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BAYESIAN APPROACH TO THE PREDICTION PROBLEM
IN GAMMA POPULATION

1. Introduction

Prediction problem, which is receiving much attention re-
cently, has been viewed mostly in two directions. One is .the
classical approach based on the independence of statistics
and their exact distributions., Such is the case in Lawless
[9], Faulkenberry [8], Kaminsky, Luks and Nelson ﬁ] and also
in Lingappaiah [10], B1]. But, another method, is the Bayes
approach with posterior distributions and suitable priors,
Such works are seen in Bancroft and Dunsmore [1], Aitcheson
and Dunsmore [2] and Dunsmore [3}, [4]. Our development here
is based on last of these results Dunsmore [4] and Lingappaiah
[11]. Our main motivation, here, is about what can be done
where more than a pair of samples are available., What we have
done here is to consider the posterior distribution at a cer-
tain stage as the prior for the next stage, on the lines of
Khan [12] and in so doing, we have developed the predictive
distribution for an order statistic at the sth stage ((s+1)th
sample) and also for the difference of two statistics at this
stage, We have discussed the variance in each of these two
cases in relation to number of stages., Alsc, ws have evaluated
the probability integral for both the situations and particu-
lar cases are considered for illustrations,
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2. Prediction of Is = *g(k_)
v S—

(2a). Consider (s+1) samples each drawn from a gamma popu-
lation

(1) £(x) = e~9%gx xa—1/r1a); X480 405 > Co

Let J5 denote the kith order statistics in the sample of
size N, at the stage 1 ((i+1)th sample). That is, ¥ =
= X (x, ) and let the sample size at stage 0 (sample 1)

i

be n, Also, let « be a known parameter taking an integer
n

value, In this case, Z:: X, =X from the first sample is
i=1

sufficient for 8 and x has the gamma distribution with the
parameters no« and 8 . Let the prior for & be gamma with
parameters h and g. Then it fcilows, that the posterior
distribution is

(2) £{o|x) = e~ §¢ aC-1/r(q),

where H=h+ X, G =no+ g,
Now the distribution of V1= Xk, ) that is, the k1th
1

order statistic in a sample of size N1 from the second sam-
ple or at stage 1, is given by, on the lines of Lingappaiah

[11] as,

K~ (o=1)d,, 8y,5,
K. ~4 r Y171 o(+t,1 rx«-t,}-"l
1 1 ; - 0 .
- é - a, (x,d, )e J ’
r‘]:O t1=0

where 1<k, <N;, C; = [}/B(N1-k1+1,k1)P(a)], dg = by =1
and b, = N,-k,+r,+1 and at(a,d1) is the coefficient of

=1 At |
xt in the expansion of (Z xk/k!) . The recurrence rela-
. k=0
tion satisfied by a;'s is given in Lingappaiah [11]. From

(2) and (3}, we have the predictive distribution at the first
stage a=s
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cx+t1—1 G
y I {G+o+t., JH
(4) f(y,|x) = ¢,I,4,B, | = !
= ’
1 =171 F((’) (H+b1y1}h+°&+t1 i
where

k. =1 r
(54 2:1 =2. ). and Ay = ( ; ) («<1) ' ana By = aglo,dy),
r1 t1 1

If « = 1, (4) reduces to (2,7) of Dunsmore [4]. Now suppo-
se we take the posterior for the first stage, that is,
f(elx,y1) as the prior for the second stage and considering

a similar expression for ¥, = X,(y and (3), that is,

)
2
the pdf of the k2th order statistic in the sample of size*N2
at the second stage (3rd sample), we have the predictive dis-

tribution at stage 2 as

2 o+t , =1 G+t,'+t2+2°,
c221 22 l']_-_[_ AByyy 1P(G+t1+t2+2q)/Q2
(63 f(yzlx,y,]) = L=l t_+o1 GHE v '
LaB,y, (Gt ra)/a,

where ¢, = [1/B(N2-k2+1,k2)F(m)], b, = No=k,4ry+1,d, = by-1,
and Q, = Hebyy,, C, = Qq+b,y, and 21, L, are each two-
-fold. Continuing on this line and considering the posterior
at the stage (s-1) as the prior for stage s, we have the
predictive distribution for the sth stage as,

S o+t , =4 u u‘+ts+q
e ).'.1... L T A{B.y; P+t _+0)/Q
(7) BT [9q0reer¥yq)= 1=
S 1"“' s-1 (L) ')
Se1 1

PR T »
- _ i “y el
(72)  where (L) = E; ... L, B AsBiy4 Plu”)/Cg_4
i=1
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with u* =G + (45 + oo0 + t5_4) + (8-T)o,

QS—1 =H + b1y1 + oee + bs_1ys_1' QS = QS—1 + bsys'

Cqs bi’ dyy Ay and Bi' similar to definition above. Now, if

we set «x =1, in (7), we get

8 '
c;;.nZS[TTAJ/%d+ﬂmg+s

i=1
(8) f(ys ,x'y1 .o oys_»] ) = Z‘ Z‘ rs=1 I G’ ) 3
10.9 5-1 []‘_:1 Ai]P(G +s—1)/QS_1
where G = n+g and ci is cg with a= 1., Further if we

set a=1, and k; =1, i = 1,.00,8 1in (7), (that is, we
are predicting the first order statistic at the sth stage in
terms of the first order statistics at the earlier stages
from 1 to s-1), we get

. NSP(G'+S)/(Q3)G,+B

(9) £a]Xs2q oee g 4

(e +8-1)/(Q2_4 )% *=7

where Qg_1 =H + N1z1 +...+Ns_1zs_1, Qg = Qg_1 + Nz with

23 = X5(q)r 1 =1y00e,8. If we got 5 =1 in (9), we get
(2.2) of Dunsmore [4] with Q2 = H and n = k. Since (7)

0
is a pdf, we have

‘ Tt
(10) cgLg Ag By Mtgrad/v " =1
and if «= 1, (10) reduces to
k1
(108) - Y (57) (<17 = Bk,
r=0

where b = H-k+r+1,
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And if k; =1, i=1,..0,8 in (10), we have

(oc=1) (W=1)
(10b) E agla,N-1)"le+t) /8" = ¥ r(a)
£=0

and if N = 2 in (10b), we get

o =1
(10¢) ) (‘”;"‘) Ao,
t=0 2

’

(2v)., Discussibn on the variance. Our main aim in develop~-
ing (7) is to show that the variance goes on decreasing as

the number of stages increase, which makes sense intuitively
too. The same thing can also be achieved, in addition, by a
proper choice of parameters as we see shortly and we have
quite a few parameters to deal with such as, h, g, n, Ni» ky»
i =1,e4ey8, and s itself. In general, we have from (7),

8=1
t o= 1

, . . « t toer
(11 ) yr(l) b (T) cl ,:'1 cee Zs( ‘!.Bl,ii )' A.B'f'(t'mr) r'(u'-r) /Q:—:r bl. *
1=

where ﬂi(s denote rth raw moment of Tge Obviously, if
r = 0, (11) reduces to (10). Though it is slightly complex
to find variance, in general, however if o =1, k; = 1,

i =1,eee,8 in (11), we have

QO
(12) Hin(g) = <Ns':) [F(r+1)F(u0-r)/P(uc)],

where QJ_, is as above and ud = u* with «= 1., From (12)
we have the variance at the stage s as ' '

Q®_\?
(13) “a(s) = <%‘) * By

8

- 911 -



6 : G.3.Lingappaiah

where & = uO/(uo-1)2(uo—2) which is fast decreasing as s
increases for given G'. Though Qg_1 increases as s in~
creases (each time by a term), Ho(g) can be made small as
s increases and also by a proper choice of Ns and n,g.
Again, if k; = Ty 1 = 1,000y8, =2, Ny =3, 8 = 1 in
(1), we get

(14) u . B [2186 + 398
201) 78 | (go1)%(e-2) |

(2¢). Probability Content: Kow from (7), again, we have
Pla) = p(ys < a) as

s=1 »*
t, +0= Plu*+t _+
1 ]—[ABvlquB‘—s—i-
(15) F(a) =mcs E,]o--}:s %175 s's % Gt
3 - £
1=4 U1 by
a* b o=
W dw
- w*+t_+o
0 (1+w)

where a* = ab /Qg_ 4 and if u* is an integer (with g as
an integer), we can express the integral part of (15) in
terms of the Binomial cumulative probabilities as

t_+u*to=1
(15a) B(u‘—1,ts+u‘+«—1,1/(1+a“))/(ts+a) <\S >,

u* =1
k
where B(k,n,p) = Z. b(x,n,p) and
x=0
‘a
(16) 'GI'[wm'1/(1+w)m+n]dw = B(n-1,m+n-1,1/1+a}/m (m;e;1).
0
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hgain with Floe) = 1, (15) reduces to (10). Now, if we set
1,

=1, k; = i = 1,eee,8 in {15), we get

i
N_/QS_, ,
(6" +8-1) [dw/(1+w)G +5]
0 ’

~
it

(17} F(ao

and if s = 1, in (1T}, we get (23) of Dunsmore [4], which

(18) a, =%1 [(1-6)'1/G‘ -1] where Fla,) = 6.

From (15) using (15a), we can calculate TF(ay) for va-
lues of o £ 1, which gives the probability below a, for
diffsren: integral values of o« . For example, if we set
s =1, N, = 2, we have from (15), (15a) and (18]},

ot -

(19) F(a = q_1‘§:: («+r-1) —— B(G-1,G+x+r=1,p ),

=

where p = (20)"1/C with = .95, Here again G = n+g

and G no+g

3. Predictive distribution of the distance T "Xs(k )~ s(k)

(3a). Now, we develop to get the predlctlve dlstrlbutlon of

the difference Ts = Xg(k )'xs(k ) where 1 = ks < ks < Ns,

that is, the difference between the ksth and the k;th or-
der statistics ip the sample'of size Ns at the stage s,
Obviously, if ks = 1 and ks = V we are dealing with RS,
the range at stage s. Now from Llngappawah [11] we nave

that

T = X(k}-X(k’ ) 1<k <k SN,

(20) £(r]e) = L Q4%8% 878"~ \p(y)8? 41, T > 0,
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where 4° = a,(x, i+j), 3° = by (e, s-1),
¢ = H1/(N-k)t(k-k =1)1(K -1)1P2(a),

[ i is from 0 to k -1, u = t+o+m,
j is from 0 to k-k'-1 =2, V = pto-m,
(21) { t is from O to (@=1){i+j) &and w = N-X +i+1,
p is from O to (x-1)(6-1), 6= N-k +3,
m is from O to (p+a-1),

o (7(3) ()

and at(a, i+j) 1is the coefficient of xt in the expansion

o =1 A\ 1+3

or [ ) ke and b («, 5-1] is the coefficient of
k=0 adadl -1

(x+T)P in the expansion of }E:: (X+T}K/kJ . Now from (2)

. k=0 /
and (2C), we get the predictive distribution of T1 at sta-

ge 1, as developed in section 2,

040+;G V-1
24181 r(G+v1)T1 I"(u1)
o
F(G)(H+T161) L wy

(22)  fl,|x) = L,

where c?, i1, j1, t1, mys Dy and Uqy 91, w1,,91,_ are as
in (21) with new subsecript 1 and 4§ = ay (o, i;434) and
1

B = bp1(a, 6,~1). Tow, if we put Iy =2, o= 2, K, =1,

in (22}, we get

o L4y rlGs2-n)r(2+m)T] "

F -

{231 £lrylx) = 2 (m)  G+2-my2+m "
) r(eitEeT, ] -

Kow, developing exactly on the linec of section 2, by taking
the posterior Jdistribution for atage (s-1) as the prior for
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stage s &and considering the f(TSIS) similar to (20), we
have now the predictive distribution of Ts at stage s as

s v, -1 n
> 7 -1 .0 0,0m 1 1,
(24) 2(7 [xT et =5 cszq...zs[l | Q478 Y T (u) My
1=1

vs+¢
Py gre) /.

-1
V. -1 u
. [ = ' 050, 1 1 3
wheve M = Lquos Lo [ | 9989800, % riuyism treind
1=1
with

= G+(91’~'—...+VS_1), G = noc+ g
(25}
C‘S-1 = H+T1 61+000+Ts_1 68'—1’ QS = Qs_1+Tsd‘s

and cg, vy, Wy, u; as in (21) with new subscripts 1 and
.0 _ . . o _ - i

Ay = atl (o, i,+#37)s By = bpl(u, 6,-1) and again Z]_ is
five-fold on 1i,, jl, Ly tl, and Py

{3b). Probability integral: From (24) we have P(Ts za) = Fla)
as

S=1
V. ~1 u
_.a o0 0,0, 1 1
(26) P(a) = 7313 cszl...zsl |QIA1B1T1 F(u M x
1=1

" 2 v -1
x| o .°r%p/ S &V Ixlpy N W T dw N
s"sBsr‘us )/’s 6s P‘£+vs’ €+v '%a-']’
o {1+v)
Lo ¥* ¢ S N . s . s P
where a = 3 s/(,:_1 angd again as we ~id in section Z, if
€ s an integer (with integer g), we can express the inte-

i
gral nart of (26) as
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t+v_=-1
(26a) B -1, £ +v -1, 1/1+a‘“‘)/vs< 8 )
¢ -1

/

Because of F(% ) = 1, we have from (26), similar to (10),

u y
(27) cg . [QsAngf(us)T'(vs)/wss 5SSJ =1,

For example, if s =‘, N, = 2, E1 = 1, then (26) reduces to

[« 2

(q+m-1) 2 B(G-1,G+a-m-1,1/ (1 +-%)

-fx~1)
(272) F(a) =2 m e

1
m=0

with QO = H and from (27a) we get (10¢) again. we can com-
pare (26), that is P(Ts < a) with P(T < a) in Lingappaiah
[11] which is

v =1
(28) P(T < a) = c°Z.[§2 A°B°r'(u)l"(v)/d°w“] 1-2 e~2%(26)% /K1
X=0

(28) gives the probability of T =< a 1in the current sample
while (26) gives the same (current sample is not needed now)
based on the earlier samples., (26) and (28) are both casy to
calculate using either Incomplete Beta and Gamma integral ta-
bles or Cumulative Binomial and Poisson tables. 4lso, further
if «x= 1, E1 =1, 8 =1 in (26) we have

[}

(29) Flay) = B(6 -1, G, 1/(1+a,/H))

agein with G = n+g. From (29), using (16), we get

(29a) ag = [(1-0171/¢ -1]
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and as we did in section 2, we can calculate F(ao} from
(26} and {26a) for different values of o # 1,

(3¢). Variance: Again, as in our section 2, we try to show he-
vs also, that the variance is affected by the number of sta-
ses. For from (24), we have

S=1

-1 P!
72N 1 1
\30) I‘(S) = (N) 0 1...2 QlAlBlTl I"(ul )/Nl

oo ug v_)+r
* Q. ASBSI"(us)/ws . l"'(v +r )7 -r)Q 6 .

'=—1 s

srgain if v = 0, (30) reduces to {27) and Mp(g) 1S the rth
raw moment of TS.
Suppose N1 =2, 8 =1, k% = 1. We have from (30)

o=
. 2 -1\ F{m+a)/ o -m+r )P {G~r)HT
(31) #r(‘]) =P2(°‘);(GM) e ;QT;F(G)
M=

and if r = 0, we have (10c). Also from (30), we have for
«=1, Ny =2, i=1,...,8 kK =1, 1=1,...,8
(31a) ”%(s) = F(r+1)P(G'+s—1-r)(Qg_1)r/F(G'+s-1)
which gives

_ o] 2 v . 2 ’
(31b) He(g) = Qg q)9(E +8-1)/(G" +8-2)°(G" +8=3).

(21b) shows that the variance, as in ssction 2, can be reduced
as s 1increases for given G desplte the fact that Qg_1
increases as s 1increases, Now in (31), if «= 2, we have

(31c) Ao(q) = H2(T6+2)/4(6-1)2(6-2)
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low, we can compere this variance of 'I‘s with that of T
in TLingappaiah [11], which gives,

(32] F'I'(T) = coz.QAOBOI"(W-I')/"(u)/wudwr

which again for ¥ = 2, &= 2, ¥k =1, gives
{322) i’ 1y (1) r(2-m+r)r(2+m) /2"
e r(T) ~ 2 m/ y

4. Comments

4t this point, we would like to make some comments on our
development. Ve have assumed that o to be known in (1) and
also takes only integer values., Otherwise &, B’s do not make
sense. Further, though few results of Sections 2 and 3, are
similar for example, of F{a) and Ff(s) for particular
values, each one has to be deduced separately, since one can-
not be obtained from the other. 4lso, in the application of
the result of Lingappaiah [11], we need just one single sample,
which is partly a convenience and partly a loss of information
on earlier samples while our present method requires few ear-
lier samples, which of course is a problem of economics. Our
result here, is mainly developed to show, how we can make use
of earlier information, though, based on the variance, it
does tell, that more we sample, better results, we can expect,
Llso, it is to be noted that we may predict Vg at stage s,
based on any order statistic in carlier samples from 2 to s
and it may be a matter of study as to which (s-1) tuple
(kqooensky 4
situation in section 3 also. Ve could have developed the pre-

) gives the best prediction of Jge Same is the

diction of Ts based on any order statistic in earlier sta-
ges: However, basing Ts on T1,...,TS_1 is in one way
meaningful and secondly, we may not be able to generalise
from stage 1 to stage s as we did in section 3. Finally,
it is to be noted that our method of treating the posterior
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distribution at the stage {(s-1) as the prior for stage s it
quite logical in the sense, we carry along 211 the prior in-
formation with us all through the development. sgain, in ouwr
method, the experimenter has guite a choice of selecting any
number of samples as he desires, Obviously, more samples, the
current result is based on, the better it will be, For exam-
ple, if he desires to discard first (80-1) samples Sy < 8,
then simply take the soth sample as stage O and proceed further
on, since the samples are completely independent. Incidentally,
there are many ways of using the earlier information a2t the
current stage, For example, after a certain number of samples
are available, one may wish to pool all this information, by
taking the product of densities of order statistics at these
stages, and treat this as stage O with the current situation
as stage 1, However, though the author has not compared these
two approaches, it is felt that our present method is more
reliable and meaningful in the sense, that at each stage,
previous information is filtered for the next stage,
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