x A -x ) A (y v -y ) = X^A - x 
(A4) S i ( x v y) = Sjx v Sjy , i = 1 , . . . , n - 1 
(A5) S ^ x = SjX, = 1 , . . . ,n-1 
(A6) S^-x = HSn_iX, i = 1 n-1 
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(A7) S^x v 3i+/]x = S i + 1x, i = 1,...,n-2 
(A8) S^x A x = S/]x 
(A9) S^x v 1S^x = 1, où x = x = > 0 . 
Dès que la classe de toutes les algèbres de Heyting symé-

triques est définie au moyen d'égalités cela est aussi le cas 
pour la classe des algèbres A^. 

Guidés par la définition d'algèbre de Post d'ordre n 
nous allons introduire la définition suivante: 

2.2. Une algèbre A n est dite une algèbre B p. si elle 
est munie de n éléments eQ = 0 f e ^ »

e
n _ 2 »

e n _ i = ^ "tels 
que: 

0. si i+j -c n, 

1 si i+j > n . 

Remarquons qu'il s'agit d'une définition donnée au moyen 
d'égalités. 

Dans une algèbre A n on peut établir les propriétés sui-
vantes s 

. 2.3. x ^ Sn_^x. D'après (A8), S^-x ^ - x . En tenant 
compte de (A1) et (A6) ceci revient à dire que x^-S^-x = 

= sn-1x' 

2.4. = 1 pour tout i = 1,...,n-1. De 2.3 et (A1) 
on tire que, = 1. En appliquant S^, si s

n_i^
 = • 

D'après (A5), S ^ l = 1 = Sjl. 
2 . 5 . S^O = 0 pour tout i = 1,...,n-1. D'après (A1), 

(A6) et 2.4, S^O = S — 1 = - 3 ^ 1 = - 1 = 0 . 
En vertu de (A4), (A5), 2.3 et 2.5» S ^ est un opé-

rateur de fermeture sur Â^ ( [13] p.116). 
2.6. S i(xAy) = S^x a S^y. D'après (A1), (A6) et (A4), 

Si(x A y) = Si(-(-x v wy)) = -Sn_^-x A -Sn_^-y = S^x A 8-j. 
Les conditions (A5), (A8), 2.4 et 2.6 entraînent que S^ 

est un opérateur d'intérieur sur ([13], p.115). 
Soit S^ÎAQ) l'image de A^ par S^. Il découle de 

(A5) que s 

S-e. -
1 j 

S-e • = 
1 3 
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2.7. S ^ ) =S 2(A n) = ... = et S ^ ) = 
= | x e AJJ : S^x = x| pour tout i = 1,... ,n-1. 

Soit BC^) l'algèbre de Boole des éléments complémen-
tés de A^. 

2.8. S ^ C A ^ ) = B(A q) pour tout i = 1,...,n-1. En effet, 
soit x g S ^ ( A N ) . De 2.7 et (A9) on tire x vtx = 1. Or 
dans une algèbre de Heyting, x A "L x = 0 . Par conséquent 
x e B(An). Inversement, soit x e BCA^). Il existe alors 
x'e B(An) tel que x a x' = 0 et x v x' = 1. En appli-
quant S^ et en tenant compte de 2.6, 2.5» (A4) et 2.4, 
S^x A S^x' = S,,0 = 0 et S^x v S^x' = 3^1 = 1. Ainsi 
(S1x)' = S,jX' et d'après (A8), (S^x)' =S<)x'^x'. Cela 
revient à dire que x ̂  S^x. Cependant on a toujours S^x ^ x, 
donc S^x = x et x e S/)(An) = Sj_(An). 

2.9. S^x v -S^x = 1. Il résulte de l'assertion 2.8 que 
S^x a un complément booléen, (S^x)' . D'après (A3) et 1.11 
-S-x = (SiX)' . 

2.10. Si x ^ y , alors S^x < S^y pour tout i=1,...,n~1. 
Cette propriété se déduit immédiatement de (A4). 

Les résultats suivants établissent les liens existants 
entre les filtres premiers de AQ et les filtres premiers 
(ultrafiltres) de B(AQ). 

Îteint donné un filtre F de l'algèbre A on note 
F = F O B(An). On montre aisément que: 

2.11. F* est un filtre de B(An). De plus, F est 
propre si et seulement si F* est propre. Si F est pre-
mier alors F* est premier. 

Étant donné un filtre premier P* de ^(AJJ) on pose 
Pi = { a 6 An 5 S i a t P 1 -

2.12. Les P^* (1 as i .ë n-1) sont des filtres premiers 
de An. De plus, P* = P? fl BiA^) et P* Q V* Q ... S-P*^. 
En effet, 1 e P? car,d'après 2.4, S-1 = 1e P*. Si * * * 
a,b e P^, on a S^a, S^b e P . P étant un filtre de B(An), 
d'après 2.6, S-a A S4b = S-(a A b) e P* et a A b e P?. 

* 1 1 1 * 1 

Sx a 6 P^ et a « x on a S^a e P et S^a -é S^x d'après 
2.10. Puisque P* est un filtre de B(An), S.jX e P* et 
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* * * x e P•. En outre P- est propre car du fait que P est 
# * * 

premier on a 3^0 = 0 ^ P et 0 £ P^. Montrons que les P^ 
sont premiers. Si a v b e P^, d'après (A4), S^(a v b) = 
= S^a v S^b e P*. P* étant un filtre premier de B(An), 
S^a e P* ou S^b e P*, c'est-à-dire a e P* ou b e P*. 
D'ailleurs, en vertu de 2.7 et 2.8, P* = P? 0 B(Ar). Enfin, 
soit a e P? alors S-ae P*. Selon (A7), S-a-ë S- .a. 
Comme P est un filtre de B(An), S ^ a e P et a e 

2.13. Étant donné un filtre premier P de A„ on a * * n 
toujours £-p £ Pn_^ • En effet, P étant un filtre pre-
mier de An, d'après 2.11, P* = P H B(AQ) est un filtre 
premier de B(A_); il y a lieu alors de considérer les n x * filtres premiers P^. Soit a e P^, on a donc S^a e P et 
S^a 6 P. De S^a ^ a, P étant un filtre, il s'ensuit a e P . 
Par ailleurs soit b ê P. D'après 2.3, b ^ Sn_,jb. Du fait 
que P est un filtre on déduit s

n_i D e P. En tenant compte 
de 2.8, S n ^b e B(An). Par conséquent S Q ^b e P* et 
b * P n - V 

Moyennant les axiomes (A1), (A2) et le résultat 1.8 on 
peut établir ce qui suit: 

2.14. La famille des filtres premiers de A n contenant 
un filtre premier est une chaîne d'au plus n-1 éléments. 

Compte tenu des énoncés précédents nous arrivons au ré-
sultat suivant: 

2.15. T h é o r è m e . Toute algèbre de Lukasiewicz 
d'ordre n est une algèbre A^. 

En examinant les deux définitions et en tenant compte 
des résultats 1.6, 1.9» 1.10 et 1.5 il suffit de démontrer 
que S^x VlS^x = 1, ce qui est immédiat en remplaçant i x 
par sa définition (1.6) et en utilisant (L3), 1.5 et (L2). 

En particulier nous pouvons énoncer: 
2.16. T h é o r è m e . Toute algèbre de Post d'ordre 

n est une "algèbre B^. 

3. Théorème de caractérisation 
Le résultat ci-dessous souligne la relation entre les 

structures considérées : 
- 1090 -
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5 . 1 . T h é o r è m e . Les notions d'algèbre de Post 
d'ordre n et d'algèbre Bn sont respectivement équivalen-
t e s . D'autre par t , pour n ^ 4-, l a notion d'algèbre de tuka-
siewicz d'ordre n est respectivement équivalente à c e l l e 
d'algèbre AQ. 

En regardant l es déf ini t ions et les propriétés des APn 

et des algèbres B n , et en tenant compte de 2 .16 , i l s u f f i t , 
pour é t a b l i r le premier r é s u l t a t , de montrer que l e principe 
de détermination de Moisil es t s a t i s f a i t dans les algèbres B f l . 
Supposons S .x = S^y pour i = 1 , 2 , . . . , n - 1 e t x ^ y. 
I l ex is te alors un f i l t r e premier P t e l que x e P e t 
y i P. Soit P * = P D B ( B n ) , et |p£ j l a chaîne de f i l -
t res premiers contruite -dans 2 .12 . Montrons que dans B 

* * * nous avons plus précisément P^ g P 2 £ . . . | ^n-1* e ^ e ' f c 

d'après la déf ini t ion 2 . 2 , pour i > 2 , s i e n _ i = 1 e - b 

s-i e • = 0. P * étant un f i l t r e de BCBJ , S.e_ • = 1 e P* 
et e n i è D'autre part , du f a i t que P est propre 
S i - 1 e n - i = 0 * P * e t e n - i * P i - V 

En vertu de ce résul ta t et des assertions 2.13 et 2 .14 , 
* . * P doit coïncider avec l 'un des P^, s o i t P^ . De x e P = 

* * 0 * 
= P- on déduit S- x = S- y e P , c ' e s t - à - d i r e y e P- =P, 

o xo o o 
d'où une contradiction e t par suite x = y. 

Pour démontrer la seconde part ie du théorème supposons 
n = D'après les déf ini t ions e t les propriétés des AL^ 
et des algèbres A^, pour voir que ces deux notions sont 
équivalentes i l s u f f i t , s i l ' on t i e n t compte de 2.15» de 
montrer l e principe de détermination de Moisil dans A^. Pour 
ce la , supposons que S^x = S^y pour tout i = 1 , 2 , 5 . S i 
x sjèy, i l ex is te un f i l t r e premier P t e l que x e P e t 

* y f ï . Considérons l a famil le des f i l t r e s premiers P* . 
* . . . S i tous l es P^ sont d i s t i n c t s , par un raisonnement 

analogue à ce lui f a i t ci-dessus on é t a b l i t x = y. 
S i tous les P* ne sont pas d i s t i n c t s , en vertu de 2.12 

on a a f f a i r e à l 'une des t r o i s p o s s i b i l i t é s que v o i c i : 

- 1 0 9 1 -
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(1) P* = P* t Pj, 
(2) P* P* = P* ,. . 

(3) ^ = = P3-
Soit il l'ensemble des filtres premiers de A^ et g 

1'involution de TT considépée par A.Bialynicki-Birula et 
H.RasLowa (1.11). P* étant un ultrafiltre de BCA^), il 
découle de (A6) et 2.9 les équivalences suivantes: 

a e g ( P ? ) » a $ -P* «s=t» -a * p t ^ S ^ a $ P * - » -Sn_i i p W 

« S n _ i a e P < W a e Donc g(pj) = p V . 

En particulier, g(P*) = P*, g(P*) = p£ et g(Pj) = P*. 
Il y a incompatibilité entre ce fait et les cas (1) et 
(2)|. En effet, dans le cas (1), g(Pj) = g(Pg)I S étant 
une involution de TT on conclut P^ = Pg. Dans le cas (2), 
g(P2> = sCPjf), d'où P* = V*. Le cas (3), P* = P* = Pj 
est donc le seul possible. En tenant compte de 2.13 on peut 
affirmer que P = P* = = P y 

Par hypothèse x e P, donc s e P^ pour tout i = 1»2,3» 
et par suite S-x = S-y e P* (i = 1,2,3), c'est-à-dire 
y e P^ (i = 1»2,3)» d'où une contradiction et on a bien 
x = y. 

Pour n = 3 notre axiomatique est la même que celle 
donnée par L.Monteiro dans ([12] p.459). 

Enfin, pour n = 2 nous retrouvons bien entendu une algè-
bre de Boolei En effet, d'après (A8) et 2.3» dans une algèbre 
A2 on a S^x = x et en vertu de (A1), 2.7 et 2.8 une algè-
bre A2 est un treillis distributif complémenté. 

La démonstration du théorème est ainsi achevée. 

3.2. R e m a r q u e . Pour n > 5 il peut exister 
des algèbres A N qui ne sont pas des ALq. Par exemple pour 
n = 5 considérons l'algèbre de Lukasiewicz d'ordre 4, 
(L,0,1,A, Vi-iS^SpjS,) où L^ est une chaîne à quatre 
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Définition des algebres de Lukasiewicz 11 

éléments. Posons S^ = S^ = S^ et S^ = S^ = Sj. Le système 
(L^,0,1, A , V , =s» jS^SjjS^) , où est l'opération 
d'implication habituelle dans une chaîne, est une algèbre A^ 
qui ne vérifie pas le principe de détermination de Moisil, 
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