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POST POSETS AS A GENERALIZATION 
OF POST ALGEBRAS 

Generalized Post a lgebras were inves t igated by many 
authors (see [ 2 ] , [ 3 ] , [ 2 ] , [ 10 ] and [ 1 2 J ) . 1'he known gene-
r a l i z a t i o n s usual ly cons i s t in a weakening of the condit ions 
concerning the chain of constants . In t h i s paper the genera-
l i z a t i o n takes another d i r e c t i o n - instead of d i s t r i b u t i v e 
l a t t i c e s with 0 and 1 , what we c a l l d-posets are considered. 
In a d-poset one only assumes that l e a s t upper bounds e x i a t 
f o r d i s j o i n t elements and one weakens the condition of d i s -
t r i b u t i v i t y . Assuming that a chain of constants e x i s t s in 
a d-poset and imposing condit ions analogous to those of Post 
a l g e b r a s , one d e f i n e s the Post posets and s tudies t h e i r basic 
p r o p e r t i e s , 'ihe Boolean center of a Post a lgebra i s replaced 
in the Post poset by a Boolean orthoposet . Then a Post poset 
i s a g e n e r a l i z a t i o n of a Post a lgebra on one hand of a Boolean 
orthoposet on the other . Post a lgebras can be character ized 
as Post posets in which any two complemented elements have 
a g r e a t e s t lower bound. Theorems about the uniqueness of the 
chain of constants , uniqueness of monotone representat ion 
a l so hold in the l a r g e r c l a s s of Post posets . An example of 
a Post poset which i s not a Post a lgebra i s g iven . 

In t h i s paper the usual l a t t i c e notat ion i s employed. 
The l e a s t upper bound ( l . u . b ) of x and y i s denoted by 
x v y and the g r e a t e s t lower bound ( g . l . b . ) by x A y , or 

more b r i e f l y by x y . The symbols V X. and / \ x . de-
i e l 1 i e l 1 
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2 J.Klukowski, C. Lapiiiska 

note,' respect ively, the supremum and infimum of the x^ over 
a specif ied set of indices. The symbols x Vpy and x Apj 
emphasize that the supremum and infimum are taken in the po-
set P, I f x has a (unique) complement, i t is denoted 
by x . 

1. d-posets 
D e f i n i t i o n 1.1.: Let ( P , « » ; be a part ial ly 

ordered set with the greatest element 1 and the least, element 
0; P is said to be a d-poset i f the following conditions 
hold: 

(i) V a , b t P , if aAb = 0 then a v b exists in P 

(ii) V a , b , c 6?, aAb = 0 implies that if any two of the 

elements ( a v b ) A c , a A c , bAC exist, then the third 
also exists and the following equality holds: 

( a v b ) A c = (aAcJ v ( b A c ) . 

Ic i s easy to see that i f a^ , a 2 , . . . , a n are mutually dis jo int 

elements of a d-poset P then ^ V = 0 and 

n \ n i^k 
\/ a. A b = \/ (a. A b ) provided â  A b exists in P 
i=1 V i=1 1 

for every i = 1 ,2 , . . . , n . 
Let us remark that the class of d-posets is rather wide -

every bounded poset can be transformed into a d-poset by ad-
joining a new zero-element. 

L e m m a 1.2: Let P be a d-poset. l o r every 
x ,x , y e P i f X A Y = 0 , X A Y = 0 and x v y = x v y , then 
x = x. 

? r o o f : Since x ^ x v y = x v y then ( x v y ) A x 
exists. Consequently by condition ( i i ) , XAX exists and 
x = (x v y ) A x = (XAX) v (y A x ) = XAX, so that x x. 
Similarly x ^ x. Hence x = x. 

D e f i n i t i o n 1.3s I f f o r some x e P there 
exists x'E F such that XAX' = 0 fyrid xvx' = 1 , then 
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Post posets 3 

x' i s ca l l ed a complement of x and x i s said to be com-
plemented. 

Lemma 1.2 implies the fol lowing c o r o l l a r y . 
C o r o l l a r y 1 .4 : In any d-poset every element 

a has at most one complement a' and a" = a provided a' 
e x i s t s . 

From now on, l e t P be a d-poset and l e t B denote the 
set of a l l complemented elements of P. 

L e m m a 1 .5 : For every a e P and b e B, ab = 0 
i f f a b' . 

The easy proof i s omitted. 
L e m m a 1 .6 : For a l l a ,b &B, i f ab e x i s t s in 

F then the elements a ' b , ab' , a 'b ' , a v b , a ' v b, a v b ' , 
a ' v b' a l s o e x i s t in F and the fol lowing equal i ty holds : 

a v b = a ' b v a b v ab' . 

P r o o f : Since b = ( a v a ' Jb = abv a ' b , then a ' b 
e x i s t s by condition ( i i ) . Consequently, ab' and a 'b ' a l s o 
e x i s t . I t remains to show that a v b e x i s t s and a v b = 
= a ' b v ab v ab' . The elements a ' b , ab, ab' are mutually 
d i s j o i n t , hence the right-hand s ide of the above equal i ty 
e x i s t s . I f a ^ c and b ^ c f o r cer ta in c t P, then 
( a ' b v a b ) v a b ' = bv a b ' 4 c . Therefore a 'b v ab v ab' i s 
the supremum of a and b. The exis tence of the remaining 
elements fol lows from the j u s t proved part of the lemma. 

L e m m a 1 .7 : For a l l a , b 6 B, i f ab e x i s t s in 
P then (ab)' = a ' v b' and ( a v b ) ' = a'b' . 

P r o o f : The exis tence of a ' v b , a v b and a 'b ' 
fo l lows from Lemma 1 ,6 . We have 1 = b v b' = ( b a v b a ' )v 
v b' sS ba v a' v b' , so that ab v (a.' v b' ) = 1. S i m i l a r l y , 
ab A (a' v b' ) = ab A (a' b' v a' b v ab' ) = (ab A a' b' ) v (ab A a ' b) v 
v (afc A ab' ) = 0, Thus we have proved that a ' v b' i s the 
complement of ab. By a s imi l a r argument one can prove that 
a b' i s the cc :olement of a v b . 
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4 J.Klukowski, C.Lapiiiska 

JR e m a r k j Lemmas 1.6 and 1.7 cannot be formulated 
dually; that i s f o r a,b e B the infimum aAb need not 
exist in P even when a v b exists in P, which w i l l be 
shown in Example 1.9. 

L e m m a 1.8: The set B of a l l complemented e l e -
ments of a d-poset P is an orthomodular poset (with the sa-
me ordering as in P) . 

P r o & f : We check the conditions of the def ini t ion 
of an orthomodular poset (see [ 5 ] ) : 
1. For every a € B, a" = a (by Corollary 1.4). 
2. For every a fb e B, a ^ b' i f f b < a' , since a ^ b' 

i f f aAb = 0 (by Lemma 1.5J. 
3. For every a,b e B, i f a ^ b' then a v b exists in B. 

This is true since a ^ b' implies a A b = 0 and a v b 
exists in P by condition ( i ) ; a v b is complemented by 
Lemma 1.7. 

4. For every a , b e B , i f a ^ b then a v (b v a)' = b. 
Since a ^ b implies that ab exists in P, then, by 
Lemma 1.6, a'b exists in P and, by Lemma 1.7, a'b 
is complemented. Clear ly , ' a A a'b = 0. Hence ( a va ' b )Ab= 
= ab v a' b = (a v a ' ) a b = b so that b 4 a v a ' b . On the 
other hand a v a' b ^ b, thus b = a v a ' b = a v ( b ' v a ) ' . 
Notice that i f B is regular, in V ( i . e . for every 

x,y e B the supremum and infimum of x and y exist in B 
i f f they exist in P, and they are equal i f they ex i s t ) , 
then B is a Boolean orthoposet because of Lemma 1.5. In 
particular, i f aAb exists in P f o r every a,b e B, then 
B is a Boolean algebra. The orthomodular poset B need not 
be regular in P, which is shown by the following example. 

E x a m p l e 1.9: Let X be a closed circle in the 
plane. We place the origin of a polar coordinate system Or<p 
in the centre of the c irc le X. Let <P0 be real numbers 
and <-^2» by -c •) » £>2 > w e s i i a H understand the closed 
sector lying between the radi i <p= and Now let 
p1 = <-0, JT> , p2 = , N> , p3 = <JT , 2JT>, p4 = 
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> 

f o r i = 0 , 1 , 2 , 3 ; k = 1 , 2 , . . . . Let Y denote the fami ly 
c o n s i s t i n g of a l l the above s e c t o r s and the empty s e t , ordered 
by the i n c l u s i o n . Now we take the poset P cons t ruc ted as 

n 
f o l l o w s : x e P i f f x = I ' v f o r some elements x , . , x p , . . . 

. . . , x n e Y such t h a t x.̂  A Y x j = 0 i ^ j« ^ i s easy 
to see t h a t P, ordered by the i n c l u s i o n , i s a d -pose t wi th 
the uni t X. The s e t B of complemented elements of P 
c o n s i s t s only of the elements 0, X, p^, p 2 , p^» P^« The i n -
fimum of p1 and p2 does not e x i s t i n P, however p 1 v p2 = 
= X and p 1 a B p 2 = 0 . 

2. Post pose ts 
D e f i n i t i o n 2 . 1 : Let ( P , ^ ) be a d -pose t 

wi th 0 ^ 1 ; P i s ca l l ed a Post poset (of order n) i f i t 
s a t i s f i e s the fo l lowing c o n d i t i o n s : 
(p.j) There e x i s t s a chain 0 = eQ < e^ ^ . . . ^ e ^ = 1 

i n F such t h a t f o r every x e P and 1 « i « n-1 
a) xe^ e x i s t s and i f xe^ = 0 then x - 0 ; 
b j x v e i e x i s t s and i f x v = e^ then x = e^ . 

(p 2 ) For every x P, the re e x i s t s a sequence C 0 ( x J , C 1 ( x / , 
. . . , C n _ ^ ( x j of elements of P such t h a t 
c j C. (x l C.(x) = 0 f o r every i i j 

J 
nr1 

d) V C.(x) = 1 
i=0 . x 

e / x = C 1 (x i e 1 v . . . v C
n _ i ( x ^ e

n _ i 

From now on, l e t p denote a Post pose t . 
ij e m m a 2 . 2 : a ; I f x e ? and xe^ = 0 f o r some 

i > 1 , then x = 0 . b ). If x v e . = e- f o r some i <• j then 
J 

x = e . . 
J , 

P r o o f : immediate from cond i t ion Ip-jK 
L e m m a 2 . 3 : If x ,y e P and xy = 0 then 

n-1 n-1 
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6 •j «Klukowski, C.Lapir.ska 

P r o o f : Suppose that i = 0 aoes.not 
hold for some k and 1. Then there exists z e P, z / 0, 
z < C, (x/ and z < C • (x;. Lei; k ^ 1. Thus ze. ^ x and K 1 K 

which contrsdicts xy = 0. 'Therefore 
C^(x/ C.(y) = 0 for every i, j = 1,...,n-1 and by applying x ^ n-1 n-1 
condition (ii) of Dei'. 1.1 we obtain V C. {xi A V C-(yj =0. > / 1 • / 1 1=1 1=1 

i n e o r e m 2.4: An element x e i- is complemented, 
iff x = C.(y/ for some i and some y e p . 

1 n - 1 
P r o o f : If x = C.(y) then x' = V C-(y). Indeed, 

1 j=0 J 

it follows directly from Definitions 1.1 and 2.1 that 
V C.lyj exists and x A V C-(y) = 0, x v V C,(y) = 1. 

3 j^i 0 Oti J . 
On the other hand, suppose x has a complement x'. Since 
xx' = 0 then x'Cn_1(x) = 0 from Lemma 2.3. Hence x'vCfr1(x) 
exists. Since x ¿s en_2 v C ^ l x ) by condition (p2) then 
1 = x v x'«e n_ 2 v Cn_1(x] v x'. Then x ' v C ^ i x ) = 1 from 
(p.j). Therefore C ^ i x ) is a complement of x' and 
Cn 1 ̂  = x s i n c e complements are unique (Corollary 1.4). 

Thus we have shown that the set B of all complemented 
elements of a Post poset P is exactly the set 
jcj(x) : x e P, 0 = 0,1,...,n-1J. 

L e m m a 2.5: If b is a complemented element of P 
(b e B) and be.. a£ be.̂  for some i < j, then b = 0. 

P r o o f : Since e. ̂  e . then e . = (b' v b)e . = / / i " " ' " = b e.vbe. ^ b e. v be. ^ b e.ve.i&e. so that b e . v e. = 
3 «3 J = e.. Hence b'e^ = e, by Lemma 2.2. Thus be. = 0; conse-J J J J quently b = 0 by Lemma 2.2. 

L e m m a 2.6: If a,b e B and i = 1,2,...,n-1 then 
ae^ s£ be^ implies a < b. 

P r o o f : If a b then ab' ^ 0 or ab' does noi; 
exist by Lemma 1.5. Then there exists c e P , c ^ O , c ^ a 
and c f£ b' , so that cb = 0 (by Lemma 1.5). Hence c e ^ a e ^ 
cej^Abej^ = 0 and, by Lemma 2.2, cei ^ 0. Therefore ae^be.^ 
and this completes the proof. 
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T h e o r e m 2.7: I f P is a Post poset then the 
set B of a l l complemented elements of P i s a Boolean 
orthoposet (with the same ordering as in P). 

P r o o f : Using Lemmas 1.5 and 1.8 i t suffices to 
show that i f aAgb = 0 then also aApb = 0 for any a,beB. 
Suppose a Agb = 0 but aApb = 0 does not hold. Then there 
is a non-zero element x e P such that x « a and x b. 
Let x = C.|(x)e.| v . ; . v C^^ix). Take the greatest k such 
that Ck(x) £ 0. Thus Ck(x)ek ¿s-a, C k ( x ) e k < b and also 
C^fxJej^^ aek, Ck(x)ek^ ^ek* T l i e r e fo r e by Lemma 2.6 
C. (x) < a and ^k(x) b, which contradicts a A ^b = 0 sin-
ce Ck(x) e B. 

L e m m a 2.8: Let x,y e P, x = C^(x)e1 v . . . v C ^ (x) 
and y = C1(yJe1 v . . . v c ^ l y ) . Then x < y i f f 
n-1 n-1 
V C . ( x ) ^ V C.(y) for every k = 1 , 2 , . . . , n - 1 . 

i = k" i = k n-1 n-1 
P r o o f : Let x < y and suppose V C- (x) ^ V c-s (y) 

i=k 1 i=k 1 

for some k. Then, by the disjunctivity of Boolean orthopo-
set B (see [2] and [6]), there i s a non-zero element b fcB 

n-1 n-1 
such that b V C. (x) and b A V C. (y) = 0. Hence 

i=k 1 i=k 1 

n-1 
be^ ^ \y C^(x)ek< x ^ y, so that bek = be^ = 

1—k 
n-1 k-1 

= bek V C±(y)e i = befc y C i ( y ) e ± « bekek-1 = be k - 1 . The-
refore i t follows from Lemma 2.5 that b = 0; a contradic-

n-1 n-1 
tion. On the other hand, i f V C -(x)^ V C, (y) for 

i=k 1 i=k 1 
k = 1 , 2 , . . . , n - 1 then Ck(x) ^ y C^y) and Ck(x)ek < 

n-1 n-1 
^ V C. ( y ) e . ^ V C. (y)e. as y. Therefore x ^ y. 

i=k 1 K i=k 1 1 

T h e o r e m 2.9: For any given x € P there i s 
only one sequence of elements C Q ( x ) , . . . ( x ) satisfying 
condition (p2). 

- 1021 -



8 J . K l u k o w s k i , CULapinska 

P r o o f : Suppose that x = . . . v C ^ (x) = 
= C 1 ( x ) e 1 v . . . v C ^ l x ) , Thus C n - 1 (x) ^ C n _ 1 (x) and 
^ n - 1 ^ < C n - 1 ^ 137 L e m m a 2 » R » hence C ^(x) = ( x ) . 

n - 2 n - 2 
S i n c e V C . ( x ) e , v C . ( x ) = V C . ( x ) e . v C , (x) and 

n - 2 I n - 2 _ \ 
V C i ( x ) e i A C n - 1 ( x ) = 0 , f y C ^ x j e J C n _.,(x) = 0 then 

n - 2 n - 2 
V C . ( x ) e . = V C . ( x ) e . by Lemma 1 . 2 . Using a g a i n Lemma 2 . 8 

i = 1 1 i = 1 1 1 

we o b t a i n C n _ 2 ( x ) = R s i ^ e r a t i n g the above argumen-
t a t i o n we have C ^ i x ) = C - ( x ) f o r i = 1 , 2 , . . . , n - 1 ; a l s o 

C o ( x ) = ( v j c ± ( x ) j = ^ v j O ^ x i j = C Q (x) and t h i s comple-

tes the proof. 
T h e o r e m 2 . 1 0 : I n any Post poset the elements 

e^, i = 0 , 1 , . . . , n - 1 , are d i s t i n c t and unique. 
P r o o f : I t f o l l o w s from Theorem, 2 . 9 that C - ( e . J = 1 

and C j / e j ) = 0 f o r i ^ j . I f i / j and ê ^ = e.. then 
C . ( e i ) = 1 = C - (e -) = C . ( e . J , which c o n t r a d i c t s c o n d i t i o n 
/ i j j J - ^ - _ ( p 2 ) . I f there i s another sequence 0 = e Q « e.j<; . . . s: en_-| = 1 

n - 1 
s a t i s f y i n g (p^) and ( p 2 ) then e^ = \ / C ^ i e i ) ^ - = e^ so t h a t 

It—1 
e. = e i f o r i = 1 , . . . , n - 2 . Thus the elements e i , i = 
= 0 , 1 , . . . , n - 1 . are both unique and d i s t i n c t . 

T h e o r e m 2 . 1 1 : Every Post poset P i s pseudo-
complemented; that i s , f o r any x e P, there e x i s t s x * e P 
such that xy = 0 i f f y ^ x * ; moreover x* v x** = 1 . 

P r o o f : We s h a l l show t h a t x* = C Q ( x ) . By c o n d i -
t i o n ( p ? ) , xC (x) = 0 and xy = 0 i f y < C ( x ) . Conver -

0 n - 1 n - 1 
s e l y , i f xy = 0 then by Lemma 2 . 3 , V C. (x) a V C^ (y) = 0 . 

i = 1 1 i = 1 -
S i n c e f o r every i = 1 , 2 , . . . , n - 1 i t i s C i ( x ) e B, we have 
n - 1 / . n - 1 V n - 1 V C . ( y ) ^ V C . ( x ) = C ( x ) , hence y ^ V C . ( y ) ^ 
i = 1 1 \ i = 1 1 J 0 i = 1 
^ C 0 ( x ) . Thus we have a l s o x*v x** = C Q ( x ) v C*(x) = 
= CQ(x) v c'0(x) = 1. 
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Post pcsets 
? h a o r e m 2.12: For any non-increasing feequence 

b̂  is > ... > °n_i complemented elements of k Post po-
set P, the supL-'emum b̂ ê  v v exists In r and 
conversely, every x e P has a monotone re presentation; thet 
ie, for ever? x e ?, there is exactly one sequence of com-
plemented elements D1(x) >B„(x)> ... >B 1(x) such taat n-1 ^ n_l 
x = V E,(x)e,. i*1 1 1 

Proof: If b1 ,b2,... ,bn e B and b., . 
.. then b̂  exists in B for i = 1,...,n~2 
and b. o. - A b.b. A =0 for i £ j, so that i i+i 3 o+i n-1 , n-1 \J b. b. . e. exists; it is easy to see that \J b. b. .. e. = IL"-"1 IT II n-1 o-1 = V b.e.. Now take an arbitrary x e r. Let x= \J C•(x)e.. i=1 1 1 i=1 Then obviously x = Ĉ  (xiê  vC?(x)(ê  v ê ) v ... 
... vCn_1(x)(el v e2 v ... ven_-|) and from the conditions /n-1 \ / n-1 \ of Definition 1.1 we infer x = ( V Ci(x)le1v( y C±(x)je2v... 

... vCn_-] • Therefore x = D̂ xjê v ... v (x )erJ_1 , 
n-1 where B,(x) = V C.(x) and obviously every D-(x) is com-K i=k 1 1 

plemented as well as ... > The uniqueness 
of the monotone representation follows directly from Lemma 2.8, 
which .just states that x y «a—> B̂ (x) ̂  B̂ (y) for i = 
= 1,2,...,n-1. 

Lemma 2.13: For every x,y e P the supremum 
xv y (the infimum xy) exists in P iff B̂ (x) v B̂ (y) 
(B̂ x) A B̂ iy), respectively) exists in F for every 
i = 1,2,...,n-1, and the following equality holds: x v y = n-1 , \ / n-1 = V iBi(x) v Bi(y)jei fxy = y Bi(x)D±(y)ei, respective-i—1 \ i=1 ly). 

Proof: First, let B̂ x) v Bi(y) exist for i = 1,2,...,n-1. The elements B̂ (x) v B̂ (y) form a mono-
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n-1 / \ 
tone sequence, hence z = \/ I.D. (x ) V D. ( y ) ) e . ex is ts by 

i = 1 \ i 1 / 1 

i'heorem 2.12. Of course, x ^ z and y z by Lemma 2.8. 
n-1 

Now l e t u e P, u = V D. (u)e. and x ag u, y u. Apply-
i=1 

ing again Lemma 2.8 we have D ^ ( x ) « D^fu) and D i ( y ) ^ D i ( u ) 
f o r every i = 1 , 2 , . . . , n -1 . Thus D ^ x ) v D i (yJ D i (u ) so 
that z ^ u; therefore z is the least upper bound of x 
and y . To prove the converse, assume x v y = z ex i s ts . 
Then D i (xJ ^ D± ( z ) and D± ( y ) ^ D ^ z ) f o r every "i = 
= 1 n-1. Suppose v D^ty) does not exist f o r so-
me k. Hence f o r any c € B such that ^ c and 
D^fy) c, there ex ists d 6 B such that Dj^x) == D k ( y )^d 
and c ^ d. In part icular, there i s d e B such that 
Dk (x ) si d, ^ ( y ) < d an(3 ^ Consider the element 
w = e ^ v e 2 v . . . v 0^-1 v de^ v . . . v d. I t is. evident that 
x ^ w and y w but z ^ w; a contradiction. This comple-
tes the proof f o r the supremum. The proof f o r the infimum i s 
analogous. 

As an immediate consequence of Theorem 2.12 and Lemmas 
2.8, 2.13 we obtain the fo l lowing coro l lary : 

Any Post poset of order n can be considered as a set 
of a l l non-increasing sequences ( b^ j b^ , . . . , b n ; of elements 
of some Boolean orthoposet ( B , ^ ) with the ordering as f o l -
lows: (a1 , a 2 , 4 . . ) ^ (b1 , b 2 , . . . ,bn_1 ) i f f â ^ ̂  b i f o r 
every i = 1 , 2 , . . . , n -1 . 

Of course, every Post algebra is a Post poset but not 
conversely. Post algebras can be characterized as fo l l ows : 

T h e o r e m 2.14: A Pott poset i s a Post algebra 
i f f greatest lower bounds exist in P f o r any two complement-
ed elements of P. 

P r o o f : The necessity of the condition is obvious, 
so we prove only the su f f i c i ency . I f f o r any two complement-
ed elements x and y the infimum xy exists in '£, then 
the Boolean orthoposet B of a l l complemented elements of P 
i s a Boolean algebra (see [5]/. Hence f o r every x,y e P 
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D ^ x ) v DjJy) and D ^ x ) a D±(y) exist for i = 1,2,...,n-1; 
consequently P is a lattice by Lemma 2.13. Since P is 
d-poset and every x e P has a finite disjoint representa-
tion, then using condition (ii) of 1.1 it is not difficult 
to prove that the lattice P is distributive. Therefore it 
is clear by Definition 2.1 that P is a Post algebra. 

T h e o r e m 2.15: A d-poset P is a Post poset of 
order n iff P has a subchain 0 = e-\ ̂  ••• ^ en-l = 1 

and there exists a Boolean orthoposet B a P, regular in P, 
such that the following conditions hold: 
(1) be^ exists in P for every b c B and i = 0,1,...,n-1; 
(2) for every x € P there exists a sequence b^ > b 2 > ... 

... of elements of B such'that x = li^^v ... 
••• V bn-1' 

(3) if a e B and aei ei_1 then a = 0. 
P r o o f : First we prove the necessity of the above 

conditions. For every Post poset P the set B of all com-
plemented elements of P is a Boolean orthoposet, regular in 
P, by Theorem 2.7. (1) follows from (p.,) and (2) follows 
from Theorem 2.12. Condition (3) holds, because if ae^ 
for a e B, then ae^ as aei_i » 8 0 that a = 0 by Lemma 2.5. 

How, to prove the sufficiency of the above conditions 
we shall verify axioms (p1) and (p0J. Let (1), (2), (3) 

1 ^ n-1 
hold and x be an arbitrary element of f, x = V b.e., 

i=1 1 1 

b1 > b 2 > ... >bn_.j , b^ e B for i = 1,2,...,n-1. To show 
that (p2) holds we put Co(x) = b^ , C^ix) = bA b'i+1 for 
i = 1,...,n-2, = ^n-1' ^kis definition is correct, 
since B is regular in P and all the elements C^x) exist 
in B. Clearly, (p2)c) and (p2)d) hold; (p2)e) is also sa-
tisfied because by 1.1 we have:• 

x = b1e1 v ... v bn_i = (b2 v b2)e1 v b2e2 v ... = 

= b1b'2e1 v (b2e1 v b2e2) v ... v b ^ = 
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= b 1 b 2 e 1 v b 2
e 2 v ' " v b n - 1 = ••• = 

= 'b1b'2e1 v t>2^3e2 v " ' v b n - 1 = C.j{x)e.|V ••• 

I t remains to check (p^). Observe that xe^ e x i s t s f o r every 

n-1 n -1 
x fcP and i = 1 , . . . , n - 1 because x = \ y b.e. = V C. (x)e. 

i=1 1 1 i=1 1 1 

by the ju s t proved ( p 7 ) , so that xe. i s the supremum of the 
/n-1 \ 

d i s j o i n t elements C^ (x )e 1 , C2-{x ) e 2 , . . . , ( ,N/ C^ixjl e l t 

each of which e x i s t s by the cond i t i on (1 ) . I f xe^ = 0, where 
n-1 / n - 1 \ 

= y C i ( x ) e i , C i ( x ) 6» B, then ^ y C i ( x ) e i J e 1 = 

/n -1 \ ' n-1 
= V c . ( x ) e1 = 0. Hence by (3) we have V C . ( x ) = 0 

\ i = 1 1 / 1 i=1 
as w e l l as C^(x) = 0 f o r i = 1 , . . . , n - 1 , so that x = 0. 
Therefore (p^ja) i s proved to ho ld . Now observe that x v e^ 

a l s o e x i s t s f o r every x e P and i = 1 , . . . , n - 1 . I n f a c t , 

n -1 
x v e i = V V k v e i = e i v b i + i e i + i v ••• v V l = 

= b i + 1 e . v b i + 1 b i + 2 e i + 1 v . . . v V 2 V l e n - 2 v b n - 1 

e x i s t s as the supremum of d i s j o i n t elements. I f x v e^ 

f o r some i then ev ident ly x ¿g e ^ We s h a l l show that a l s o 
ê ^ js x . Since x v = ej,_-| v b i e i v ••• v b n -1 = e i ' 
then f o r k = 1 , . . . , n - 1 - i b i + k e i + k ^ e i ' 3 0 "^at b i + k = 0 

by cond i t i on (3 ) . Hence e. = e. . v b.e. = b'.e. 1 v b.e. i l— i l i I i 1 1 
and by app ly ing the propert ies of a d -poset we i n f e r b'^e^ = 

= t>'iei_1 v e i _ i • Thus from the cond i t i on (3) = 0 

and we obta in b i = 1; consequently e.̂  ^ x . Therefore 

(p 2 ) b ) a l s o ho l d s . This completes the proof. 

F i n a l l y we present an example of a Post poset which i s 

not a Post a l gebra , theorem 2.14 y i e l d s that any such poset 

must be i n f i n i t e . 
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E x a m p l e 2.16: Consider, as in Example 1.9, 
a closed c i rc le X in the plane. Let A be the family con-
s i s t i n g of the empty set and a l l f i n i t e unions of closed sec-
tors of X. Then A i s a Boolean algebra under the opera-
tions v , a , ' defined in the following way: a v b = a u b, 
a A b = Int(a n b) a' = ^a, where u , n , - are the s e t -
- theoret ica l operations and a denotes the topological c lo-
sure of a . Now l e t P-]»P2 an<* ^k ^e s a m e a s Exam-
ple 1 .9 . Denote by T the set j t£ = i = 0 , 1 , 2 , 3 ; k = 1 , 2 , . . . j . 
Consider, for i = 1 ,2 , the Boolean algebra A^ generated 
by T U jp^j in A. I t i s not d i f f i c u l t to show (see a l so 
[8] ) that B = Â  U A2 i s a Boolean orthoposet with the same 
ordering and complementation as in A. Now l e t e^ be a 
closed c i r c l e , the radius of which i s l e s s than the radius 
of X, and le t X and e^ have the same centre. Consider 
the set P of the elements of the form (e1 n b 1 ) U b2 where 
b1 ,b 2 e B and b^ > b 2 . One can prove that P ordered by 
the inclusion i s a Post poset of order 3 with the chain 
^ < e 1 I . Since p̂  A p2 does not ex i s t in P, P i s 
not a Post algebra. 
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