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ORIENTABILITY OF n-DIMENSIONAL PROJECTIVE GEOMETRY

By geometry I shall mean Klein geometry whose basic no~
tions were defined in [1] and [ 2]. The notions of orientabi-
lity and orientation of Klein geometry were introduced in [4],
[5], [6], In this paper I shall use the definition of o:*ien-
tation given in [5] which is equivalent with Z., Moszner 3 de-
finition given in [6] and which seems to me mnre convenient
in applications., The particular case of Klein geometry is
n-dimensional projective geometry over the field of real num-
bers., In the paper it is proved that such geometry of odd di-
mension is orientable but of even dimension is not orientable.
Orientability of projective geometry of an odd dimension was
shown by another method in [3] and [4]. In those papers was
also shown the construction of orientation in such geometry.
Thus the results of this paper are completion of papers [3]
and [4]. 0f course, the fact of orientability or non-orienta-
bility of correspondingly dimensional projective geometry is
well known but the proofs given in this paper are new. There-
fore I think that they are worth while to publish them. The
publication of below considerations is justified also by two
following facts, The first - the notions of orientability and
orientation are difficult and good knowledge of their diffe-
rent properties is of no little account. The second ~ these
considerations are the example of application of abstract no-
tions of Klein geometry and their propertles given in [1] and

[2)-
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2 M.Kucharzewski

Since papers [3] and [5] are in press, in the first place
I shall make known to main notions and properties which will
be necessary within this paper. For shortness of considera-
tions we shall avoid the repetition of proofs within the ran-
ge of possibility.

In section 1 I recall to mind the notions related with
Klein geometry. The examples of geometries are given in sec-
tion 2. Particularly in the second section I define the pro-
jective geometry which is basic in the paper. The important
notion of the reper is given in the third section. The fourth
section contains the definition of s-orientability and s-orien~
tation of‘geometry and their properties. Particularly there
is given ©relation between the orientability of geomet.y and
orientability of the group which determinates this geometry.
The fifth section contains the examples illustrating previous
considerations, The last section contains the proof of the
main theorem on orientability or non-orientability of n-dimen-
sional projective geometry of respective dimension.

1. Klein geometry and its basic properties
According to the definition given in [1], [2], the Klein
geometry is the triple

{(1.1) (M, ¢, £),
where M is an arbitrary set, G 1is an arbitrary group and
f denotes an effective operation of the group G on the set

M, i.,e. f 1is a mapping of the Cartesian product MxG
into M satisfying the conditions

(1.2) AxelMA 81185 € G f(f(x,g1),g2) = f(x,g2-g1),
(1.3) Ax eM fix,e) = x,

(1.4) Axed flx,g) =x = g

fl
(4]
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Orientability of projective geomeiry 3

In these relations e denotes the neutral element of the
group G. The geomstiry is called transitive if the operation
f 1s transitive, i.,e., 1f it satisfies the condition

(1.5) A xy,%x, € ¥ vg e G such thar f(x,,8) = x,

If in (1.5) there exists only one element g, then the ope=-
ration f 1is called simply transitive,
Let us consider two geometries

(1.6) (My, Gy, £,) and (M,, Gy, £,).

By a morphism of the first geometry into the second one we
understend a pair (h, ¢ ) where h : M—~M¥ is a mapping of
M into M and ¢ is a homomorphism 61 into Gz. This pair
must satisfy the condition

(1.7) © AxeM; Ag €6 fz(h(xJ. :p(g)) = h(‘f1 (x,s)).

If h is a bijection and ¢ 1s an isomorphism then geometries
(1.6) are called equivalent.
By an object of the geometry (1.1) we understand a triple

(1.8) (m, G, F),

where W is an arbitrary set, G 1is the same group which
appecrs in the definition of geometry (1.1) and F is an
operce.ion of G onto WM not necessarily effective i.e.

F : MxG—m satisfies conditions (1.2 and (1.3).

2. wxamples of Klein geometries

e It G be an arbitrary group. Let us denote by 1
a left-hand translation im G, i.e. the mapping 1:G x G—GC
defined as follows: A x e G and Ag ¢ G 1l(x,g) = g.x.
It is easy to verify that the triple

(2.1) (¢, G, 1)
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4 li.Kucharzewski

is a Klein geometry in the sense of the previous definition.
It is a transitive geometry, moreover it is simply transitive.
2. Let &= be an arbiftrary subgroup of G. Let us denote
by G/H the set of the left-hand classes of abstractions with
respect to the subgroup H. &n element of the set G/H which
contains a € G will e denoted by [a]. Then [a] = arH =
= {a-x T X € H.} If we shall define an operation F of the
group G on the set G/Z as follows

(2.2) [x] €G/HA g € GAF ([x],g) = g[x] = [gx]
then the triple
(2.3) (G/H, ¢, ¥)

represents an object of the geometry (1.1). The operation F
may not be effective., If it is effective then (2.3) represents
also some transitive geometry. The operation F is effective
if and only if H does not contain non trivial subgroups in~- -
variant with respect to G. In general each transitive object
of the geometry (1.1) is equivalent with some object (2.3},

If G is a Lie groip and H 1is a Lie subgroup then the tri-
ple (G/H, G, F) is called a homogeneous space (or Klein
space or transitive group of Lie transformations - (see [7],
p. 40).

3. Let us denote by GA(n,R) an affine group, i.e. the
set of pairs {(a,a) where A € GL(n,R), a e R® with the
operation A (A,a) ¢ GA(n,R) and A (B,b} e GA(n,R]),

(B,b)o (A,a) = (BeA, BeA + b). The triple

(2.4) (R", GA(n,R), £), flx,A,a) := Asx + a

is a Klein geometry which is called an n-dimensional affine

geometry.

4. In the set g1 .o g+l {0,e0.,0) } we introduce
»

a relation of proportionality ~ : A EeRET A perBt]
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Orientability of projective geometry 5

p~E <>VAeR p=AL. The quotient set P" : R/ ~
is called an n-dimensional projective space. Let us denote
by GP(n,R) := GL(n+1, R)/{QE; p#0, oeR} the quotient
group of the linear group GL(n+1,R) by its centre. The ele~
ments of GP(n,R) represent the sets of non-singular pro- '
portional matrices. An element containing the matrix 4 will
be denoted by the symbol <A>, It has the following form
<A> :=4Qh:A € GL(n+1,R), ¢ # 0}. The operation f of

the group GP(n,R) onto PR is defined as follows:
/\[g]ePnA<A> e GP(n,R), f([g], <A>) 1= [A-g]. Then
the triple

(2.5) _ (", ¢P(n,R), f)

represents a geometry which is an called n-dimensional pro-~
jective geometry.

3. Repers in Klein geometry

Reper is the basic notion of geometry., It is also the
basis for the definition of orientation of geometry. Now we
shall define a reper in a Klein geometry and we shall give
its most important properties. Let us consider the Klein geo~
me try (1.1). With every subset P C ii we can connect some
subgroup H(P) C G, which we define as follows: H(P) :=
i= {g € G: A xeP filx,g) = x} and we call it the sub-
group of non-effectiveness with respect to P. tThe opera~-
tion is effective if and only if H(M) = {e}. The set P
is called a reper it H(P) = {e}. Hence it follows that
according to the above definition the whole set i is a re-
per. We are interested in finding repers which have as little
points as possible. During the éourse of considerations we
shall restrict ourselves to finite repers, i.e. containing
the finite- number of points, In this case it is more conven-
ient to consider the sequences of points instead of sets,
Therefore we assume the following definition.
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6 M,Kucharzewski

Definition 3.1, By a reper of the order s
in the geometry (1.1) we mean a finite sequence of s diffe-
rent points from I, { p1,p2,...,ps}. p; # Py i 43§, i, =
= 1,2,44.,8 such that H({p1,p2,...,p8}3 = {e}

The following questions appear: Do there exist repers of
finite order in each geometry? How to find them? Do there
exist the minimal repers and how to find them? I do not know
answers to these problems, Some results on this field have
been obtained by Z.Moszner and J.Tabor, These results are
not published so far, It seems that there are very interesting
subsets having the property that addition of points from those
subsets does not change the group of non-effectiveness,

Using the reper of order s we shall define s-orientabi-
1lity and s~orientation of Klein geometry. With this aim first
we shall construct the productive object in the geometry (1.1).
This object is represented by the triple

5, 6, £°),

(3.1) (M
where M° := M x M x ... X M, A x=(Xq,X5000,%5) € 1° and
A geG £5x,g) := (£lxq,8)s ooy flxg,g)) € M,

The elements x from M® are finite sequence of s
elements from M., Particularly, the repers of order s be~-
long to M5, Iet us denote by Ms the set of all repers
of order s, We find that Ms is an invariant subset in the
productive object (3.1} (cp. [4], p.364, Hilfssatz 1.1). Then
we can construct the partial object (cp. [1] or [2], p.383,
def., 1.4), which has the form

(3.2) (Mg, G, fg),

where fs := fsl Ms X G is the contraction f° +to the pro-
duct Ms x G, The object (3.2) may not be transitive. Let
us denote by W g an arbitrary transitive fibre of the ob-
jeet (3.2). Of course it is an invariant subset and we can
construct the next partial object which is transitive
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Orientability of projective geometry 7

(3.3) (m_, G, Fg)y, F

g = fsl-msx Ge

Using this last object we shall define s-orientability of
geometry {(1.1).

Definttion 3,2, The geometry (1.1) is called
s-orientable if there exists an invariant decomposition of
the fibre mus of the object (3.3) exactly at two subsets ﬂl;
and uz;, i,e. if these subsets satisfy the conditions:

, + - + -
(3.4) Mo AOAMFFAM NI =0,

+ -
(305) ms Ums =us’
(3.6) Aw1,w2em£s(£=i1)/\ge(} V?=i1
such that

Fskﬁ,g), Fsﬂb,g)e mg.

The pair of subsets.ulg and ﬂl; is called an s-orientation
and the geometry (1.1) with chosen one of these orientations
we call s-oriented geometry.

4, Properties of s-orientation

In the definition of s-orientability there appears the
transitive fibre mus of the object (3.2). Therefore it seems
that s-orientability may depend on the choice of the consider-
ated transitive fibre., As it appears this is so i.e. s-orien-
tability does not depend on the choice of transitive fibre
w because the following theorem is true.

Theorem 4.1, If the geometry (1.1) is s-orien-
table with respect to some transitive #ibre- W of the
cbject (3.2) then it is g-orientable with respect to every
other transitive fibre of this object.

s’
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8 M.Kucharzewskl

The above theorem was proved in [5]. The proof is based
on the notion of orientability of the group and on the rela-
tion between the orientability'of the group and the orienta-
bility of the geometry determined by this group. This rela-
tion is given in two lemmas which we shall quote below. First
we shall recall the definition of orienfability of a group.

Definition 4.1, The group G we call orien-
table if it contains subgroup H with index 2. Then we also
say that G is oriented by the subgroup H.

The following lemmas are true.

Lemma 4.1, If the geometry (1.1) is s-orientable
tren the group G 1is orientable.

Lemma 4.2, If G 1is orientable and if in the
geometry (1.1) there exist repers of order s, then every
transitive fibre of the object (3,2) has an invarniant decompo-
sition 1nto exactly two non-empty disjoint sets and so the
geometry (1.1) is s-orientable.

Using the above lemmas we obtain immediately a proof of
Theorem 4.1. These lemmas show also that the orientability
of a geometry reduces itself to the orientability of the group
which determines the geometry.

Z.4oszner and J.Tabor in [8] have given some conditions
for the orientability of a group. We shall repeat those of
them which will be useful below.

Lemma 4.3, 4 subgroup H € G orients G if and
only if H#G and A ae G-H and AbeG-H aebe H
(Cpc [8]9 9-324).

To formulate the next lemma let us denote by C(G) the
set of squares of elements of the group G. This set is de-
fined as follows: C(G) := {x e G :V aeG such that
x = a? .

Lemma 4.4. If G is oriented by the subgroup
Hc G then C(G)c H (ep. [8], p.324).
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Orientability of projective geometry 9

5. Examples of the set of repers and of an orientation
of a geometry

1. Repers in the geometry (2.1) consist of points. Hence
they are of the firat order. The set of repers of the order
one is identical with G when it is transitive. If G is
orientable by a subgroup H then the geometry (2.1} is
1-orientable. An invariant decomposition has the form (H, G -H).
BEach subset H and G - H 1is a 1-orientation of this geome-
try.

2, In the n-dimensional affine geometry (2.4) there exist
repers of the order n+1, They are composed by n+1 points
(po,p1,...,pn) satisfying the condition

det(py = Py Py = PyseessPp - p,) # 0
The set of repers of (n+1) -st order W ., is transitive.
There exists an invariant decomposition of 7un+1 at exactly
two non-empty subsets:

m;+1 = {(po,p-',.o.,pn) H det(p1-p°’ooo’pn-p°) > 0}

and

mn+1 .= {(po’p1)ooo,pn) H det(p-]-po,no-,pn-po) <O}|

The geometry (2.4) is (n+1)-orientable, The group of this
geometry is oriented by the subgroup H := {(A,a): & ¢ GL(n,R)
det A> 0, a € Rn}.

3. In the n-dimensional projective geometry (2.5) there
exist repers of the order {(n+2). They are the systems of n+2
projective points ([Eo]’[§1]""’[§n+1]) with the following
property: every determinant of the (n+1) order formed from the
matrix (Ei) i =1,2,00e,0417, x = 0,1,4s.,0+1 is non-zero,
Geometrically this means that none of the n+1 points of the
given system lie on one n-' dimensional hyperplane. The set

.4 of considered repers is transitive, In the next section

n+2
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10 M.Kucharzewski

we shall see that this set may not have a two-elements in-
variant decomposition. Such situetion is when n 1is an odd
number, The corresponding invariant decompositions are given
in [4] or [5]. In this case the geometry is (n+2)-orientable,
When n is an even number the projective geometry is not
orientable,

6., Orientability of projective geometry

Now we shall consider the orientability of the projective
geometry, Using properties given above we shall prove the
following theorem,

Theorem 6,1, If n is an odd number then the
n-dimensional projective geometry is (n+2)-orientable. If n
is an even number then the n-dimensional projectiyve geometry
is not orientable. g

Proof. Because in the n-dimensional projective
geometry there exist repers of the order (n+2), the orienta-
bility of such geometry, according lemmas 4.1 and 4.2 reduces
to the orientability of the projective group GP(n,R).

Let n be an odd number., Then in GP(n,R) we can define
a subgroup Gt as follows:

¢t = {<A> : A e GL(n+1, R), det A > O} N

The set G* is well defined. Indeed, if det A > 0 then for
every © # 0 det o4 = ?n+1 det A >0 because on account of
the fact that n is an odd number, we have q>n+1 > 0. Hence
it follows that the condition which defines G* does not de-
pend on the choilce of an element from the class of abstrac-
fion < A>. It is easy to verify that ¢t is a subgroup

of the group GP(n,R), Obviously G' is different from
GP(n,R) =and it satisfies the condition:

A<A> € GP(n,R) - G' and A <B> € GP(n,R) - 6* <B> <i> e g*
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Orientability of projective geometry Ll

By virtue of Lemma 3.4 G' orients GP(n,R). Thus
GP(n,R) is orientable and consequently the projective geo-
metry is orientable, moreover n+2 orientable (Lemme 4.2).

Now let n be an even number. First we shall prove that
in this case every element of GP(n,R) can be represented in
the form of a product of squares of some elements from the
same group GP(n,R). We shall prove this fact using a lemma
of E.Artin ([9], p.152). To formulate this lemma let us denote
by Eij(a), 1 £ 3§, 1, = 1,2,0ee,n the matrix which we ob-
tain if we put the number o instead of zero into i-~th row
and j-th column of the unit matrix. These matrices fulfil
the relation: Eij(ﬁ) . Eij(ﬁ) = Eij(u+ﬁ). HenFe tgey are
squares of nonsingular matrices Eij(a) = [Eij \%%)] . Now we
shall give the above mentioned lemma:

Lemma 6.1, Every nonsingular matrix A can be
represented as the product

(6.1) A = B-D,

where B 1is the product of the matrices Eij(q) and D 1is
the diagonal matrix. All elements of the principal diagonal
of matrix D are equal to one except the last one which is
equal to 4 = det 4.
If det 4 >0 then u> 0 and the diagonal matrix D is
also a square of some nonsingular matrix. Thus we obtain
Corollary 6.1, Every matrix with the positive
determinant is a product of sgquares of nonsingular matrices,
From this corollary it follows that if n is an even num-
ber then every element of the group GP(n,R) can be represent-
ed as a product of squares of elements of this group., Indeed,
let < 4> € GP(n,R), Since n+1 1is an odd number, we can
agssume that det A >0, Otherwise it suffices to multiply
A by (-1). Then we have det(-1)a = (-1)7*1 det & = '
= -det A >0, Because det 4 > 0, from Corollary 6.1 it
follows that the matrix A can be represented as a product
of squares of nonsingular matrices. [herefore <a> is a product
of squares of elements of GP(n,R).
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12 M. Kucharzewskl

Now we shall prove that the group GP{n,R) (n 4is an
even number) is not orientable, Suppose, on the contrary that
4 1is a subgroup GP(n,R} which orients it. On account of
Lemma 4,4 it follows that C(GP(n,R)) ¢ H., This means that
every square of an element from GP(n,R) belongs to H. Hen-
ce it follows that every product of squares of elements from
GP(n,R) also belongs to H, because H is a subgroup. Above
we have shown that every element of GP(n,R) is such a pro-
duct. Hence GP(n,k) C H i.e. GP(n,R) = H., The last equa-
1ity is imposgible because H has an index 2., Hence it fol-~
lowa that in GP(n,R) there exists no subgroup with index 2.
The group GP{n,R) and consequently the n~dimensional pro-
jective geometry is not orientable if n is an even number.
This completes the proof of Theorem 6.1,
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