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1 . Introduction 

Predict ion problem, which i s r e c e i v i n g much a t t e n t i o n r e -

c e n t l y , has been viewed mostly in two d i r e c t i o n s . One i s .the 

c l a s s i c a l approach based on the independence of s t a t i s t i c s 

and t h e i r exact d i s t r i b u t i o n s . Such i s the case in Lawless 

[ 9 ] , Paulkenberry [8], Kaminsky, Luks and Nelson [7 J and a lso 

in Lingappaiah [10] , [i 1] . But, another method, i s the Bayes 

approach with poster ior d i s t r i b u t i o n s and su i tab le p r i o r s . 

Such works are seen i n Bancroft and Dunsmore [ l ] , Aitcheson 

and Dunsmore [2] and Dunsmore [3] , [4] . Our development here 

i s based on l a s t of these r e s u l t s Dunsmore [4] and Lingappaiah 

[ 1 1 ] . Our main motivation, here , i s about what can be done 

where more than a pair of samples are a v a i l a b l e . What we have 

done here i s to consider the poster ior d i s t r i b u t i o n at a c e r -

t a i n stage as the prior f o r the next s t a g e , on the l i n e s of 

Khan [12] and in so doing, we have developed the predict ive 

d i s t r i b u t i o n f o r an order s t a t i s t i c at the sth stage ((s+1)th 

sample) and a lso f o r the d i f f e r e n c e of two s t a t i s t i c s at t h i s 

s tage . We have discussed the variance in each of these two 

cases in r e l a t i o n to number of s t a g e s . Also , we have evaluated 

the probabi l i ty i n t e g r a l f o r both the s i t u a t i o n s and p a r t i c u -

l a r cases are considered f o r i l l u s t r a t i o n s . 
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2 G.S. Lingappaiah 

2. Prediction of y a = xs(k0) 
(2a). Consider (s+1) samples each drawn from a gamma popu-
lation 

(1) t(x) = e~®x8Rxa-1/n«)i x,e ,a, > C. 

Let y^ denote the k^th order statistics in the sample of 
size N^ at the stage i ((i+l)th sample). That is, y^ = 
= Xjj^ j and let the sample size at stage 0 (sample 1) 
be n. Also, let a be a known parameter taking an integer 

n 
value. In this case, x. = x from the first sample is 

i=1 1 

sufficient for 6 and x has the gamma distribution with the 
parameters noc and 9 . Let the prior for 8 be gamma with 
parameters h and g. Then it follows, that the posterior 
distribution is 

(2) f(8|x) = e - 0 H H G e G - 1 /r(G), 

where H = h + x, G = n«+ g. 
Wow the distribution of = x-j^ )» that is, the k^th 

order statistic in a sample of size N1 from the second sam-
ple or at stage 1, is given by, on the lines of Lingappaiah 
[11] as. 

(3) fcy.ie) = c Y _ ( : ( - D 1 % ( o " d - i ) 9 0 ^ ' 
r^ov 1 ' t1=0 

where 1 k., ̂  N1 , C1 = [1 /B(N1 -k1 +1 ,k., )r(<*)] , d1 = b1 - 1 
and b1 = K^-k^+r^ + 1 and a ^ a ^ ) is the coefficient of 

xt k ^ in the exnansion of I 2 , x /k!J . The recurrence rela-
V k = 0 r 

tion satisfied by a.'s is given in Lingapoaiah IIij. From 
(2) and (3), "/e have the predictive distribution at the first 
stage a3 
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Prediction problem in gamma population 3 

(4) f(y.,|x) = C 1E 1A 1B 1 

cx+t.,-1 r 
y1 ' r (G+«+t1)H

U 

_r(G) (ri+bl7l )
u + < x + t 1 

where 

:5/ L , - L E and A1 = 
k.,-1 

(-1) and B1 = a t(a,d 1 ), 

If « = 1, (4) reduces to (2,1) of Dunsmore [ 4 ] . Now suppo-

se we take the posterior for the first stage, that is, 

f(e|x,y^) as the prior for the second stage and considering 

a similar expression for y 2
 = x2(k ) axid t*15^ i st 

the pdf of the k 2th order statistic in the sample of size- H 2 

at the second stage (3rd sample), we have the predictive dis-

tribution at stage 2 as 

(6) 
C 2 L 1 L 2 H A i V i 1=1 

a+t^-1 
r( 5+t +t +2o<)/i 

G+t^+tg+Sor 

t.+o(-1 G+t +o( 

where c 2 = [1 /B(H2-k2+1,k2)r(o<)] , b 2 = ÏI2-k2+r2+1 ,d2 = b 2-1. 

and Q-, = H+b^y^, Q 2 = Q 1+b 2y 2 and E., are each two-

f o l d . Continuing on this line and considering the posterior 

at the stage (s-1) as the prior for stage s, we have the 

predictive distribution for the sth stage as, 

(7) f(ys|yv.. 

s <*+t.-1 U*+t + Oc 
E„... E„ s 1 s n AiB.yi

 1 

1=1 1 1 x 
r(u'+ts+oc)/qs

 s 

(L) 

(7a) where (L) = E 1 ... L g ^ 
r—r t +0,-1 
F T A i W 
i=1 
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4 G.S.Lingappaiah 

with u* = G + (t1 + . . . + t g ^ ) + (s-1 )<*, 

Qs-1 = H + V l + ••• + bs-17s-1' Qs = Qs-1 + V s * 

o , b^, d i f A^ and B.̂ , similar to def init ion above. Now, i f 
we set « = 1, in (7) , we get 

(8) f ( y s U , y 1 . . . y s _ q ) =• 
CS ^ V 

S 
n 

.1=1 
A i r(G' + s ) /q j + s 

L 1 ' • ' ^S-1 
r s-1 

n 
1=1 

A i ' r(G'+s-i)/QsG^s-1 

where G' = n+g and c'_ is c with ot = 1. Further i f we s s 
set « = 1, and ^ = 1 , 1 = 1 , . . . , s in (7 ) , (that i s , we 
are predicting the f i r s t order s tat is t ic at the sth stage in 
terms of the f i r s t order stat is t ics at the ear l ier stages 
from 1 to s-1) , we get 

N r(G' +S)/(Q°)G ' + s 

(9) f ( z s |x , Z l . . . , B - 1 J = — § , 
r(G'+S-1)/(Q°_1 ) + s _ 1 

where Q°_., = H + N ^ + . . . + V l z s - 1 ' Qs = Qs-1 + V s w i t h 

z i = x i ( l ) ' 1 = 1 » » » * f s * I f we set s = 1 in (9 ) t we get 
(2.2) of Dunsmore [4] with QQ = H and n = k. Since (7) 
is a pdf, we have 

(10) E„ a b r ( t + « ) / b ! s + 0 < = 1 s s s s s 

and i f « = 1, (10) reduces to 

k-1 
(10a) • 

r=0 
where b = H-k+r+1. 

Y ^ ( k ; 1 ) ( -D r /b = B(H-k+1,k), 
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Prediction problem in gamma population 5 

And if ^ = 1, i = 1 , s in (10), we have 

(c-1 )(N-1) 

(10b) ) at(a,N-1 Jrfc+tJ/N
11 = H0""1^«) 

t=0 

and if N = 2 in (10b), we get 

0.-1 

<"•> L I C T 1 ) -
t=o ^ 

(2b). Discussion on the variance. Our main aim in develop-
ing (7) is to show that the variance goes on decreasing as 
the number of stages increase, which makes sense intuitively 
too* The same thing can also be achieved, in addition, by a 
proper choice of parameters as we see shortly and we have 
quite a few parameters to deal with such as, h, g, n, N^, k^, 
i = 1,...,s, and s itself. In general, we have from (7), 

,8-1 

) - <T) % c, . " ^ r j w r 1 ) - V . I V H w C r . 

where denote rth raw moment of y g. Obviously, if 
r = 0, (11) reduces to (10). Though it is slightly complex 
to find variance, in general, however if a = 1, k^ = 1, 
i = 1,...,s in (11), we have 

<12> *p(b) " ( l ^ - ) )^Uo-D/r(u0)] , 

where Qg_i is ® s above and Uq = u* with « = 1. Prom (12) 
we have the variance at the stage s as 

(13) " 2 ( a J = • B, 
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6 G. S,Lingappaiah 

where ii = u0/(u0-1 ) (uQ-2) which is fast decreasing as s 
increases for given G' . Though Q°_1 increases as s in-
creases (each time by a term), /^(s) c a n b e m a d e s m a 1 1 a s 

s increases and also by a proper choice of N g and n,g. 
Again, if k i = 1 , i = 1 « = 2, N-, = 3, s = 1 in 
(11), we get 

(14) Ec 'u2(^) =~W\ 278G + 398 
_(G-1)2(G-2). 

(2c). Probability Content; Now from (7), again, we have 
F(a) = p(yg < a) as 

(15) F(a) c s E 1 . . . L s 

s-1 
F f A.B.y.1 II 1 1J1 
i=1 

t. +<x-1 r( u*+ts+a) 
^ B i — s s * t + <* 

b 3 s 

a* t +ot-1 s f W 5 dw 
J u*+t +0> • " / \ s 0 (1+w) 

where a* = ab /Q0 1 and if u* is an integer (with g as S S— I 
an integer), we can express the integral part of (15) in 
terms of the Binomial cumulative probabilities as 

/ta+u*+<*-1 \ 

(15a) B(u*-1,ta+u*+o<-1,1/(l+a«))/(ts+«) I ^ J , 

k where B(k,n,p) = ĵT̂  b(x,n,p) and 
x=0 

a . 
(16) • j jw m- 1/(l+w) m + n]dw = B(n-1 ,m+n-1 ,1/1+a)/m 
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Predic t ion problem in gamma population 7 

Again with F ( « > ) = 1 , (15) reduces to ( 1 0 ) . Now, i f we s e t 
a r 1 , )c = 1 , i = 1 , . . . , s i n ( 1 5 ) , we get 

a o V Q s - 1 
(17) F ( a 0 ) = ( C + s - 1 ) J [ d w / ( l + w ) G ' + s ] 

0 

and i f s = 1 , i a ( 1 7 ) , we get (23) of Dunsmore [ 4 ] , which 
i s 

(18) a Q = ± ( l - i r 1 / 6 ' - 1 where P(BQ ) = 6 . 

From (15) using ( 1 5 a ) , we can c a l c u l a t e F ( a 0 ) f o r va-
lues of OL i 1 , which gives the p r o b a b i l i t y below aQ f o r 
d i f f s r e n ; i n t e g r a l values of « . For example, i f we se t 
8 = 1 , ^ = 2 , we have from ( 1 5 ) , (15a) and ( 1 8 ) , 

« - 1 
19) F ( a 0 ) ( " T 1 ) ^ B I O - I . O w p - I . p ) , 

r=0 

where p = (20 //'G with = . 9 5 . Here again C-' = n+g 
and G = nof+g. 

3 . P r e d i c t i v e d i s t r i b u t i o n of the d is tance '^s = x s ( t c )~xs(k ) 
s s 

( 3 a ) . Now, we develop to get the pred ic t ive d i s t r i b u t i o n of 
the d i f f e r e n c e Tg = x s ( k , where 1 < k'B < kg s S B , 

s s 
that i s , the d i f f e r e n c e between the k th and the k' th o r -s s 
der s t a t i s t i c s in the sample of s i z e H at the stage s . 

< 1 s 

Obviously, i f k 0 = 1 and k = U_, we are dealing with R , 
S S S o 

the range at stage s . How from Lingappaiah [ 1 1 J , we have 
that 

T = x ( k ) " x ( k ' ) ' 1 < k 

(20) f (T|e) = c 0 E f l A ° 3 ° e - 8 ! E V r V { u ) 8 , ' A ; u l T > 0 , 
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8 Ci. S . Lingappaiah 

where A0 = a t ( a , i + j ) , B° = b ( « , J - 1 ) , 

c ° = H! / (N-k) ! (k-k ' -1 )r(k' -1 ) ! r 2 (o , ) , 

i i s from 0 to k -1 , a = t+a+m, 

j i s from 0 to k-k' -1 = A, v = p+«-m, 

(21) t i s from 0 to ( » - 1 ) ( i + j ) and w = ii-k' +1+1 , 

p i s from 0 to (« -1 ) (tf-1 ) , 6= N-k'+ j , 

m i s from 0 to (p+oc-1), 

- ( t ' i ' ) ( 5 ) ( p + r 1 ) < - " 1 + 3 + J 

and i + j i i s the c o e f f i c i e n t of x^ in the expansion 

cf I 2 X /lei J and t>p(cx, tf-1) i s the c o e f f i c i e n t of 
V k=0 / / « - 1 \ 6-1 

(x+T)p in the expansion of I ^ U + T / k / k ' j . Ifow from (2) 
\ k=0 ! 

and (2C), v<e get the predict ive d i s t r i b u t i o n of at s t a -
ge 1, as developed in sect ion 2, 

r 

(22) f d ^ J - o ? E-, J o U 1 , ^ > 0 , 
r(G)(H+T1ff1) ' w1 

where c ° , i 1 , , t 1 , m^, p1 and u.,, , ŵ  , , are as 
in (21) with new subscr ipt 1 and A® - a .̂ (<x, i^+j^ ) and 
B? = b (<*, tf.,-1). Kow, i f we put N., = 2, « = 2. kl = 1, 

P"l 1 1 ' 
in (22 J, we get 

J - n r(G+2-m)r(2+m)T.1"m 

.123) f { T , | x l - 2 £ . G+2-ai^2+m • 
aiaO rtc-XH+T^ 

Kow, developing exactly on the l i n e s of sect ion 2, by taking 
the pos ter ior d i s t r i b u t i o n f o r stage ( s -1 ) as the pr ior f o r 
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Prediction problem in gamma population 9 

stage s and considering the f(Ts|8) similar to (20), we 
have now the predictive distribution of T at stage s as 

w f(Tsix>Ti v = t m ) c ; * I - e 
1=1 

/ V 4 
.r( v_ £)/Q s

s , 

8-1 v -1 U 
where M = E 1... L j~j Q^^bJ'I^1 r( i/w/n t 

1=1 

•9,-1 

with 

(25) 
£ = U+(*14-... + Vs_1 ), G = nt* + g 

s-1"s-1 "s-1 s s 

and w^, u-̂  as in (21) with new subscripts 1 and 
= at (c*, i-j+^J, B^ = bp (a, tf.^-1 ) and again is 

five-fold on i.,, m-̂ , t^, and p-̂ . 

(3b). Probability integral; Prom (24) we have p(Tg < a) = Pla) 
as 

s-1 
(26) F(a) = ̂  o°I r..I s n ' i t t t ' r W f 

1=1 

=) 5 5 o S ¿j r(i 
a« Vs-1 

<c + V / - t +9 
o (i+'O 

where a - a 3/( and again as v/e .~id in section 2, if 
£ is an integer (with integer g), we can express the inte-
gral part of (2b) as 
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10 G.S.Iingappaiah 

(26a) B(e -1, £+»a-1, 1/1+a** }/*g 
t + » B -1 

k í -1 

Because of P(°° ) = 1, we have from (26), similar to (10), 

(27) V s B s r ( » s , r ( V / w s S ^ 1 , 

For example, i f s = »1 , = 2, k1 = 1 , then (26) reduces to 

(27a) F(a) = 2- ( 0 (-1 ' ] H \ B(G-1,G+«-m-1,1 / ( l + - f ) 
m=0 2 

with QQ = H and from (27a) we get (10c) again, we can com-
pare (26), that is P(Tg < a) with P(T < a) in Lingappaiah 
[11] which is 

(28) P(T < a) = c°L[ f fA0B°r(u)r (v )/ i9wu ] 
v -1 

1 - e-ai(a<5)k/k! 
k=0 

(28) gives the probability of T í a in the current sample 
while (26) gives the same (current sample is not needed now) 
based on the ear l ier samples. (26) and (28) are both easy to 
calculate using either Incomplete Beta and Gamma integral ta-
bles or Cumulative Binomial and Poisson tables. Also, further 
i f « = 1, ¿1 = 1, s s 1 in (26) we have 

(29) F(a0 ) =B(G ' -1 , G' , 1/(l+a0/H)) 

again with G' - n+g. From (29), using ( 1 6 ) , we get 

(29a) aD = [ d - t f ) - 1 / G ' - l ] 
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Prediction problem in gamma population 11 

and as we did in section 2, we can calculate Flag) from 
(26) and (26a) for different values of a ̂  1. 
(3c). Variance: Again, as in our section 2, we try to show he-
re also, that the variance is affected by the number of sta-
ges . ¿'or from (24) , we have 

M <"r(s) = it) W " } 
1=1 

/.gain if r = 0, (30) reduces to (27) and <"'r(Sj i s the rth 
raw moment of Tg. 

Suppose H^ = 2, b = 1, k̂  = 1, V/e have from (30) 

«-1 
2 I r ( m + « ) r ( o t -m+r)r(G-r)H 

( 3 1 ) 2cy+m r(G) 

and if r = 0, we have (10c). Also from (30), we have for 
o = 1, = 2, i = 1,...,s, k^ = 1, i = 1,...,s. 

( 3 1 a ) = r ( r + 1 ,r(G' +s-1-r)<Qs-1 ^/^(G'+s-D 

which gives 

(31b) ii l [ a ) = (Q°_1)2(G'+s-l)/(G'+8-2)2(G'+s-3). 

(31b) shows that the variance, as jn section 2, can be reduced 
as s increases for given G' despite the fact that 
increases as s increases. Now in (31), if a = 2, we have 

(31c) /i2(l) = H2(7G+2)/4(G-1 )2(G-2). 
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12 G.S .L ingappa iah 

How, we can compare t h i s v a r i a n c e of T w i t h t h a t of T 
i n Lingappaiah [l ' l] » which g i v e s , 

(32) M'^y) = c 0 Z . f i A 0 B ° r ( v + r ) r ( a i / w V + r 

which a g a i n f o r iJ = 2, a - 2, k' = 1 , g i v e s 

(32a) = \ ^ ( i ) r ( 2 - m + r ) r ( 2 + m ) / 2 m . 
m=0 

4. Comments 
At t h i s p o i n t , we would l i k e to make some comments on our 

development . V/e have assumed t h a t <x t o be known i n ( 1 ) and 
a l s o t a k e s only i n t e g e r v a l u e s . Otherwise A, B ' s do not make 
s e n s e . F u r t h e r , though few r e s u l t s of S e c t i o n s 2 and 3, a re 
s i m i l a r f o r example, of P (a ) and f o r p a r t i c u l a r 

v a l u e s , each one has t o be deduced s e p a r a t e l y , s i n c e one c a n -
not be ob ta ined from the o t h e r . Also , i n the a p p l i c a t i o n of 
the r e s u l t of Lingappaiah [ l l ] s we need j u s t one s i n g l e sample , 
which i s p a r t l y a convenience and p a r t l y a l o s s of i n f o r m a t i o n 
on e a r l i e r samples whi le our p r e s e n t method r e q u i r e s few e a r -
l i e r samples , which of course i s a problem of economics . Our 
r e s u l t h e r e , i s mainly developed t o show, how we can make use 
of e a r l i e r i n f o r m a t i o n , though , based on the v a r i a n c e , i t 
does t e l l , t h a t more we sample, b e t t e r r e s u l t s , we can e x p e c t . 
Also , i t i s to be noted t h a t we may p r e d i c t y g a t s t a g e s , 
based on any o r d e r s t a t i s t i c i n e a r l i e r samples f rom 2 t o s 
and i t may be a m a t t e r of s tudy as to which ( s - 1 ) t u p l e 
( k ^ . . . . , k g _ 1 ) g i v e s the b e s t p r e d i c t i o n of y g . Same i s the 
s i t u a t i o n i n s e c t i o n 3 a l s o . IVe could have developed the p r e -
d i c t i o n of T based on any o r d e r s t a t i s t i c i n e a r l i e r s t a -

s 
g e s : However, ba s ing Tg on i s in one way 
mean ing fu l and s e c o n d l y , we may no t be ab le t o g e n e r a l i s e 
f rom s t a g e 1 t o s t a g e s as we did i n s e c t i o n 3. F i n a l l y , 
i t i s t o be noted t h a t our method of t r e a t i n g the p o s t e r i o r 
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Prediction problem in gamma population 3 

distribution at the stage (s-1) as the prior for stage s is 
quite logical in the sense, we carry along all the prior in-
formation with us all through the development. Again, in our 
method, the experimenter has quite a choice of selecting any 
number of samples as he desires. Obviously, more samples, the 
current result is based on, the better it will be. For exam-
ple, if he desires to discard first (sq-1 ) samples s^ < s, 
then simply take the s^th sample as stage 0 and proceed further 
on, since the samples are completely independent. Incidentally, 
there are many ways of using the earlier information at the 
current stage. For example, after a certain number of samples 
are available, one may wish to pool all this information, by 
taking the product of densities of order statistics at these 
stages, and treat this as stage 0 with the current situation 
as stage 1. However, though the author has not compared these 
two approaches, it is felt that our present method is more 
reliable and meaningful in the sense, that at each stage, 
previous information is filtered for the next stage. 
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