

A. O. Uziemblo, L. Żurawska

DEFINABILITY OF FUNCTIONS ON A FINITE SET
BY MEANS OF COMPOSITIONS OF ADDITION
AND MULTIPLICATION MODULO SOME PRIME NUMBERS

The aim of this paper is to show that every function defined on a finite set of cardinality Q may be represented as a composition of addition and multiplication modulo prime numbers which divide Q and usual addition and multiplication. A.W. Kuzniecow [1] showed that if n is prime, then every function defined on $N_n = \{0, 1, \dots, n-1\}$ and with values in this set may be represented as a composition of addition and multiplication modulo n . In this paper we generalize Kuzniecow's theorem to sets of cardinality, which is not prime. Let $Q = q_1 \dots q_r$, where q_1, \dots, q_r is a non-decreasing r -termed sequence of primes. We define a sequence Q_0, \dots, Q_r of natural numbers by

$$Q_0 = Q, \dots, Q_{s+1} = \frac{Q_s}{Q_{s+1}} \quad \text{for } s < r.$$

The following theorem holds.

Theorem 1. If q_1, \dots, q_r is a non-decreasing r -termed sequence of primes and $Q = q_1 \dots q_r$, then for every natural number $z < Q$ there exists exactly one sequence z_1, \dots, z_r of natural numbers, such that

(i)
$$z = z_1 q_1 + \dots + z_r q_r$$

and

$$(ii) \quad 0 \leq z_s < q_s \quad \text{for } s = 1, \dots, r.$$

P r o o f : It suffices to remark that if $0 < z < Q$, then there exists $s < r$ such that $Q_{s+1} \leq z < Q_s$ and $\frac{z}{Q_{s+1}} < q_{s+1}$.

If $z = 0$, then let $z_1 = \dots = z_r = 0$.

The theorem proved above allows us to give the following definition.

D e f i n i t i o n . For any natural numbers $Q > 1$ and $0 \leq z < Q$ the sequence z_1, \dots, z_r is the expansion of z for the base Q , in symbols $z = (z_1, \dots, z_r)_Q$ iff the sequence z_1, \dots, z_r satisfies conditions (i) and (ii) from Theorem 1.

Let $Q = q_1 \dots q_r$, where $(q_i)_{i=1}^r$ be a non-decreasing sequence of primes and $x_i \in N_Q$, for $i = 1, \dots, m$.

According to the above definition we have:

$$\begin{aligned} x_1 &= (x_1, \dots, x_r)_Q \\ &\vdots \\ &\vdots \\ x_m &= (x_1, \dots, x_r)_Q. \end{aligned}$$

Let us denote $(\tilde{x}) = \langle x_1, \dots, x_m \rangle$ and let $a_1, \dots, a_m \in N_Q$. We define a function $c(\tilde{a}) : N_Q^m \rightarrow \{0, 1\}$ in the following way

$$c(\tilde{a})(\tilde{x}) = \begin{cases} 1 & \text{if } (\tilde{x}) = (\tilde{a}) \\ 0 & \text{if } (\tilde{x}) \neq (\tilde{a}). \end{cases}$$

Then we have the following lemma.

L e m m a 1.

$$c(\tilde{a})(\tilde{x}) = \prod_{i=1}^m \prod_{j=1}^{r_i} \left[\left(1 - \left(x_j - \frac{a_j}{q_j} \right)^{q_j-1} \right) \pmod{q_j} \right].$$

Proof. Let $(\tilde{x}) = (\tilde{a})$. Then we obviously have

$$c_{(\tilde{a})}(\tilde{a}) = \prod_{i=1}^m \prod_{j=1}^r \left[1 - \left(\frac{a_j^i - a_j^i}{a_j^i - a_j^{i-1}} \right) \pmod{q_j} \right] = 1.$$

Let $(\tilde{x}) \neq (\tilde{a})$. There are indices i, j , $1 \leq i \leq m$, $1 \leq j \leq r$ such that $x_j^i \neq a_j^i$. By the Fermat theorem we have $(x_j^i - a_j^i)^{q_j-1} = 1 \pmod{q_j}$, hence $(1 - (x_j^i - a_j^i)^{q_j-1}) = 0 \pmod{q_j}$. Hence, for $(\tilde{x}) \neq (\tilde{a})$ we have $c_{(\tilde{a})}(\tilde{x}) = 0$. Q.E.D.

J. Słupecki [4] gives an example of a function f , such that every function defined on $Z_Q = \{1, \dots, Q\}$, where $Q \in \mathbb{N}$, and with values in Z_Q may be represented as a composition of f . This function f is defined by

$$f^Q(x, y) = \begin{cases} 1 & \text{if } x \neq y \text{ or } x = y = Q \\ x + 1 & \text{if } x = y \text{ and } x < Q \end{cases}$$

for any $x, y \in Z_Q$.

From this it easily follows that each function $h: N_Q^m \rightarrow N_Q$ is a composition of $g^Q: N_Q \times N_Q \rightarrow N_Q$ defined in the following way

$$(*) \quad g^Q(x, y) = \begin{cases} 0 & \text{if } x \neq y \text{ or } x = y = Q - 1 \\ x + 1 & \text{if } x = y \text{ and } x < Q - 1. \end{cases}$$

From the definition of $c_{(\tilde{a})}$ and $(*)$ we have

Lemma 2.

$$g^Q(x, y) = \sum_{i=0}^{Q-2} c_{(i, i)}(x, y) \cdot (x + 1).$$

We omit an easy proof of Lemma 2.

From Lemmas 1 and 2 we get the following theorem.

Theorem 2. If $Q = q_1 \dots q_r$, where q_1, \dots, q_r is a non-decreasing sequence of prime numbers, then every

function $f : N_Q^m \rightarrow N_Q$ is a composition of operations modulo q_i , $i = 1, 2, \dots, r$ and usual addition and multiplication.

We would like to thank T. Prucnal for his valuable suggestions.

REFERENCES

- [1] С. В. Й бл с и с к и й : Функциональные построения в k -значной логике, Trudy Mat. Inst. Steklov, Moskwa 1958.
- [2] Е. В а ɻ у к а : О sprawdzaniu wyrażeń wielowartościowych rachunku zdań, Studia Logika 17 (1965).
- [3] G. B r y 1 l : O półpełnych systemach rachunku zdań, Studia Logika 19 (1966).
- [4] J. S ɻ u p e c k i : O tak zwanych algebrach pełnych. Sprawozdania ze Zjazdu Matematyków Słowiańskich, Praga 1948.

INSTITUTE OF MATHEMATICS, PEDAGOGICAL UNIVERSITY, KIELCE
Received November 14, 1977.