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POST POSETS AS A GENERALIZATION
OF POST ALGEBRAS

Generalized Post algebras were invesiigated by many
authors (see [2], [5], [j], [10] and [12]). the known gene-
ralizations usually consist in a weakening of the conditions
concerning the chain of constants. 1n this paper the genera-
lization takes another direction - instead of distributive
lattices with O and 1, what we call d-posets are considered.
In a d-poset one only assumes that least upper vounds exist
for disjoint elements and one weakens the condition of dis-
tributivity. assuming that a chain of constants exists in
a d~-poset and imposing conditions analogous to those of Post
algebras, one defines the Post posets and studies their basic
properties. fhe Boolean center of a Post algebra is replaced
in the Post poset by a Boolean orthcposet. Then a Fost poset
is a generalization of a Post algebra on one hand of a 3oolean
orthoposet on the other. Post algebras can be characterized
as Post posets in which any two complemented elements have
a greatest lower bound. Theorems about the unigueness of the
chain of constants, unigueness of monotone representation
also hold in the larger class of Fost posets. An example of
a Post poset which is not a Post algebra is given,

In this paper the usual lattice notation is employed.
The least upper bound (l.u.b) of x and y is denoted by
x vy and the greatest lower bound {g.l.b.) by xA y, or
more briefly by xy. The symbols V x. and /A x, de-

iel * iex *
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2 Je.Klukowski, C.Zapifiska

note, respectively, the supremum and infimum of the X; over
a specified set of indices. The symbols x vy and X ApY
emphasize that the supremum and infimum are taken in the po-
set P, If x has a (unique) complement, it is denoted

by x .

1. d-posets

Definition 1.1.: Let (P,<; be a partially
ordered set with the greatest element 1 and the least. element
O3 P 1is said to be a d-poset if the following conditions
hold:

(i) Va,beP, if aAb =0 then awvb exists in P

(ii) Va,b,ce?, aAb = 0 implies that if any two of the
elements (avb)Aac, aac, bAac exist, then the third
also exists and the following equality holds:

{avb)Aac = (aanc) v {(bac).

I¢ is easy to see that if 811855040,8, are mutually disjoint
n

elements of a d-poset P then (\/ ai>ak =0 and
i=1

n n ifk
<\/ a.)l\b = \/ (a;Ab) provided a,Ab exists in P
it 1 iz 1 1
for every 1 = 1,2,44¢4,n

Let us remark that the class of d-posets is rather wide -
every bounded poset can be transformed into a d-poset by ad-
joining a new zero-element.

Lemma 1.2 Let ¥ be a d-poset. For every
X,X,3eP if xay =0, XAy =0 and xvy =Xvy, then
X = X

roof: Since X«Xvy =xvy then (xvylax
exists. Consequently by condition (ii), =xAX exists and
X =(xvy)JAX = (xAaX) v (JAX) = xAX, so that X < x.
Similarly x < X. Hence x = X.

Dei‘in{tion 1.3 If for some xeP there
exists x'e€ T such that xaAx' =0 gnd xvx’' =1, then
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Post posets

x' 1is called a complement of x and x is said to be com-
plemented.

Lemma 1.2 implies the following corollary.

Corollary 1.4: In any d-~-poset every element
a has at most one complement 2’ and a” = a provided a’
exists,

¥From now on, let P be a d-poset and let B denote the
set of all complemented elements of P,

Lemma 1.5: For every 2 € ¢ and b e B, avb =0
iff a<b',

The easy proof is omitted.

Lemma 1.6 For all a,b ¢B, if ab exists in
F then the elements a’b, ab , a’b’ , avb, a’v b, avb ,
a’v b also exist in P and the following equality holds:

avb = a@ bvabvab ,

Proof: Since b= (ava )b =abva'b, then a’bdb
exists by condition (ii). Consequently, ab and a'b also
exist. It remains to show that avb exists and avb =
= a’bvabvab . The elements a’b, ab, ab are mutually
disjoint, hence the right-hand side of the above equality
exists., If a<c and b <c¢ for certain ¢ ¢ P, then
(a’bvab)vab = bvab< c. Therefore a’'bvabvab is
the supremum of a and b. “he existence of the remaining
elements follows from the just proved part of the lemma,

Lemma 1.7 For all a,b e B, if ab exists in

? then f(ab) =avb and (avb) =a%bv.
Proof: The existence of a’vb, avb and &b
follows from Lemma 1,6. e have 1 = bvb = (bavba’ )V

Vb < bava'vt, so that abv(a’vb ) = 1. Similarly,
aba{a’v b’ ) =aba(a’bt’vabvab ) = (abaa' b )v(abaa’'b)v
V(abaab’) = 0, Thus we have proved that a’v b is the
complement of 2%, By a similar argument one can prove that

7 4

ab is the ¢z plement of avb,
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4 J.Klukowski, C.Zapiriska

Remark: Lemmas 1.6 and 1.7 cannot be formulated
dually; that is for a,b € B the infimum &aAb need not
exlist in P even when avbd exists in P, which will be
shown in Example 1.9,

Lemma 1.8: The set B of all complemented é]_.e-
ments of a d-poset P is an orthomodular poset (with the sa-
me ordering as in P).

Proof: We check the conditions of the definition
of an orthomodular poset (see [5]):

1. For every a € B, a” = a (by Corollary 1.4).
2. For every a,b e B, a<b iff b<a', since a<b

iff aAb =0 (by Lemma 1.5).

3. For every a,be B, if a<b then avb exists in B.

This is true since a < b implies a Ab =0 and aVv b
exists in P by condition (i); avb is complemented by
Lemma 1.7. '

4. For every a,b € B, if a< b then av(bva) = b,
Since a <b implies that ab exists in P, then, by
Lemma 1.6, a’'b exists in P and, by Lemma 1.7, a’b
is complemented. Clearly,” aAa’b = O, Hence (ava'b)Ab=
= abvab=(ava’'JAb =Db so that b<ava'b, On the
other hand ava b<b, thus b =avab=av(bval.
Notice that if B is regular in P (i.e. for every

X,y € B the supremum and infimum of x and §y exist in B

iff they exist in P, and they are equal if they exist),

then B 1is a Boolean orthoposet because of Lemma 1.5. In
particular, if aAb exists in P for every a,b € B, then

B is a Boolean algebra, The orthomodular poset B need not

be regular in P, which is shown by the following example,
Example 1,9: Let X be a closed circle in the

. plane. We place the origin of a polar coordinate system Org

in the centre of the circle X, .Let Py Po be real numbers

and ?4 <502; by < Pqs Pp > WE shall understand the closed
sector lying between the radii ¢=¢, and p=¢,. Now let

Py = <0, 7>, p, = <Z 2> ’

o 5 15 p3=<1r,21r>, p4—
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. . k=1 . k
. 3 5 i_ _arf(is1) 2 -1 r (i1} 2" -1
=<7y pr> and f =<3 Sk=T ' 7 oK
for i =0,1,2,3; k = 1,2,0ee « Let Y denote the family
consisting of all the above sectors and the empty set, ordered

by the inclusion., Now we take the poset P constructed as

>

follows: x ¢ P 1iff x = &fﬁ Xy for some elements Xq9Xpseee
1=

cessX, € ¥ such that x; AyXy =0 for i # 3. It is easy

to see that P, ordered by the inclusion, is a d-poset with

the unit X, The set B of complemented elements of P

consists only of the elements ¢, X, P1s Pps P3s Pye The in-

fimum of P4 and Py does not exist in P, however PqV Py =

=X and pyAgp, = &

2. Post posets »

Definition 2.,1: Let (P,<) be a d-poset
with O # 1; P 1s called a Post poset (of order n) if it
satisfies the following conditions:

(p” There exists a chain 0 =e <e;< ... <0, 4 =1
in F such that for every x ¢ P and 1< i <n-1

a) xe. exists and if xe, = 0 then x = 03

i
b xve, exists and if x v e, = e, then x =e..

i-1 i i
(p,) TFor every x P, there exists a sequence Colx),Cqlxy,

eve3Cp_4(x) of elements of P such that

c) Ci(x) Cj(x) =0 for every i # j

n-1 ]
d) M Ci(xi =1
i=0
o) x = Cqlxleg v oo vC,_s(xle 4

From now on, let < denote a Post poset.

Lemnoa 2.2 a) If x e 7 and xey = 0 for some
i>1, then x =0. D)lIfxve;s= ey for some i < j then
X = €.

J

“ro ot : Immediate from condition (p1}.
Lemmaea 2.3: Lf x,ye P and xy =0 then

n=1 n=-1
V Cilxl A V ¢i(y) =0,
i=1 i=1
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6 Jeklokowski, C.Zapirska

=3

YT oo f: Supnose that Ck(x}Cl(:yJ = 0 does.not
h5ld for some k and 1, Then there exists 2z € P, 2 # O,
Z gck(x] and 2 s(,i(x}. Let k < 1. Thus ze, <X and
Z€), < 28] <7, which contradicts xy = 0., Therefore
C; (x Cj(y) = 0 for every i,j = 1,ees,n-1 2and by applying
n-1 n=
condition (iij of Def.1.71 we obtain C;(x1 ANV Cilyl =0,
: i=1 izl
Tneorem 2.4 An element x € ¥ 1s complemented
iff x = Ci(y; for some i and some y € P,

N
¥rroof : if x = C.(y) then x’ = C.{y). Indeed,
i jop
, J#i

it follows directly from Definitions 1.7 and 2.1 that
V C.ly) existsand x a V C.{y) =0,x v V C.(y} = 1.
jri 9 AP j# ?
Cn the other hand, suppose X has a complement x’'. Since
xx' = 0 then x'C,_4 {x} = 0 from Lemma 2,3. Hence x'an_1(x)
exists. Since xs<e,_, V Cn-1(X) by condition (p2) then
1=xvx'<e ,vC ,{x]vx's Then x'vCy ,(x) =1 from

(py/+ Therefore Cn_1(x) is a complement of x‘ and
C,.q(x) = x since the complements are unigue (Corollary 1.4).
Thus we have shown that the set B of all complemented
elements of a Post poset P 1is exactly the set
Cj(x) : X € Py, J = 0,1,00e,n=1¢t,

Lemma 2.5: If b ik a complemented element of P
(b € B} and bes < be; for some i <j, then b = 0. '

Proof: Since e; <ey then e. = (b v ble, =
=be.vbej$blejvbei$b ejveisej so that bejvei=
= e,, Hence b'e. =e. by Lemma 2,2, Thus bej = 0; conse-

guently b =0 byv Lemma 2.2,

Lemma 2,6: If a,be B and i = 1,2,ses,n-1 then
ae; < bey implies a < b,

Proof: If a<£b then ab’ £0 or ab does not
exist by Lemmeé 1,.,5. Then there exists ce P, ¢ £0, c < a
and ¢ <b, so that cb =0 (by Lemma 1.5). Hence ce;<aey,
ce;jAbe; = 0 and, by Lemma 2.2, cey # 0. Therefore ae,< bey
and this completes the proof,.
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Post ‘posets 7

Theoren 2.7 If P 1is a Post poset then the
set B of all complemented elements of P 1is a Boolean
orthoposet (with the same ordering as in FP).

Proof: Using Lemmas 1,5 and 1.8 it suffices 1o
show that if aABb = 0 then also aAPb = 0 for any a,be B,
Suppose a/\Bb =0 but aAPb = 0 does not hold. Then there
is 2 non-zero element x e€ P such that x <a and x < b.
et x = C1(x)e1 V oede V Cn_1(x). Take the greatest k such
that €, (x) # 0. Thus C,(x)e, <a, C,(xle, <Db and also
Crlxley, < aey, Cplxle, < be,. Therefore by Lemma 2.6
C,{x}) <e and Cp(x)<b, which contradicts aAgb = 0 sin-
ce Cy(x) € B,

Lemma 2.8: Let x,yeP, x=Cylxleqv.eeavC ,(x)
and 3 = Cq(yley v oo vC  ,(y). Then x <y iff

n-1 n-1

V c.(x)< V C;(y) for every k = 1,2,.44,n=1.

=k 1=k n-1 n-1
Proof: 1ILet x<y and suppose V C;(x)¢V ¢(y)
i=k i=k

for some k. Then, by the disjunctivity of Boolean orthopo-
set B (see [2] and [6]), there is a non-zero element b e B
n-1

n-1
such that b< V C;(x) and dba \V C;(y} = 0. Hence
i=k i=k
n-1
be, < i\=/k C;{xle, < x <y, so that be, = bey =
n-1 k-1
= bey l\/=1 C;(yle; = bey i\£1 C;(yle; < veye, 4 = be, 4. The-

refore it follows from Lemma 2.5 that b = 0; a contradic-

n-1 n-1
tion. On the other hand, if \/ C;(x)J< \/ C;(y) for
i=k i=k

k = 1,2,.00,1]"1 then Ck(x) S Ci(y) aIld Ck(x)ek S

n-1
i=k
n-1 n-1 :
< i\/ Ci(:y)ek sV Ci(y)eis J. Therefore x < .
=k l=k

Theorem 2.9: For any given x ¢ P there is
only one sequence of elements Co(x),...,Cn_1(x) satisfying
condition (pz).
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8 J.Klukowski, C.Zapiriska

Proof: Suppose that x = C1(x)e1v see an_1(x) =
i Ci(xleqv +ues vC, _4(x)., Thus Cn_1(x)-é En_1(xl and
(x) < C,_4(x) by Lemma 2.8, hence C _,(x) = n-1(X)’

-2
Since %/ C; (x)e v C_ 1(x) = \/ C (x)e v e (x) and
i=1 “i=1 .

n=2 n=2 _

;{ Cilxley A Cp_4(x) = 0, <i¥g Ci(x)ei> Cn_1(x) = 0 then

n-2 n-2

V. C,(xle; = \/ C. ;(x)e; by Lemma 1.2. Using again Lemma 2,8
=1

(“). Reiterating the above argumen-

C.(x) for i = 1,2,s4.,0~1; also

we obtain 5 (x)
tation we have Cy (x)

i C\:/: Ci(x)) = <:1\£:: éi(x9 = C,(x) and this comple-
tes the proof,
Theorem 2,10: In any Post poset the elements
i=0,1,00eyn~1, are distinct and unique.
Proof: It follows from Theorem 2.9 that Cj(ej)= 1
and Ci(e;) =0 for i #j. If 14 and ey = ey then
Cile;) =1 =Cyley) = Cy(e;), which contradicts condition
(py)e If there is another sequence 0 = & < 8,€ +svx8

n=1
satisfying (pq) and (p2) then e; = ﬁyq Ck(ei)ék = &; so that

f\)
|.|

€y

n-1 =1

e; = Ei' for i = 1,...,n-2. Thus the elements es, 1 =
= U,1ye00,0=1  are both unique and distinct.

Theorem 2,11 Every Post poset P is pseudo-
complemented; that is, for any x € P, there exists x"e P
such that Xy =0 iff y < x®; moreover x*v x%*= 1,

Proof: We shall show that x* = C, (x). By condi~

tion (p2), xCo(x) =0 and xy =0 1f y < C (x). Conver-

sely, if xy = O then by Lemma 2.3, \/ Cy (x)/\ v c;(yl=0.
Since for every i = 1,2,...,n-1 it is Ci(x) € B, we have
n=1

.n=1 / n-1
i\=/1 ci(y)é<i\=/1 Ci(x)) = C,(x), hence y< i\=/1 c;(yl=

< Co(x). Thus we have also x"v x** = Co(x) v C;(x) =
= Co(x)vcs(x) =1,
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Theoremn 2.12¢ Tor any non-increasing'éequence
by 2 p,> ... 20, 4 of complemented elements of & Post po-

set P, the supcemum b1e1 V é.e VD exists 1n - and

n=1
conversely, every x € P has & monotone representztion; thei
ig, for svery x e r, there is exactly one sequence of com-

plemented elements D,(x) = Dy(x)> ... 3D _,(x]) such tiet

V()
X = T.(xle,.
i\=/1 N +
rroof: If b1,b2,...,bneB and b1>b2> cow
ceu>b, . then by b;+1 exists in B for i = 1,...,042
and by 95,1 A bjbj+1 =0 for 1# 3, so that
n-1 ) ) ) ‘ n=-1 ,
gzq bi bi+1 ey exists; it is easy to see that ;!1 bi QHJ e =
n-1 B-1
= \/ b.e.. Yow take an arbitrary x e P. Let x= \/ C.{x)e,.
i=1 * Y =1

Then obviously x = C1(x)e1 VCE(X)(G1V 92) V oo

eee VC (x)(e1 Ve,V ... Ve ) and from the conditions

n=-1 n-1

n-1 n-1
of Definition 1.1 we infer x = (i\!1 Ci(x)>e1v< v, Ci(x)>e2v...

eeo VG, _,{x)e 4. Therefore x = Dylxleqv ... vI _,lxle 4,
n=-1 ,

where Dk(x) =V Ci(x) and obviously every Di(x) is com=-
i=k

plemented as well as L,(x)> ... > L _;(x). The uniqueness
of the monotone representation follows directly from Lemma 2.8,
which just states that x < y<= Di(x) < Di(y) for i =
= 1,2,000,0-1,

Lenma 2.13: For every x,y € P the supremum
x vy {the infimum xy) exists in F iff Dy (x} v Di(y)
(D. (x) A Di(y), respectively) exists in P for every
i _1,2,...,n-1, and the folloﬁi?g equality holds: x v y =
= (Di(x) v Di(y))ei (xy = ;!g Di(x)Di(y)ei, respective-

S

=1
1y

—p

Proof: VFirst, let Di(x) v D;(y} exist for
i = 1,2,¢eey0-1., The elements Di(x) v Di(y) form a mono-
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n-1
tone sequence, hence z = \/ (Di(x) Y Di(y))ei exists by

-t

i
Theorem 2,12. Of course, x z and y< 2z by Lemma 2.8,
n-1

liow let ue P, u = \q D;(u)e; and x < u, y <u. Apply-
iz

I

ing again Lemma 2.8 we have Di(x)s Di('u) and Di(y)éDi(u)
for every i = 1,2,s4.,0-1. Thus D,(x) v D;(y) <D (u) so
that 2z < u; therefore 2z 1is the least upper bound of x
and y. To prove the converse. assume x v y = 2z exists.
Then Di(x) S;Di(z) and Di(y) < Di(z) for every i =
= 1y4.e,n=1, Suppose Dk(x) v Dk(y) does not exist for so-
me k. Hence for any ¢ € B such that Dk(x) £ ¢ and
D, (y) < ¢, there exists d € B such that D, (x) <d, D (y)<d
and ¢ g d. In particular, there is d ¢ B such that
D (x) <d, D(y)<d and D,(z) £ d. Consider the element
W =84 Ve,V ees VO 4V dekv ees vd. It is evident that
X<w and y< w but 2 4 w; a contradiction. This comple-
tes the proof for the supremum., The proof for the infimum is
cnalogous,

As an immediate consequence of Theorem 2,12 and Lemmas
2.8, 2.13 we obtain the following corollary:

Any Post poset of order n can be considered as a set
of all non-increasiné sequences (b1,b2,...,bn) of elements
of some Boolean orthoposet (B, <) with the ordering as fol-

) < (byybpyeee,by 4} iff a; < by for

lows: {ay,85,i00,2 19

n-1
every 1 = 1,2,4..,n~1.

Of course, every Post algebra is a Fost poset but not
conversely. Post algebras can be characterizea as follows:

Theoren 2.14: A Pout poset is a2 Post algebra
iff greatest lower bounds exist in P for any two complement-
ed elements of P.

Proof: The necessity of the condition is obvious,
so we prove only the sufficiency. If for any two complement-
ed elements x and 3y the infimum xy exists in ¥, then
tiie Boolean orthoposet E of 211 complemented elements of P

iz 2 Booclean algebra {see [5]}. Hence for every x,y e P
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Dy(x) v Dy(y) and Dy(x) AD;(y) exist for 1 = 1,2,...,n-1;

consequently P 1s a lattice by Lemma 2.13. Since P 1is

d-poset and every xe P has a finite disjoint representa-

tion, then using condition (ii) of 1.1 it is not difficult

to prove that the lattice P 1is distributive., Therefore it

is clear by Definition 2.1 that P 1is a Post algebra.
Theorem 2.15: A d-poset P 1is a Post poset of

order n iff P has a subchain 0 =e < e;< oo <e , =1

and there exists a Boolean orthoposet B « P, regular in P,

such that the following conditions hold: '

(1) be; exists in P for every b €B and i = 0,1,s.4,n=1;

(2) for every x e P there exists a sequence b1 > b2:> ess
«ee 2b, 4 of elements of B such-that x ="dje,v ...
XX Vbn_.];

e;_q then a =0, :
Proof: Pirst we prove the necessity of the above
conditions. For every Post poset P the set B of all com-
plemented elements of P is a Boolean orthoposet, regular in
P, by Theorem 2,7. (1) follows from (p1) and (2) follows
from Theorem 2.12. Condition (3) holds, because if ae; X
for a € B, then ge; < ae; 4, 80 that a = 0 by Lemma 2.,5.

Now, to prove the sufficiency of the above conditions

(3} if ae B and ae; <

we shall verify axioms (p,) and (p,). Let (1), (?), (3)

ne=
nold and x be an arbitrary element of P, x = V biei’

i=1
b1> b2> ces >bn_1, b, € B for i =1,2,i4e,n~1. To show
that (p,) holds we put Co(x) = by, Cy(x) =1b; b, , for
n_1(x) = b,_4. This definition is correct,
since B is regular in P and all the elements C,(x) exist
in B. Clearly, (p,lc} and (p,)d) hold; (p,le) is also sa-
tisfied because by 1.1 we have::

i s 1,00e,0-2, C

X

bjegv ees vb 4 =D (b, Vv byleg v boesv e Vb o=

bibye, v (boey v byes)vowee VD o =
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12 J.Klukowski, C.Lapinsks

= b1b2e1 v b232v oo Vbn-1

= bybyey v bybge, v wew Vb4 o= Cylxleqv oo vCp 4 (x).

It remains to check (p,l ). Observe that xey exists for every

n-1
xeP and i =1,...,0-1 Dbecause x \/ be; = \/ Cy (x)e

by the just proved (92)’ so that xey 1s the supremum of the
disjoint elements ¢ (x)e1, Cz(x)ez,...,<\/ c (x9 ei,
each of which exists by the condition (1), If xe, = 0, where

n-1

= i\=/1 c;(xley, C,;(x) &B, then <1\=/1 ci(x)ei>e1 =

n=1 n~1

= (\/ Ci(x)>e1 = 0, Hence by (3) we have \/ C;(x) =0
i=1 i=1

as well as C,(x) =0 for i =1,...,n-1, so that x = 0.

Therefore (p,J)a) is proved to hold, Now observe that x ve
also exists for every xe P and i = 1,...,0n=-1, In fact,

n-1
Xve;= k\=/1 be, ve; =e;vbye v .. vb o=
bi+1ei v b1+1 1+2 iv1V e Vbn 2 n-1%n- 2Vb ~1

exists as the supremum of disjoint elements. If x v e; , < e;
for some i then evidently x < ;. We shall show that also
ey < X Since xvel1 i n-1 = €47
then for k = 1,...,n-1-1 bi+kei+k < ey, S0 that b1+k
by condition (3). Hence e; = e; 5 v bie; = blel 1V bllel
and by applying the properties of_a d-poset we infer biei =
= bje; 4 VO<e; ;. Thus from the condition (3) b; =0
and we obtain bi = 13 conseguently e; < X. Therefore
(p,)b) also holds. This completes the proof.

Finally we present an example of a Post poset which is

not a Post algebra. Theorem 2,14 yields that any such poset

= e; 4 vbie. V ses VD
=0

must be infinite.
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Example 2,16t Consider, as in Example 1.9,
a8 closed circle X 1in the plane., Let A Dbe the family con-
sisting of the empty set and all finite unions of closed sec-
tors of X. Then A 1is a Boolean algebra under the opera-
tions v, A, * defined in the following way: a Vv b = au b,
aAb=1Intlanbd) e =-8, where v, n, =~ are the set-
~theoretical operations and a denotes the topological clo-
sure of a, Now let PqsPp and ti be the same as in Exam-
ple 1.,9. Denote by T the set {ti =1=0,1,2,3; k =1,2,u'}0
Consider, for i = 1,2, the Boolean algebra Ai generated
by T U {pi} in A, It is not difficult to show (see also
[8]) that B = A1 U A2 is a Boolean orthoposet with the same
ordering and complementation as in A, Now let 84 be a
closed circle, the radius of which is less than the radius
of X, and let X and ey have the same centre, Consider
the set P of the elements of the form (e; N by) U b, where
b1,b2 € B and b1 >—b2. One can prove that P ordered by
the inclusion is a Post poset of order 3 with the chain
¢ < e, <X, Since p; A p, does not exist in P, P is
not a Post algebra,
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