

Anna Pol-Świrszcz

CERTAIN REFLEXIVE LATTICES
OF SUBSPACES OF A HILBERT SPACE

1. Let H be a Hilbert space, let $\mathcal{L}(H)$ be the set of all closed linear subspaces of H , and let $\mathcal{A}(H)$ be the set of all bounded linear operators on H . To each subset \mathcal{A} of $\mathcal{A}(H)$ there corresponds the set $\text{Lat } \mathcal{A}$ of all those elements of $\mathcal{L}(H)$ that are invariant under every operator in \mathcal{A} . Any subset of $\mathcal{L}(H)$ such that $\mathcal{L} = \text{Lat } \mathcal{A}$ for some \mathcal{A} will be called reflexive (cf. [1], p.258). It is obvious that the set $\text{Lat } \mathcal{A}$ is always a complete sublattice of the lattice $\mathcal{L}(H)$. (The lattice structure on $\mathcal{L}(H)$ is given by the inclusion, i.e., $L \wedge M = L \cap M$ and $L \vee M$ is the closure of $L + M$, for L, M in $\mathcal{L}(H)$). We will give certain sufficient conditions for a complete sublattice \mathcal{L} of $\mathcal{L}(H)$ to be reflexive. We get the well-known Theorems of Ringrose (cf. [3]) and Harrison (cf. [2]) as special cases of our Theorems. The proofs given in the paper are shorter and simpler than the proofs of Ringrose and Harrison.

2. Let \mathcal{L} be a complete sublattice of the lattice $\mathcal{L}(H)$ and let M be an element of $\mathcal{L}(H)$. Define

$$\begin{aligned} M^* &= \vee \{ L : L \in \mathcal{L} \text{ & } M \not\subset L \} \\ M^+ &= \wedge \{ L^* : L \in \mathcal{L} \text{ & } L \not\subset M \} \\ M^- &= \vee \{ L : L \in \mathcal{L} \text{ & } L \subset M \}. \end{aligned}$$

It is obvious that each of these operations sends $\mathcal{L}(H)$ into \mathcal{L} , and if $M \subset N$, then $M^* \subset N^*$, $M^+ \subset N^+$, $M^- \subset N^-$. Moreover $M^- \subset M$ and $M^+ = (M^-)^+$ for every M in $\mathcal{L}(H)$.

3. Theorem. Let \mathcal{L} be a complete sublattice of $\mathcal{L}(H)$ and let

$$\mathcal{M}(\mathcal{L}) = \left\{ M \in \mathcal{L}(H) : \forall_{L \in \mathcal{L}(H)} (L \subset M \text{ or } M \subset L^*) \right\}.$$

Then \mathcal{L} is a subset of $\mathcal{M}(\mathcal{L})$ and $\mathcal{M}(\mathcal{L}) = \text{Lat } \mathcal{A}$, where

$$\mathcal{A} : \left\{ P_L \circ A \circ (1 - P_{L^*}) : A \in \mathcal{A}(H), L \in \mathcal{L} \right\}$$

(P_L denotes the orthogonal projection onto L).

Proof. The inclusion $\mathcal{L} \subset \mathcal{M}(\mathcal{L})$ is obvious. Let M be in $\mathcal{M}(\mathcal{L})$ and let $B = P_L \circ A \circ (1 - P_{L^*})$ for some A in $\mathcal{A}(H)$ and L in \mathcal{L} . If $L \subset M$, then $B(M) \subset M \subset L$. If $M \subset L^*$, then $B(M) = 0 \subset M$ (0 denotes the zero subspace). Consequently M is in $\text{Lat } \mathcal{A}$.

Let M be in $\text{Lat } \mathcal{A}$ and let L be in \mathcal{L} . If M is not included in L^* , then there exists an f in $M \setminus L^*$. Since $g = (1 - P_{L^*})f \neq 0$, it follows that for every u in L there exists an A in $\mathcal{A}(H)$ such that $u = Ag$. Since f is in M and M is in $\text{Lat } \mathcal{A}$, it follows that $u = P_L u = P_L \circ A \circ (1 - P_{L^*})f$ belongs to M , and hence L is included in M . Consequently M is in $\mathcal{M}(\mathcal{L})$.

4. Lemma. Let M be an element of $\mathcal{L}(H)$. Then the following conditions are equivalent:

$$(1) M \in \mathcal{M}(\mathcal{L})$$

$$(2) M \subset M^+$$

$$(3) \text{ there exists in } L \text{ in } \mathcal{L} \text{ such that } L \subset M \subset L^+$$

Proof. The implications $(1) \Rightarrow (2)$, $(2) \Rightarrow (1)$ and $(2) \Rightarrow (3)$ are obvious. If $L \subset M \subset L^+$ for some L in \mathcal{L} , then $L^+ \subset M^+$, and hence $M \subset M^+$.

5. Theorem. The equality $\mathfrak{m}(\mathcal{L}) = \mathcal{L}$ holds if and only if the lattice \mathcal{L} satisfy the following condition

$$\{M \in \mathcal{L}(H) : L \subset M \subset L^+\} \subset \mathcal{L}$$

for each L in \mathcal{L} .

This theorem follows immediately from Lemma 4. As a corollary we get the following theorem.

6. Theorem. Let \mathcal{L} be a complete sublattice of the lattice $\mathcal{L}(H)$. If for every L in \mathcal{L} the set $\{M : M \in \mathcal{L}(H) \text{ & } L \subset M \subset L^+\}$ is included in \mathcal{L} , then \mathcal{L} is reflexive.

In particular, if $L = L^+$ for each L in \mathcal{L} , then \mathcal{L} is reflexive.

7. Theorem. If $\mathcal{L} \subset \mathcal{L}(H)$ is a complete chain, then $L = L^+$ for each L in \mathcal{L} .

Proof. It is easy to see that a complete sublattice \mathcal{L} of $\mathcal{L}(H)$ is a chain if and only if $L^* \subset L$ for every L in \mathcal{L} . If $L \neq L^+$, then immediately from the definition of L^+ it follows that $L^+ \subset (L^+)^*$. Hence, by the assumption, $L^+ = (L^+)^*$, i.e., $L^+ = V \{N \in \mathcal{L} : L^+ \not\subset N\}$. Consequently there is an N_0 in \mathcal{L} such that $L^+ \not\subset N_0$ and $N_0 \not\subset L$. Hence $L^+ \subset N_0^*$, by the definition of L^+ . Since $N_0^* \subset N$, we get a contradiction.

8. Corollary (Ringrose's Theorem, cf. [3]). If $\mathcal{L} \subset \mathcal{L}(H)$ is a complete chain, then \mathcal{L} is reflexive.

9. Theorem. Let \mathcal{L} be a complete sublattice of $\mathcal{L}(H)$ and let \mathcal{P} be the set of all L in \mathcal{L} satisfying the following condition

$$L \notin V \{N \in \mathcal{L} : L \not\subset N\}$$

(i.e., $L \notin L^*$). If every M in \mathcal{L} is the supremum of some subset of \mathcal{P} , then \mathcal{L} is reflexive.

P r o o f. We will show that $L = L^+$ for each L in \mathcal{L} . Let L be in \mathcal{L} . By the assumption $L^+ = V\mathcal{A}$, where \mathcal{A} is a subset of \mathcal{P} . If $L^+ \neq L$, then $L_0 \notin L$ for some L_0 in \mathcal{A} . Hence $L^+ \subset (L_0)^*$, and consequently $L \subset (L_0)^*$. On the other hand $L_0 \notin (L_0)^*$ by the definition of \mathcal{P} .

10. C o r o l l a r y (Harrison's Theorem, cf. [2]). Let \mathcal{L} be a complete sublattice of $\mathcal{L}(H)$, distributive in the sense:

$$L \wedge V\mathcal{J} = V \{ L \wedge S : S \in \mathcal{J} \}$$

for each L in \mathcal{L} and each subset \mathcal{J} of \mathcal{L} . Let \mathcal{Y} be the set of all L in \mathcal{L} satisfying the following condition:

$$L \notin V \{ N \in \mathcal{L} : N \subset L \text{ & } N \neq L \}$$

(i.e., L is infinitely-join-irreducible). If every M in \mathcal{L} is the supremum of some subset of \mathcal{Y} , then \mathcal{L} is reflexive.

P r o o f. It is obvious that if \mathcal{L} is distributive in the above sense, then $\mathcal{Y} = \mathcal{P}$.

11. E x a m p l e. Let H be an infinite dimensional Hilbert space. Consider two subspaces M and N_0 of H such that $M \wedge N_0 = 0$, $M \cup N_0 = H$ but $M + N_0 \neq H$. Let u_1, \dots, u_n be vectors in H such that $(M+N) \cap \text{span}\{u_1, \dots, u_n\} = 0$, and let $N_n = \text{span}(N_0 \cup \{u_1, \dots, u_n\})$. Let π be the set of all those N in $\mathcal{L}(H)$ such that $N_0 \subset N \subset N_n$. It is not difficult to verify that the set $\mathcal{L} = \{0, M, H\} \cup \pi$ is a complete lattice. Moreover $0^+ = 0$, $M^+ = M$, $H^+ = H$ and $N^+ = N_n$ for every N in π . Consequently, by the theorem 6, \mathcal{L} is reflexive. (Compare [1], §3(a)).

12. The equality $\mathcal{L} = \mathcal{M}(\mathcal{L})$ is not necessary condition of reflexivity of \mathcal{L} . For example, let $\{0, L, M, N, H\}$ be a double triangle of subspaces of a four dimensional space H , (i.e., $L \vee M = M \vee N = N \vee L = H$, $L \wedge M = M \wedge N = N \wedge L = 0$), and let \mathcal{L} be the smallest reflexive sublattice of $\mathcal{L}(H)$ such that $\{0, L, M, N, H\} \subset \mathcal{L}$. (cf. [1], §3(b)). If K_1, K_2 are non-trivial different elements of \mathcal{L} , then $K_1 \cup K_2 = H$ and $K_1 \wedge K_2 = 0$. Hence $K^* = H$ for each nonzero K in \mathcal{L} . Consequently $\mathcal{M}(\mathcal{L}) = \mathcal{L}(H)$, but $\mathcal{L} \neq \mathcal{L}(H)$.

Added in proof. After this note had been submitted for publication, the paper of W.E. Longstaff "Strongly reflexive lattices", J. London Math. Soc. 11 (1975), 491-498, was called to the author's attention, where similar results have been obtained (as in our note, Longstaff's technique is an extension of that of [2]).

REFERENCES

- [1] P.R. Halmos : Reflexive lattices of subspaces, J. London Math. Soc. 4 (1971) 257-263.
- [2] K.J. Harrison : Certain distributive lattices of subspaces are reflexive, J. London Math. Soc. 8 (1974) 51-56.
- [3] J.R. Ringrose : On some algebras of operators, Proc. London Math. Soc. 15 (1965) 61-83.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF WARSAW
Received July 19, 1977.

