

Julian Klukowski, Cecylia Łapińska

POST POSETS AS A GENERALIZATION
OF POST ALGEBRAS

Generalized Post algebras were investigated by many authors (see [2], [3], [9], [10] and [12]). The known generalizations usually consist in a weakening of the conditions concerning the chain of constants. In this paper the generalization takes another direction - instead of distributive lattices with 0 and 1, what we call d-posets are considered. In a d-poset one only assumes that least upper bounds exist for disjoint elements and one weakens the condition of distributivity. Assuming that a chain of constants exists in a d-poset and imposing conditions analogous to those of Post algebras, one defines the Post posets and studies their basic properties. The Boolean center of a Post algebra is replaced in the Post poset by a Boolean orthoposet. Then a Post poset is a generalization of a Post algebra on one hand of a Boolean orthoposet on the other. Post algebras can be characterized as Post posets in which any two complemented elements have a greatest lower bound. Theorems about the uniqueness of the chain of constants, uniqueness of monotone representation also hold in the larger class of Post posets. An example of a Post poset which is not a Post algebra is given.

In this paper the usual lattice notation is employed. The least upper bound (l.u.b) of x and y is denoted by $x \vee y$ and the greatest lower bound (g.l.b.) by $x \wedge y$, or more briefly by xy . The symbols $\bigvee_{i \in I} x_i$ and $\bigwedge_{i \in I} x_i$ de-

note, respectively, the supremum and infimum of the x_i over a specified set of indices. The symbols $x \vee_{\mathcal{P}} y$ and $x \wedge_{\mathcal{P}} y$ emphasize that the supremum and infimum are taken in the poset \mathcal{P} . If x has a (unique) complement, it is denoted by \bar{x} .

1. d-posets

Definition 1.1.: Let (\mathcal{P}, \leq) be a partially ordered set with the greatest element 1 and the least element 0; \mathcal{P} is said to be a d-poset if the following conditions hold:

- (i) $\forall a, b \in \mathcal{P}$, if $a \wedge b = 0$ then $a \vee b$ exists in \mathcal{P}
- (ii) $\forall a, b, c \in \mathcal{P}$, $a \wedge b = 0$ implies that if any two of the elements $(a \vee b) \wedge c$, $a \wedge c$, $b \wedge c$ exist, then the third also exists and the following equality holds:

$$(a \vee b) \wedge c = (a \wedge c) \vee (b \wedge c).$$

It is easy to see that if a_1, a_2, \dots, a_n are mutually disjoint elements of a d-poset \mathcal{P} then $\left(\bigvee_{i=1}^n a_i\right) \wedge a_k = 0$ and $\left(\bigvee_{i=1}^n a_i\right) \wedge b = \bigvee_{\substack{i=1 \\ i \neq k}}^n (a_i \wedge b)$ provided $a_i \wedge b$ exists in \mathcal{P} for every $i = 1, 2, \dots, n$.

Let us remark that the class of d-posets is rather wide - every bounded poset can be transformed into a d-poset by adjoining a new zero-element.

Lemma 1.2: Let \mathcal{P} be a d-poset. For every $x, \bar{x}, y \in \mathcal{P}$ if $x \wedge y = 0$, $\bar{x} \wedge y = 0$ and $x \vee y = \bar{x} \vee y$, then $x = \bar{x}$.

Proof: Since $\bar{x} \leq \bar{x} \vee y = x \vee y$ then $(x \vee y) \wedge \bar{x}$ exists. Consequently by condition (ii), $x \wedge \bar{x}$ exists and $\bar{x} = (x \vee y) \wedge \bar{x} = (x \wedge \bar{x}) \vee (y \wedge \bar{x}) = x \wedge \bar{x}$, so that $\bar{x} \leq x$. Similarly $x \leq \bar{x}$. Hence $x = \bar{x}$.

Definition 1.3: If for some $x \in \mathcal{P}$ there exists $x' \in \mathcal{P}$ such that $x \wedge x' = 0$ and $x \vee x' = 1$, then

x' is called a complement of x and x is said to be complemented.

Lemma 1.2 implies the following corollary.

Corollary 1.4: In any d-poset every element a has at most one complement a' and $a'' = a$ provided a' exists.

From now on, let P be a d-poset and let B denote the set of all complemented elements of P .

Lemma 1.5: For every $a \in P$ and $b \in B$, $ab = 0$ iff $a \leq b'$.

The easy proof is omitted.

Lemma 1.6: For all $a, b \in B$, if ab exists in P then the elements $a'b$, ab' , $a'b'$, $a \vee b$, $a' \vee b$, $a \vee b'$, $a' \vee b'$ also exist in P and the following equality holds:

$$a \vee b = a'b \vee ab \vee ab'.$$

Proof: Since $b = (a \vee a')b = ab \vee a'b$, then $a'b$ exists by condition (ii). Consequently, ab' and $a'b'$ also exist. It remains to show that $a \vee b$ exists and $a \vee b = a'b \vee ab \vee ab'$. The elements $a'b$, ab , ab' are mutually disjoint, hence the right-hand side of the above equality exists. If $a \leq c$ and $b \leq c$ for certain $c \in P$, then $(a'b \vee ab) \vee ab' = b \vee ab' \leq c$. Therefore $a'b \vee ab \vee ab'$ is the supremum of a and b . The existence of the remaining elements follows from the just proved part of the lemma.

Lemma 1.7: For all $a, b \in B$, if ab exists in P then $(ab)' = a' \vee b'$ and $(a \vee b)' = a'b'$.

Proof: The existence of $a' \vee b'$, $a \vee b$ and $a'b'$ follows from Lemma 1.6. We have $1 = b \vee b' = (ba \vee ba') \vee b' \leq ba \vee a' \vee b'$, so that $ab \vee (a' \vee b') = 1$. Similarly, $ab \wedge (a' \vee b') = ab \wedge (a'b' \vee a'b \vee ab') = (ab \wedge a'b') \vee (ab \wedge a'b) \vee (ab \wedge ab') = 0$. Thus we have proved that $a' \vee b'$ is the complement of ab . By a similar argument one can prove that $a'b'$ is the complement of $a \vee b$.

R e m a r k : Lemmas 1.6 and 1.7 cannot be formulated dually; that is for $a, b \in B$ the infimum $a \wedge b$ need not exist in P even when $a \vee b$ exists in P , which will be shown in Example 1.9.

L e m m a 1.8: The set B of all complemented elements of a d-poset P is an orthomodular poset (with the same ordering as in P).

P r o o f : We check the conditions of the definition of an orthomodular poset (see [5]):

1. For every $a \in B$, $a'' = a$ (by Corollary 1.4).
2. For every $a, b \in B$, $a \leq b'$ iff $b \leq a'$, since $a \leq b'$ iff $a \wedge b = 0$ (by Lemma 1.5).
3. For every $a, b \in B$, if $a \leq b'$ then $a \vee b$ exists in B . This is true since $a \leq b'$ implies $a \wedge b = 0$ and $a \vee b$ exists in P by condition (i); $a \vee b$ is complemented by Lemma 1.7.
4. For every $a, b \in B$, if $a \leq b$ then $a \vee (b' \vee a)' = b$. Since $a \leq b$ implies that ab exists in P , then, by Lemma 1.6, $a'b$ exists in P and, by Lemma 1.7, $a'b$ is complemented. Clearly, $a \wedge a'b = 0$. Hence $(a \vee a'b) \wedge b = ab \vee a'b = (a \vee a') \wedge b = b$ so that $b \leq a \vee a'b$. On the other hand $a \vee a'b \leq b$, thus $b = a \vee a'b = a \vee (b' \vee a)'$.

Notice that if B is regular in P (i.e. for every $x, y \in B$ the supremum and infimum of x and y exist in B iff they exist in P , and they are equal if they exist), then B is a Boolean orthoposet because of Lemma 1.5. In particular, if $a \wedge b$ exists in P for every $a, b \in B$, then B is a Boolean algebra. The orthomodular poset B need not be regular in P , which is shown by the following example.

E x a m p l e 1.9: Let X be a closed circle in the plane. We place the origin of a polar coordinate system $0r\varphi$ in the centre of the circle X . Let φ_1, φ_2 be real numbers and $\varphi_1 < \varphi_2$; by $\langle \varphi_1, \varphi_2 \rangle$ we shall understand the closed sector lying between the radii $\varphi = \varphi_1$ and $\varphi = \varphi_2$. Now let $p_1 = \langle 0, \pi \rangle$, $p_2 = \langle \frac{\pi}{2}, \frac{3}{2}\pi \rangle$, $p_3 = \langle \pi, 2\pi \rangle$, $p_4 =$

$$= \left\langle \frac{3}{2}\pi, \frac{5}{2}\pi \right\rangle \text{ and } t_k^i = \left\langle \frac{\pi}{2} \frac{(i+1)2^{k-1} - 1}{2^{k-1}}, \frac{\pi}{2} \frac{(i+1)2^k - 1}{2^k} \right\rangle$$

for $i = 0, 1, 2, 3$; $k = 1, 2, \dots$. Let Y denote the family consisting of all the above sectors and the empty set, ordered by the inclusion. Now we take the poset P constructed as

follows: $x \in P$ iff $x = \bigcup_{i=1}^n x_i$ for some elements x_1, x_2, \dots

$\dots, x_n \in Y$ such that $x_i \wedge_Y x_j = 0$ for $i \neq j$. It is easy to see that P , ordered by the inclusion, is a d-poset with the unit X . The set B of complemented elements of P consists only of the elements $\emptyset, X, p_1, p_2, p_3, p_4$. The infimum of p_1 and p_2 does not exist in P , however $p_1 \vee p_2 = X$ and $p_1 \wedge_B p_2 = \emptyset$.

2. Post posets

Definition 2.1: Let (P, \leq) be a d-poset with $0 \neq 1$; P is called a Post poset (of order n) if it satisfies the following conditions:

- (p₁) There exists a chain $0 = e_0 \leq e_1 \leq \dots \leq e_{n-1} = 1$ in P such that for every $x \in P$ and $1 \leq i \leq n-1$
 - a) xe_i exists and if $xe_i = 0$ then $x = 0$;
 - b) $x \vee e_i$ exists and if $x \vee e_{i-1} = e_i$ then $x = e_i$.
- (p₂) For every $x \in P$, there exists a sequence $C_0(x), C_1(x), \dots, C_{n-1}(x)$ of elements of P such that
 - c) $C_i(x) C_j(x) = 0$ for every $i \neq j$
 - d) $\bigvee_{i=0}^{n-1} C_i(x) = 1$
 - e) $x = C_1(x)e_1 \vee \dots \vee C_{n-1}(x)e_{n-1}$

From now on, let P denote a Post poset.

Lemma 2.2: a) If $x \in P$ and $xe_i = 0$ for some $i > 1$, then $x = 0$. b) If $x \vee e_i = e_j$ for some $i < j$ then $x = e_j$.

Proof: Immediate from condition (p₁).

Lemma 2.3: If $x, y \in P$ and $xy = 0$ then

$$\bigvee_{i=1}^{n-1} C_i(x) \wedge \bigvee_{i=1}^{n-1} C_i(y) = 0.$$

P r o o f : Suppose that $C_k(x)C_l(y) = 0$ does not hold for some k and l . Then there exists $z \in P$, $z \neq 0$, $z \leq C_k(x)$ and $z \leq C_l(y)$. Let $k \leq l$. Thus $ze_k \leq x$ and $ze_k \leq ze_l \leq y$, which contradicts $xy = 0$. Therefore $C_i(x)C_j(y) = 0$ for every $i, j = 1, \dots, n-1$ and by applying condition (ii) of Def.1.1 we obtain $\bigvee_{i=1}^{n-1} C_i(x) \wedge \bigvee_{i=1}^{n-1} C_i(y) = 0$.

T h e o r e m 2.4: An element $x \in P$ is complemented iff $x = C_i(y)$ for some i and some $y \in P$.

P r o o f : If $x = C_i(y)$ then $x' = \bigvee_{\substack{j=0 \\ j \neq i}}^{n-1} C_j(y)$. Indeed,

it follows directly from Definitions 1.1 and 2.1 that

$\bigvee_{j \neq i} C_j(y)$ exists and $x \wedge \bigvee_{j \neq i} C_j(y) = 0$, $x \vee \bigvee_{j \neq i} C_j(y) = 1$. On the other hand, suppose x has a complement x' . Since $xx' = 0$ then $x'C_{n-1}(x) = 0$ from Lemma 2.3. Hence $x' \vee C_{n-1}(x)$ exists. Since $x \leq e_{n-2} \vee C_{n-1}(x)$ by condition (p₂) then $1 = x \vee x' \leq e_{n-2} \vee C_{n-1}(x) \vee x'$. Then $x' \vee C_{n-1}(x) = 1$ from (p₁). Therefore $C_{n-1}(x)$ is a complement of x' and $C_{n-1}(x) = x$ since the complements are unique (Corollary 1.4).

Thus we have shown that the set B of all complemented elements of a Post poset P is exactly the set $\{C_j(x) : x \in P, j = 0, 1, \dots, n-1\}$.

L e m m a 2.5: If b is a complemented element of P ($b \in B$) and $be_j \leq be_i$ for some $i < j$, then $b = 0$.

P r o o f : Since $e_i \leq e_j$ then $e_j = (b' \vee b)e_j = b'e_j \vee be_j \leq b'e_j \vee be_i \leq b'e_j \vee e_i \leq e_j$ so that $b'e_j \vee e_i = e_j$. Hence $b'e_j = e_j$ by Lemma 2.2. Thus $be_j = 0$; consequently $b = 0$ by Lemma 2.2.

L e m m a 2.6: If $a, b \in B$ and $i = 1, 2, \dots, n-1$ then $ae_i \leq be_i$ implies $a \leq b$.

P r o o f : If $a \neq b$ then $ab' \neq 0$ or ab' does not exist by Lemma 1.5. Then there exists $c \in P$, $c \neq 0$, $c \leq a$ and $c \leq b'$, so that $cb = 0$ (by Lemma 1.5). Hence $ce_i \leq ae_i$, $ce_i \wedge be_i = 0$ and, by Lemma 2.2, $ce_i \neq 0$. Therefore $ae_i \neq be_i$ and this completes the proof.

Theorem 2.7: If P is a Post poset then the set B of all complemented elements of P is a Boolean orthoposet (with the same ordering as in P).

Proof: Using Lemmas 1.5 and 1.8 it suffices to show that if $a \wedge_B b = 0$ then also $a \wedge_P b = 0$ for any $a, b \in B$. Suppose $a \wedge_B b = 0$ but $a \wedge_P b = 0$ does not hold. Then there is a non-zero element $x \in P$ such that $x \leq a$ and $x \leq b$. Let $x = C_1(x)e_1 \vee \dots \vee C_{n-1}(x)$. Take the greatest k such that $C_k(x) \neq 0$. Thus $C_k(x)e_k \leq a$, $C_k(x)e_k \leq b$ and also $C_k(x)e_k \leq ae_k$, $C_k(x)e_k \leq be_k$. Therefore by Lemma 2.6 $C_k(x) \leq a$ and $C_k(x) \leq b$, which contradicts $a \wedge_B b = 0$ since $C_k(x) \in B$.

Lemma 2.8: Let $x, y \in P$, $x = C_1(x)e_1 \vee \dots \vee C_{n-1}(x)$ and $y = C_1(y)e_1 \vee \dots \vee C_{n-1}(y)$. Then $x \leq y$ iff

$$\bigvee_{i=k}^{n-1} C_i(x) \leq \bigvee_{i=k}^{n-1} C_i(y) \text{ for every } k = 1, 2, \dots, n-1.$$

Proof: Let $x \leq y$ and suppose $\bigvee_{i=k}^{n-1} C_i(x) \not\leq \bigvee_{i=k}^{n-1} C_i(y)$ for some k . Then, by the disjunctivity of Boolean orthoposet B (see [2] and [6]), there is a non-zero element $b \in B$ such that $b \leq \bigvee_{i=k}^{n-1} C_i(x)$ and $b \wedge \bigvee_{i=k}^{n-1} C_i(y) = 0$. Hence

$$\begin{aligned} be_k &\leq \bigvee_{i=k}^{n-1} C_i(x)e_k \leq x \leq y, \text{ so that } be_k = be_k y = \\ &= be_k \bigvee_{i=1}^{n-1} C_i(y)e_i = be_k \bigvee_{i=1}^{k-1} C_i(y)e_i \leq be_k e_{k-1} = be_{k-1}. \text{ Therefore it follows from Lemma 2.5 that } b = 0; \text{ a contradiction.} \\ &\text{On the other hand, if } \bigvee_{i=k}^{n-1} C_i(x) \leq \bigvee_{i=k}^{n-1} C_i(y) \text{ for } \\ &k = 1, 2, \dots, n-1 \text{ then } C_k(x) \leq \bigvee_{i=k}^{n-1} C_i(y) \text{ and } C_k(x)e_k \leq \\ &\leq \bigvee_{i=k}^{n-1} C_i(y)e_k \leq \bigvee_{i=k}^{n-1} C_i(y)e_i \leq y. \text{ Therefore } x \leq y. \end{aligned}$$

Theorem 2.9: For any given $x \in P$ there is only one sequence of elements $C_0(x), \dots, C_{n-1}(x)$ satisfying condition (p_2) .

Proof: Suppose that $x = c_1(x)e_1 \vee \dots \vee c_{n-1}(x) = \bar{c}_1(x)e_1 \vee \dots \vee \bar{c}_{n-1}(x)$. Thus $c_{n-1}(x) \leq \bar{c}_{n-1}(x)$ and $\bar{c}_{n-1}(x) \leq c_{n-1}(x)$ by Lemma 2.8, hence $c_{n-1}(x) = \bar{c}_{n-1}(x)$. Since $\bigvee_{i=1}^{n-2} c_i(x)e_i \vee c_{n-1}(x) = \bigvee_{i=1}^{n-2} \bar{c}_i(x)e_i \vee c_{n-1}(x)$ and $\bigvee_{i=1}^{n-2} c_i(x)e_i \wedge c_{n-1}(x) = 0$, $\left(\bigvee_{i=1}^{n-2} \bar{c}_i(x)e_i \right) c_{n-1}(x) = 0$ then $\bigvee_{i=1}^{n-2} c_i(x)e_i = \bigvee_{i=1}^{n-2} \bar{c}_i(x)e_i$ by Lemma 1.2. Using again Lemma 2.8 we obtain $\bar{c}_{n-2}(x) = c_{n-2}(x)$. Reiterating the above argumentation we have $c_i(x) = \bar{c}_i(x)$ for $i = 1, 2, \dots, n-1$; also $c_0(x) = \left(\bigvee_{i=1}^{n-1} c_i(x) \right)' = \left(\bigvee_{i=1}^{n-1} \bar{c}_i(x) \right)' = \bar{c}_0(x)$ and this completes the proof.

Theorem 2.10: In any Post poset the elements e_i , $i = 0, 1, \dots, n-1$, are distinct and unique.

Proof: It follows from Theorem 2.9 that $c_j(e_j) = 1$ and $c_i(e_j) = 0$ for $i \neq j$. If $i \neq j$ and $e_i = e_j$ then $c_i(e_i) = 1 = c_j(e_j) = c_j(e_i)$, which contradicts condition (p_2) . If there is another sequence $0 = \bar{e}_0 \leq \bar{e}_1 \leq \dots \leq \bar{e}_{n-1} = 1$ satisfying (p_1) and (p_2) then $e_i = \bigvee_{k=1}^{n-1} c_k(e_i) \bar{e}_k = \bar{e}_i$ so that $e_i = \bar{e}_i$ for $i = 1, \dots, n-2$. Thus the elements e_i , $i = 0, 1, \dots, n-1$, are both unique and distinct.

Theorem 2.11: Every Post poset P is pseudo-complemented; that is, for any $x \in P$, there exists $x^* \in P$ such that $xy = 0$ iff $y \leq x^*$; moreover $x^* \vee x^{**} = 1$.

Proof: We shall show that $x^* = c_0(x)$. By condition (p_2) , $xc_0(x) = 0$ and $xy = 0$ if $y \leq c_0(x)$. Conversely, if $xy = 0$ then by Lemma 2.3, $\bigvee_{i=1}^{n-1} c_i(x) \wedge \bigvee_{i=1}^{n-1} c_i(y) = 0$.

Since for every $i = 1, 2, \dots, n-1$ it is $c_i(x) \in B$, we have $\bigvee_{i=1}^{n-1} c_i(y) \leq \left(\bigvee_{i=1}^{n-1} c_i(x) \right)' = c_0(x)$, hence $y \leq \bigvee_{i=1}^{n-1} c_i(y) \leq c_0(x)$. Thus we have also $x^* \vee x^{**} = c_0(x) \vee c_0^*(x) = c_0(x) \vee c_0'(x) = 1$.

Theorem 2.12: For any non-increasing sequence $b_1 \geq b_2 \geq \dots \geq b_{n-1}$ of complemented elements of a Post poset P , the supremum $b_1 e_1 \vee \dots \vee b_{n-1}$ exists in P and conversely, every $x \in P$ has a monotone representation; that is, for every $x \in P$, there is exactly one sequence of complemented elements $D_1(x) \geq D_2(x) \geq \dots \geq D_{n-1}(x)$ such that

$$x = \bigvee_{i=1}^{n-1} D_i(x) e_i.$$

Proof: If $b_1, b_2, \dots, b_n \in B$ and $b_1 \geq b_2 \geq \dots \geq b_{n-1}$ then $b_i b'_{i+1}$ exists in B for $i = 1, \dots, n-2$ and $b_i b'_{i+1} \wedge b_j b'_{j+1} = 0$ for $i \neq j$, so that

$\bigvee_{i=1}^{n-1} b_i b'_{i+1} e_i$ exists; it is easy to see that $\bigvee_{i=1}^{n-1} b_i b'_{i+1} e_i = \bigvee_{i=1}^{n-1} b_i e_i$. Now take an arbitrary $x \in P$. Let $x = \bigvee_{i=1}^{n-1} c_i(x) e_i$.

Then obviously $x = c_1(x) e_1 \vee c_2(x) (e_1 \vee e_2) \vee \dots \vee c_{n-1}(x) (e_1 \vee e_2 \vee \dots \vee e_{n-1})$ and from the conditions

of Definition 1.1 we infer $x = \left(\bigvee_{i=1}^{n-1} c_i(x) \right) e_1 \vee \left(\bigvee_{i=2}^{n-1} c_i(x) \right) e_2 \vee \dots \vee c_{n-1}(x) e_{n-1}$. Therefore $x = D_1(x) e_1 \vee \dots \vee D_{n-1}(x) e_{n-1}$,

where $D_k(x) = \bigvee_{i=k}^{n-1} c_i(x)$ and obviously every $D_i(x)$ is complemented as well as $D_1(x) \geq \dots \geq D_{n-1}(x)$. The uniqueness of the monotone representation follows directly from Lemma 2.8, which just states that $x \leq y \iff D_i(x) \leq D_i(y)$ for $i = 1, 2, \dots, n-1$.

Lemma 2.13: For every $x, y \in P$ the supremum $x \vee y$ (the infimum xy) exists in P iff $D_i(x) \vee D_i(y)$ ($D_i(x) \wedge D_i(y)$, respectively) exists in P for every $i = 1, 2, \dots, n-1$, and the following equality holds: $x \vee y = \bigvee_{i=1}^{n-1} (D_i(x) \vee D_i(y)) e_i$ ($xy = \bigvee_{i=1}^{n-1} D_i(x) D_i(y) e_i$, respectively).

Proof: First, let $D_i(x) \vee D_i(y)$ exist for $i = 1, 2, \dots, n-1$. The elements $D_i(x) \vee D_i(y)$ form a mono-

tone sequence, hence $z = \bigvee_{i=1}^{n-1} (D_i(x) \vee D_i(y))e_i$ exists by

Theorem 2.12. Of course, $x \leq z$ and $y \leq z$ by Lemma 2.8.

Now let $u \in P$, $u = \bigvee_{i=1}^{n-1} D_i(u)e_i$ and $x \leq u$, $y \leq u$. Applying again Lemma 2.8 we have $D_i(x) \leq D_i(u)$ and $D_i(y) \leq D_i(u)$ for every $i = 1, 2, \dots, n-1$. Thus $D_i(x) \vee D_i(y) \leq D_i(u)$ so that $z \leq u$; therefore z is the least upper bound of x and y . To prove the converse, assume $x \vee y = z$ exists. Then $D_i(x) \leq D_i(z)$ and $D_i(y) \leq D_i(z)$ for every $i = 1, \dots, n-1$. Suppose $D_k(x) \vee D_k(y)$ does not exist for some k . Hence for any $c \in B$ such that $D_k(x) \leq c$ and $D_k(y) \leq c$, there exists $d \in B$ such that $D_k(x) \leq d$, $D_k(y) \leq d$ and $c \neq d$. In particular, there is $d \in B$ such that $D_k(x) \leq d$, $D_k(y) \leq d$ and $D_k(z) \neq d$. Consider the element $w = e_1 \vee e_2 \vee \dots \vee e_{k-1} \vee d e_k \vee \dots \vee d$. It is evident that $x \leq w$ and $y \leq w$ but $z \neq w$; a contradiction. This completes the proof for the supremum. The proof for the infimum is analogous.

As an immediate consequence of Theorem 2.12 and Lemmas 2.8, 2.13 we obtain the following corollary:

Any Post poset of order n can be considered as a set of all non-increasing sequences (b_1, b_2, \dots, b_n) of elements of some Boolean orthoposet (B, \leq) with the ordering as follows: $(a_1, a_2, \dots, a_{n-1}) \leq (b_1, b_2, \dots, b_{n-1})$ iff $a_i \leq b_i$ for every $i = 1, 2, \dots, n-1$.

Of course, every Post algebra is a Post poset but not conversely. Post algebras can be characterized as follows:

Theorem 2.14: A Post poset is a Post algebra iff greatest lower bounds exist in P for any two complemented elements of P .

Proof: The necessity of the condition is obvious, so we prove only the sufficiency. If for any two complemented elements x and y the infimum xy exists in P , then the Boolean orthoposet B of all complemented elements of P is a Boolean algebra (see [5]). Hence for every $x, y \in P$

$D_i(x) \vee D_i(y)$ and $D_i(x) \wedge D_i(y)$ exist for $i = 1, 2, \dots, n-1$; consequently P is a lattice by Lemma 2.13. Since P is a d-poset and every $x \in P$ has a finite disjoint representation, then using condition (ii) of 1.1 it is not difficult to prove that the lattice P is distributive. Therefore it is clear by Definition 2.1 that P is a Post algebra.

Theorem 2.15: A d-poset P is a Post poset of order n iff P has a subchain $0 = e_0 \leq e_1 \leq \dots \leq e_{n-1} = 1$ and there exists a Boolean orthoposet $B \subset P$, regular in P , such that the following conditions hold:

- (1) be_i exists in P for every $b \in B$ and $i = 0, 1, \dots, n-1$;
- (2) for every $x \in P$ there exists a sequence $b_1 \geq b_2 \geq \dots \geq b_{n-1}$ of elements of B such that $x = b_1 e_1 \vee \dots \vee b_{n-1}$;
- (3) if $a \in B$ and $ae_i \leq e_{i-1}$ then $a = 0$.

Proof: First we prove the necessity of the above conditions. For every Post poset P the set B of all complemented elements of P is a Boolean orthoposet, regular in P , by Theorem 2.7. (1) follows from (p_1) and (2) follows from Theorem 2.12. Condition (3) holds, because if $ae_i \leq e_{i-1}$ for $a \in B$, then $ae_i \leq ae_{i-1}$, so that $a = 0$ by Lemma 2.5.

Now, to prove the sufficiency of the above conditions we shall verify axioms (p_1) and (p_2) . Let (1), (2), (3) hold and x be an arbitrary element of P , $x = \bigvee_{i=1}^{n-1} b_i e_i$, $b_1 \geq b_2 \geq \dots \geq b_{n-1}$, $b_i \in B$ for $i = 1, 2, \dots, n-1$. To show that (p_2) holds we put $C_0(x) = b'_1$, $C_i(x) = b'_i b_{i+1}$ for $i = 1, \dots, n-2$, $C_{n-1}(x) = b'_{n-1}$. This definition is correct, since B is regular in P and all the elements $C_i(x)$ exist in B . Clearly, $(p_2)c$ and $(p_2)d$ hold; $(p_2)e$ is also satisfied because by 1.1 we have:

$$\begin{aligned} x &= b_1 e_1 \vee \dots \vee b_{n-1} = b'_1 (b'_2 \vee b'_2) e_1 \vee b'_2 e_2 \vee \dots \vee b'_{n-1} = \\ &= b'_1 b'_2 e_1 \vee (b'_2 e_2 \vee b'_2 e_2) \vee \dots \vee b'_{n-1} = \end{aligned}$$

$$\begin{aligned}
 &= b_1 b'_2 e_1 \vee b_2 b'_3 e_2 \vee \dots \vee b_{n-1} = \dots = \\
 &= b_1 b'_2 e_1 \vee b_2 b'_3 e_2 \vee \dots \vee b_{n-1} = c_1(x)e_1 \vee \dots \vee c_{n-1}(x).
 \end{aligned}$$

It remains to check (p_1) . Observe that xe_i exists for every $x \in P$ and $i = 1, \dots, n-1$ because $x = \bigvee_{i=1}^{n-1} b_i e_i = \bigvee_{i=1}^{n-1} c_i(x) e_i$ by the just proved (p_2) , so that xe_i is the supremum of the disjoint elements $c_1(x)e_1, c_2(x)e_2, \dots, \left(\bigvee_{k=i}^{n-1} c_k(x)\right) e_i$, each of which exists by the condition (1). If $xe_1 = 0$, where $x = \bigvee_{i=1}^{n-1} c_i(x)e_i$, $c_i(x) \in B$, then $\left(\bigvee_{i=1}^{n-1} c_i(x)e_i\right) e_1 = \left(\bigvee_{i=1}^{n-1} c_i(x)\right) e_1 = 0$. Hence by (3) we have $\bigvee_{i=1}^{n-1} c_i(x) = 0$ as well as $c_i(x) = 0$ for $i = 1, \dots, n-1$, so that $x = 0$. Therefore (p_1) a is proved to hold. Now observe that $x \vee e_i$ also exists for every $x \in P$ and $i = 1, \dots, n-1$. In fact,

$$\begin{aligned}
 x \vee e_i &= \bigvee_{k=1}^{n-1} b_k e_k \vee e_i = e_i \vee b_{i+1} b'_{i+1} e_{i+1} \vee \dots \vee b_{n-1} = \\
 &= b'_{i+1} e_i \vee b_{i+1} b'_{i+2} e_{i+1} \vee \dots \vee b_{n-2} b'_{n-1} e_{n-2} \vee b_{n-1}
 \end{aligned}$$

exists as the supremum of disjoint elements. If $x \vee e_{i-1} \leq e_i$ for some i then evidently $x \leq e_i$. We shall show that also $e_i \leq x$. Since $x \vee e_{i-1} = e_{i-1} \vee b_i e_i \vee \dots \vee b_{n-1} = e_i$, then for $k = 1, \dots, n-1-i$ $b_{i+k} e_{i+k} \leq e_i$, so that $b_{i+k} = 0$ by condition (3). Hence $e_i = e_{i-1} \vee b_i e_i = b'_i e_{i-1} \vee b'_i e_i$ and by applying the properties of a d-poset we infer $b'_i e_i = b'_i e_{i-1} \vee 0 \leq e_{i-1}$. Thus from the condition (3) $b'_i = 0$ and we obtain $b_i = 1$; consequently $e_i \leq x$. Therefore (p_2) b also holds. This completes the proof.

Finally we present an example of a Post poset which is not a Post algebra. Theorem 2.14 yields that any such poset must be infinite.

E x a m p l e 2.16: Consider, as in Example 1.9, a closed circle X in the plane. Let A be the family consisting of the empty set and all finite unions of closed sectors of X . Then A is a Boolean algebra under the operations \vee , \wedge , $'$ defined in the following way: $a \vee b = a \cup b$, $a \wedge b = \text{Int}(a \cap b)$, $a' = \bar{a}$, where \cup , \cap , $\bar{\cdot}$ are the set-theoretical operations and \bar{a} denotes the topological closure of a . Now let p_1, p_2 and t_k^i be the same as in Example 1.9. Denote by T the set $\{t_k^i = i = 0, 1, 2, 3; k = 1, 2, \dots\}$. Consider, for $i = 1, 2$, the Boolean algebra A_i generated by $T \cup \{p_i\}$ in A . It is not difficult to show (see also [8]) that $B = A_1 \cup A_2$ is a Boolean orthoposet with the same ordering and complementation as in A . Now let e_1 be a closed circle, the radius of which is less than the radius of X , and let X and e_1 have the same centre. Consider the set P of the elements of the form $(e_1 \cap b_1) \cup b_2$ where $b_1, b_2 \in B$ and $b_1 \geq b_2$. One can prove that P ordered by the inclusion is a Post poset of order 3 with the chain $\emptyset < e_1 < X$. Since $p_1 \wedge p_2$ does not exist in P , P is not a Post algebra.

BIBLIOGRAPHY

- [1] R. Balbes, Ph. Dwinger: Distributive lattices, University of Missouri Press (1974).
- [2] C.C. Chang A. Horn: Prime ideals characterization of generalized Post algebras. Lattice theory, Proc. Symp. Pure Math. 2 (1961) 43-48.
- [3] Ph. Dwinger: Generalized Post algebras, Bull. Polon. Sci., Sér. Sci. Math. Astron. Phys. 16 (1968) 559-563.
- [4] G. Epstein: The lattice theory of Post algebras, Trans. Amer. Math. Soc. (1960) 300-317.
- [5] J. Kłukowski: On Boolean orthomodular posets, Demonstratio Math. 8 (1975) 5-14.

- [6] J. Klukowski : On the representation of Boolean orthomodular partially ordered sets, *Demonstratio Math.* 8 (1975) 405-422.
- [7] C. Łapińska : Vollständige Boolesche orthomodulare teilweise geordnete Mengen, *Demonstratio Math.* 8 (1975) 465-469.
- [8] C. Łapińska : On the structure of Boolean orthoposets, *Demonstratio Math.* 10 (1977) 497-514.
- [9] H. Rasiowa : On generalized Post algebras of order ω^+ and ω^+ -valued predicate calculi, *Bull. Polon. Sci., Sér. Sci. Math. Astron. Phys.* 21 (1973) 209-219.
- [10] H. Sawicka : On some properties of Post algebras with countable chain of constants, *Colloq. Math.* 25 (1972) 201-209.
- [11] T. Traczyk : Axioms and some properties of Post algebras, *Colloq. Math.* 10 (1963) 193-210.
- [12] T. Traczyk : On Post algebras with uncountable chain of constants. Algebras of homomorphisms, *Bull. Polon. Sci., Sér. Sci. Math. Astronom. Phys.* 15 (1964) 147-149.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF WARSAW

Received November 14. 1977.