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ORIENT ABILITY OF n-DIMENSIONAL PROJECTIVE GEOMETRY 

By geometry I s h a l l mean Klein geometry whose basic no-

t ions were defined in [ l ] and [ 2 ] . The notions of o r i e n t a b i -

l i t y and or ientat ion of Klein geometry were introduced in [ 4 ] , 

[5] , [fi]» In t h i s paper I s h a l l use the d e f i n i t i o n of or ien-

t a t i o n given in [5] which i s equivalent with Z. Moszner ¡3 de-

f i n i t i o n given in [ 6 ] and which seems to me more convenient 

in a p p l i c a t i o n s . The p a r t i c u l a r case of Klein geometry i s 

n-dimensional p r o j e c t i v e geometry over the f i e l d of r e a l num-

bers . In the paper i t i s proved that such geometry of odd d i -

mension i s orientable but of even dimension i s not o r i e n t a b l e . 

O r i e n t a b i l i t y of p r o j e c t i v e geometry of an odd dimension was 

shown by another method in [3] and [ 4 ] . In those papers was 

a l so shown the construction of o r i e n t a t i o n in such geometry. 

Thus the r e s u l t s of t h i s paper are completion of papers [3] 

and [ 4 ] . Of course, the f a c t of o r i e n t a b i l i t y or non-orienta-

b i l i t y of correspondingly dimensional p r o j e c t i v e geometry i s 

w e l l known but the proofs given in t h i s paper are new. There-

fore I think that they are worth while to publish them. The 

publ icat ion of below considerations i s j u s t i f i e d a l s o by two 

fo l lowing f a c t s . The f i r s t - the notions of o r i e n t a b i l i t y and 

o r i e n t a t i o n are d i f f i c u l t and good knowledge of t h e i r d i f f e -

rent propert ies i s of no l i t t l e account. The second - these 

considerat ions are the example of appl icat ion of abstract no-

t ions of Klein geometry and t h e i r p r o p e r t i e s ' g i v e n in 1 and 

H-
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2 M.Kucharzews ki 

Since papers [3] and [ 5 ] are in press, in the first place 
I shall make known to main notions and properties which will 
be necessary within this paper. For shortness of considera-
tions we shall avoid the repetition of proofs within the ran-
ge of possibility. 

In section 1 I recall to mind the notions related with 
Klein geometry. The examples of geometries are given in sec-
tion 2. Particularly in the second section I define the pro-
jective geometry which is basic in the paper. The important 
notion of the reper is given in the third section. The fourth 
section contains the definition of s-orientability and s-orien-
tation of geometry and their properties. Particularly there 
is given relation between the orientability of geometry and 
orientability of the group which determinates this "geometry. 
The fifth section contains the examples illustrating previous 
considerations. The last section contains the proof of the 
main theorem on orientability or non-orientability of n-dimen-
sional projective geometry of respective dimension. 

1. Klein geometry and its basic properties 
According to the definition given in [l], [2], the Klein 

geometry, is the triple 

(1.1) (M, G, f), 

where M is an arbitrary set, G is an arbitrary group and 
f denotes an effective operation of the group G on the set 
M, i.e. f is a mapping of the Cartesian product MxG 
into M satisfying the conditions 

(1.2) A x e M A g^,g£ £ G f^f(x,g1),g2^ = f(x,g2-g1), 

(1.3) A x 6 M f(x,e) = x, 

(1.4) A x 6 M f(x,g) = x =£» g = e 
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O r i e n t a b i l i t y o f p r o j e c t i v e geometry 3 

I n these r e l a t i o n s e denotes the n e u t r a l element of the 
group G. The geometry i s c a l l e d t r a n s i t i v e i f the opera t ion 
f i s t r a n s i t i v e , i . e . i f i t s a t i s f i e s the c o n d i t i o n 

( 1 . 5 ) A x 1 , x 2 e M v g e G such thax f ( x . , , g ) = x 2 

Uf i n ( 1 . 5 ) t h e r e e x i s t s only one element g , then the ope-
r a t i o n f i s c a l l e d simply t r a n s i t i v e . 

Let us cons ider two geometr ies 

( 1 . 6 ) (1YL,, G v f . , ) and (M2 , G 2 , f 2 ) . 

By a morphism of the f i r s t geometry i n t o the second one we 
understand a p a i r (h , <p ) where h : M—M i s a mapping of 
M i n t o M and <p i s a homomorphism Ĝ  i n t o G 2 . i h i s p a i r 
must s a t i s f y the c o n d i t i o n 

( 1 . 7 ) • A x e M 1 A g e G 1 f 2 ^ h ( x ) , <p(g)^ = h ^ ( x , g ) ) . 

I f h i s a b i s e c t i o n and <p i s an isomorphism then geometr ies 
( 1 . 6 ) are c a l l e d e q u i v a l e n t . 

By an o b j e c t o f the geometry ( 1 . 1 ) we understand a t r i p l e 

( 1 . 8 ) ( m , G, F i , 

where IK i s an a r b i t r a r y s e t , G i s the same group which 
appears i n the d e f i n i t i o n of geometry ( 1 . 1 ) and P i s an 
operat ion of G onto ISC not n e c e s s a r i l y e f f e c t i v e i . e . 
P : ?RxG — m s a t i s f i e s c o n d i t i o n s ( 1 . 2 ; and ( 1 . 3 ) . 

2 . examples of K le in geometr ies 
1. Let G be an a r b i t r a r y group. Let us denote by 1 

a l e f t - h a n d t r a n s l a t i o n i n G, i . e . the mapping 1 : G x G - 5 
def ined as f o l l o w s : A x 6 G and A g t G l ( x , g ) = g; .x. 
I t i s easy to v e r i f y t h a t the t r i p l e 

( 2 . 1 ) (G, G, 1 ) 
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4 LI. Kucharzewski 

is a Klein geometry in the sense of the previous definition. 

It is a transitive geometry, moreover it is simply transitive. 

2. Let ti be an arbitrary subgroup of G. Let us denote 

by G/ri the set of the left-hand classes of abstractions with 

respect to the subgroup H. An element of the set G/K which 

contains a e G will be denoted by [a]. Then [a] = a-H = 

= ja«x : x 6 rf.j If we shall define an operation F of the 

group G on the set G/'H as follows 

(2.2) [x] 6 G/tf A g 6 G A F ([x],g) := g[x] = [gx] 

then the triple 

(2.3) (G/H, G, F) 

represents an object of the geometry (1.1). The operation F 

may not be effective. If it is effective then (2.3) represents 

also some transitive geometry. The operation F is effective 

if and only if H does not contain non trivial subgroups in- • 

variant with respect to G. In general each transitive object 

of the geometry (1.1) is equivalent with some object ( 2 . 3 ) . 
If G is a Lie gro ip and H is a Lie subgroup then the tri-

ple (G/H, G, F) is called a homogeneous space (or Klein 

space or transitive group of Lie transformations - (see [ 7 ] , 
p. 40). 

3. Let us denote by GA(n,R) an affine group, i.e. the 

set of pairs (a,a) where A e GL(n,R), a e R n with the 

operation A (A,a) e GA(n,R) and A (B,b) e GA(n,R), 

(B,b) o (A,a) = (B*A, B»A + b). The triple 

(2.4) (Rn, GA(n,R), f), f(x,A,aj := A»x + a 

is a Klein geometry which is called an n-dimensional affine 

geometry. 

4 . In the set R»+1 := R n + 1 - j(0,...,0)l we introduce 
n+1 n, *i 

a relation of proportionality A ? 6 A ^ eii„ 

- 986 -



Orientability of projective geometry 5 

The quotient set P11 : R* / ~ 
is called an n-dimensional projective space. Let us denote 
by GP(n,R) := GL(n+1, Hj/jpB; p^ 0, 9er} the quotient 
group of the linear group GL(n+1,tt) by its centre. The ele-
ments of Gp(n,R) represent the sets of non-singular pro-
portional matrices. An element containing the matrix A will 
be denoted by the symbol <A> . It has the following form 
< A > : = 19 A:A 6 GL(n+1,R), 9 ^ o j . The operation f of 
the group GP(n,R) onto P11 is defined as follows; 
A [ ^ ] e P n A < A > e GP(n,B), f([?], <A>J : = [ A ^ ] . Then 
the triple 

(2.5) (Pn, GP(n,R), f) 

represents a geometry which is an called n-dimensional pro-
jective geometry. 

3. Repers in Klein geometry 
Reper is the basic notion of geometry. It is also the 

basis for the definition of orientation of geometry. Now we 
shall define a reper in a Klein geometry and we shall give 
its most important properties. Let us consider the Klein geo-
metry 11.1). With every subset P C S we can connect some 
subgroup H(P) C G, which we define as follows: H(P) := 
:= |g t G : A x e P f(x,g) = xJ and we call it the sub-
group of non-effectiveness with respect to P. The opera-
tion is effective if and only if H(M) = jej. The set P 
is called a reper if H(P) = |e|. Hence it follows that 
according to the above definition the whole set M is a re-
per. We are interested in finding repers which have as little 
points as possible. During the course of considerations we 
shall restrict ourselves to finite repers, i.e. containing 
the finite number of points. In this case it is more conven-
ient to consider the sequences of points instead of sets. 
Therefore we assume the following definition. 
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6 M.Kucharzewski 

D e f i n i t i o n 3.1. By a reper of the order s 
in the geometry (1.1) we mean a finite sequence of s diffe-
rent points from M, { p1,p2,...,pgJ, p. + p.., i t j, i,j = 
= 1,2,...,s such that H , p2,... ,pg = jej. 

The following questions appear: Do there exist repers of 
finite order in each geometry? How to find them? Do there 
exist the minimal repers and how to find them? I do not know 
answers to these problems. Some results on this field have 
been obtained by Z.Moszner and J.Tabor. These results are 
not published -so far. It seems that there are very interesting 
subsets having the property that addition of points from those 
subsets does not change the group of non-effectiveness. 

Using the reper of order s we shall define s-orientabi-
lity and s-orientation of Klein geometry. With this aim first 
we shall construct the productive object in the geometry (1.1). 
This object is represented by the triple 

(3.1) (Ms, G, fs), 

where Ms := M x M x ... x M, A x =(x^,x2,...,xg) e Ms and 
A g e G fS(x,g) := (f(x.,,g), ..., f(xs,g)) 6 Ms. 

The elements x from Ms are finite sequence of s 
elements from M. Particularly, the repers of order s be-
long to Ms. Let us denote by M„ the set of all repers s 
of order s. We find that M_ is an invariant subset in the s 
productive object (3.1) (cp. [4], p.3^4, Hilfssatz 1.1). Then 
we can construct the partial object (cp. [l] or [2], p.383, 
def. 1.4), which has the form 

(3.2) (Ms, G, fs), 

where f := fs I M_ x G is the contraction fs to the pro-S ' s 
duct M x G. The object (3.2) may not be transitive. Let s 
us denote by UK an arbitrary transitive fibre of the ob-
ject (3.2). Of course it is an invariant subset and we can 
construct the next partial object which is transitive 

- 988 -



Orientability of projective geometry 7 

(3.3) ( W s , G, Fs), Fs := f s | m g x G. 

Using this last object we shall define s-orientability of 
geometry (1.1 ). 

D e f i n i t i o n 3.2. The geometry (1.1) is called 
s-orientable if there exists an invariant decomposition of 
the fibre 2®tg of the object (3.3) exactly at two subsets 3TC + 
andJK", i.e. if these subsets satisfy the conditions: s 

(3.4) "^s ^ 0 A TOs ^ 0 A M s n m s = 0' 

13.5) Hit g U K g = TOg, 

(3.6) Aq 1 ,cj2 e 3H£s( £ = + 1 ) A g e G Vp = + 1 

such that 

Pg^T ,&), Ps("2>s) 6 Mtg. 

The pair of subsets OTl* and ill" is called an s-orientation 
3 3 

and the geometry (1.1) with chosen one of these orientations 
we call s-oriented geometry. 

4. Properties of s-orientation 
In the definition of s-orientability there appears the 

transitive fibre M of the object (3.2). Therefore it seems s 
that s-orientability may depend on the choice of the consider-
ated transitive fibre. As it appears this is ao i.e. s-orien-
taibility does not depend on the choice of transitive fibre 

because the following theorem is true, s f 
T h e o r e m 4.1. If the geometry (1.1) is s-orien-

table with respect to some transitive fibre- of the 
object (3.2) then it is s-orientable with respect to every 
other transitive fibre of this object. 
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8 M.Kucharzewski 

The above theorem was proved in [ 5 ] . The proof is based 
on the notion of orientability of the group and on the rela-
tion between the orientability of the group and the orienta-
bility of the geometry determined by this group. This rela-
tion is given in two lemmas which we shall quote below. First 
we shall recall the definition of orientability of a group. 

D e f i n i t i o n 4.1. The group G we call orien-
table if it contains subgroup H with index 2. Then we also 
say that G is oriented by the subgroup H. 

The following lemmas are true. 
L e m m a 4.1. If the geometry (1.1) is s-orientable 

then the group G is orientable. 
L e m m a 4.2. If G is orientable and if in the 

geometry (1.1) there exist repers of order s, then every 
transitive fibre of the object (3.2) has an invariant decompo-
sition Into exactly two non-empty disjoint sets and so the 
geometry (1.1 ) is s-orientable. 

Using the above lemmas we obtain immediately a proof of 
Theorem 4.1. These lemmas show also that the orientability 
of a geometry reduces itself to the orientability of the group 
which determines the geometry. 

Z.Moszner and J.Tabor in [8] have given some conditions 
for the orientability of a group. We shall repeat those of 
them which will be useful below. 

L e m m a 4.3. A subgroup H C G orients G if and 
only if H ^ G and A a e G-H and A b e G - H a»b e H 
(cp. [8], p.324). 

To formulate the next lemma let us denote by C(G) the 
set of squares of elements of the group G. This set is de-
fined as follows: C(G) : = J x e G : V a e G such that 

2] 1 
x = a J. 

L e m m a 4.4« If G is oriented by the subgroup 
H C G then C(G) C H (cp. [8], p.324). 
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Orientability of projective geometry 9 

5. Examples of the set of repers and of an orientation 
of a geometry 

1. Repers in the geometry (2.1) consist of points. Hence 
they are of the f i r s t order. The set of repers of the order 
one is identical with G when i t is transit ive. I f G is 
orientable by a subgroup H then the geometry (2.1) is 
1-orientable. An invariant decomposition has the form (H, G-H), 
Each subset H and G - H is a 1-orientation of this geome-
try . 

2. In the n-dimensional af f ine geometry (2.4) there exist 
repers of the order n+1. They are composed by n+1 points 
lP0iP-|»«• • fPn ) sat isfying the condition 

det(p1 - pQ, p2 - p 0 , . . . , p n - P0> * 0 

The set of repers of (n+1) -st order 3K .j 
There exists an invariant decomposition of TO 
two non-empty subsets: 

is transit ive, 
at exactly n+1 

m n+1 (P0.P-| Pn) J det(p1-pQ) ,P -P ) > 0 

and 

m n+1 • { (P 0 .P i ,... ,pn ) : det(p1-p i > 0 . . . - »Pn -P 0 ) 

The geometry (2.4) is (n+1)-orientable. The group of this 
geometry is oriented by the subgroup H := j ( A , a ) : A eGL(n,R) 
det A > 0, a € R n j . 

3. In the n-dimensional projective geometry (2.5) there 
exist repers of the order (n+2). They are the systems of n+2 
projective points ([5 ] , , . . . , ) with the following 
property: every determinant of the (n+1) order formed from the 
matrix i = 1,2, . . . ,n+1, a = 0,1,. . . ,n+1 is non-zero. 
Geometrically this means that none of the n+1 points of tne 
given system l i e on one n-1 dimensional hypgrplane. The set 
3En+2 of considered repers is transit ive. In the next section 
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10 M.Kucharzewski 

we s h a l l see t h a t t h i s s e t may not have a two-elements i n -
v a r i a n t decomposi t ion. Such s i t u a t i o n i s when n i s an odd 
number. The corresponding i n v a r i a n t decomposit ions a re given 
i n [4] or [ 5 ] . In t h i s case the geometry i s ( n + 2 ) - o r i e n t a b l e . 
Vhen n i s an even number the p r o j e c t i v e geometry i s not 
o r i e n t a b l e . 

6. O r i e n t a b i l i t y of p r o j e c t i v e geometry 
Now we s h a l l cons ider the o r i e n t a b i l i t y of the p r o j e c t i v e 

geometry. Using p r o p e r t i e s given above we s h a l l prove the 
fo l lowing theorem. 

T h e o r e m 6 .1 . I f n i s an odd number then the 
n-dimensional p r o j e c t i v e geometry i s ( n + 2 ) - o r i e n t a b l e . I f n 
i s an even number then the n-dimensional p r o j e c t i v e geometry 
i s not o r i e n t a b l e . 

P r o o f . Because i n the n-dimensional p r o j e c t i v e 
geometry t he re e x i s t r e p e r s of the order (n+2), the o r i e n t a -
b i l i t y of such geometry, according lemmas 4.1 and 4 .2 reduces 
to the o r i e n t a b i l i t y of the p r o j e c t i v e group GP(n,R). 

Let n be an odd number. Then in GP(n,R) we can d e f i n e 
a subgroup G+ as f o l l o w s : 

G+ := { <A> : A 6 GL(n+1, R) , det A > 0 J . 

The s e t G+ i s we l l d e f i n e d . Indeed, i f det A > 0 then f o r 
every p ^ 0 de t 9 A = 9 det A > 0 because on account of 
the f a c t t h a t n i s an odd number, we have 9 n + 1 > 0 . Hence 
i t fo l lows t h a t the cond i t ion which d e f i n e s G+ does not de -
pend on the choice of an element from the c l a s s of a b s t r a c -
t i o n < A > . I t i s easy to v e r i f y t h a t G+ i s a subgroup 
of the group GP(n,R). Obviously G+ i s d i f f e r e n t from 
GP(n,R) and i t s a t i s f i e s the c o n d i t i o n : 

A<A> e GP(n,R) - G+ and A < B> e GP(n,K) - G+ < B > < A > 6 G+ 

- 992 -



Orientability of projective geometry 11 

By virtue of Lemma 3.4 G+ orients GP(n,R). Thus 
GP(n,R) is orientable and consequently the projective geo-
metry is orientable, moreover n+2 orientable (Lemma 4.2) . 

Now let n be an even number. First we shall prove that 
in this case every element of GP(n,R) can be represented in 
the form of a product of squares of some elements from the 
same group GP(n,R). We shall prove this fact using a lemma 
of E.Artin ( [ 9 ] , p.152). To formulate this lemma let us denote 
by E i j ^ i » i ^ 3» i»D = 1 ,2 , . . . , n the matrix which we ob-
tain i f we put the number cx instead of zero into i - th row 
and j-th column of the unit matrix. These matrices f u l f i l 
the relation: E.., (c*) • E. .(ft) = E. .(<x+^). Hence they are 

^ ^ / > T ' a M2 squares of nonsingular matrices E^^ 1« ) = ^ J . Now we 
shall give the above mentioned lemma: 

L e m m a 6.1. Every nonsingular matrix A can be 
represented as the product 

(6.1) A = B»D, 

where B is the product of the matrices E. . (a) and D is 
J 

the diagonal matrix. All elements of the principal diagonal 
of matrix D are equal to one except the last one which is 
equal to fJ. = det A. 

I f det A > 0 then M > 0 and the diagonal matrix D is 
also a square of some nonsingular matrix. Thus we obtain 

C o r o l l a r y 6.1. Every matrix with the positive 
determinant is a product of squares of nonsingular matrices. 

Prom this corollary i t follows that i f n is an even num-
ber then every element of the group GP(n,R) can be represent-
ed as a product of squares of elements of this group. Indeed, 
let < A > 6 GP(n,R). Since n+1 is an odd number, we can 
assume that det A > 0. Otherwise i t suffices to multiply 
A by ( - 1 ) . Then we have det(-1)a = ( - l ) n + 1 det A = 
= -det A > 0. Because det A > 0, from Corollary 6.1 it 
follows that the matrix A can be represented as a product 
of squares of nonsingular matrices. Therefore < H > is a product 
of squares of elements of G?(n,R). 
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12 M. Kucharzewski 

iiow we shall prove that the group GP(n,R) (n is an 
even number) is not orientable. Suppose, on the contrary that 
ri is a subgroup GP(n,R) which orients it. On account of 
Lemma 4.4 it follows that C(GP(n,R)) c H. This means that 
every square of an element from GP(n,R) belongs to H. Hen-
ce it follows that every product of squares of elements from 
GP(n,R) also belongs to H, because H is a subgroup. Above 
we have shown that every element of GP(n,R) is such a pro-
duct. Hence GP(n,K) C H i.e. GP(n,R) = H. The last equa-
lity is impossible because H has an index 2. Hence it fol-
lows that in GP(nfR) there exists no subgroup with index 2. 
The group GP(n,R) and consequently the n-dimensional pro-
jective geometry is not orientable if n is an even number. 
This completes the proof of Theorem 6.1. 
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