

Adam Kowalczyk, Jan Kubarski

A LOCAL PROPERTY OF THE SUBSPACES OF EUCLIDEAN DIFFERENTIAL SPACES

1. Preliminaries

Let $M \neq \emptyset$ be a set and C an arbitrary set of real functions defined on M . We denote by τ_C the weakest topology on M such that all functions belonging to C are continuous. For any set A contained in M we denote by $C|A$ the set of functions of the form $\alpha|A$ where $\alpha \in C$. We denote by C_A the set of all real functions on A such that for any point p of A there exists in τ_C an open neighbourhood U of p and a function $\alpha \in C$, such that $\alpha|A \cap U = \alpha|A \cap U$. It is easy to verify that, for any set $A \subset M$, we have $\tau_{C_A} = \tau_{C|A} = \tau_C|A$. In particular $\tau_{C_M} = \tau_C$. We denote by scC the set of all real functions of the form $\omega(\alpha_1, \dots, \alpha_n)$, where $\omega \in \mathcal{E}_n$, $\alpha_1, \dots, \alpha_n \in C$ and n belongs to the set of all positive integers \mathbb{N} and \mathcal{E}_n is the set of all real C^∞ -functions on n -dimensional Euclidean space E^n . An ordered pair (M, C) such that $C_M = C = scC$ is said to be a differential space. The set C is called the differential structure of this differential space [1], [2], [6].

For a set C of real functions defined on M , the set $(scC)_M$ is the smallest differential structure on M including the set C . $(M, (scC)_M)$ is called the differential space generated by C .

If (M, C) is a differential space and $A \subset M$, then (A, C_A) is also a differential space called the differential subspace of (M, C) [1]. It is easy to see that $C_A = (C|A)_A$.

By a vector tangent to a differential space (M, C) at a point p of M we mean any linear mapping $v : C \rightarrow E$ which fulfills Leibniz's condition at the point p :

$$v(\alpha \beta) = v(\alpha) \beta(p) + \alpha(p) v(\beta) \quad \text{for all } \alpha, \beta \in C.$$

We shall denote by $(M, C)_p$ or M_p a linear space of all vectors tangent to (M, C) at a point $p \in M$.

Any real C^∞ -manifold M will be identified with the differential space $(M, C^\infty(M))$, where $C^\infty(M)$ is the set of all smooth real functions on M . In particular, we denote $C^\infty(E^n)$ by ε_n and we call the pair (E^n, ε_n) the n -dimensional Euclidean differential space.

It is easy to verify that for $\emptyset \neq M \subset E^n$, $n \in \mathbb{N}$, $\varepsilon_{nM} = (sc\{\pi^i|_M; i = 1, \dots, n\})_M$ where $\pi^i(x^1, x^2, \dots, x^n) = x^i$ for any $(x^1, x^2, \dots, x^n) \in E^n$. The topological space $(M, \tau_{\varepsilon_{nM}})$ is a subspace of the topological space $(E^n, \tau_{\varepsilon_n})$.

In the sequel the symbol τ_M will be used instead of $\tau_{\varepsilon_{nM}}$. Using a partition of unity it may be proved that ε_{nM} is the set of all functions of the form $\alpha|_M$, where α is a C^∞ -function on an open set U in E^n including M .

The basic result of this paper consists in the following theorem.

Theorem 1. For any $p \in M \subset E^n$ the integer $m = \dim(M, \varepsilon_{nM})_p$ is the smallest one such that there exists in τ_M an open neighbourhood U of the point p which is included in an m -dimensional C^∞ -surface of E^n .

2. The proof of basic result

From now on we fix the integer $k > 0$, and the non empty set $M \subset E^k$. For brevity we write $\varepsilon := \varepsilon_k$, $C := \varepsilon_M$, $M_p := (M, C)_p$, $E_p^k := (E^k, \varepsilon_k)_p$.

The mappings $L_1 : M_p \rightarrow E_p^k$ and $L_2 : E_p^k \rightarrow \mathcal{E}^k$ defined by

$$(1) \quad (L_1(v))(f) := v(f|M) \quad \text{for } v \in M_p \quad \text{and } f \in \mathcal{E},$$

$$(2) \quad L_2(\bar{v}) := (\bar{v}(\pi^1), \dots, \bar{v}(\pi^k)) \quad \text{for } \bar{v} \in E_p^k,$$

are respectively a linear monomorphism and a linear isomorphism of suitable linear spaces (c.f. [1]).

Let $\partial_i f(p)$ denote i -th partial derivative of the function $f \in \mathcal{E}$ at the point $p \in E^k$, $i = 1, \dots, k$. If we denote $f|_h(p) := h^i \partial_i f(p)$ where $h = (h^1, \dots, h^k) \in E^k$, we have

$$(3) \quad \bar{v}(f) = \partial_i f(p) \bar{v}(\pi^i) = f|_{L_2(\bar{v})}(p) \quad \text{for } \bar{v} \in E_p^k,$$

(the summation convention is used here). Let $L := L_2 \circ L_1 : M_p \rightarrow \mathcal{E}^k$ and

$$(4) \quad \bar{M}_p = \{ L(\bar{v}) \in \mathcal{E}^k; \bar{v} \in M_p \}.$$

It is easy to see that the mapping $L : M_p \rightarrow \bar{M}_p$ makes these linear spaces isomorphic to each other. We have

$$(5) \quad \begin{cases} L(v) = (v(\pi^1|M), \dots, v(\pi^k|M)) & \text{for } v \in M_p, \\ v(f|M) = f|_{L(v)} & \text{for } v \in M \text{ and } f \in \mathcal{E}_k. \end{cases}$$

Lemma 1. For $p \in M$, $h \in E^k$, $k \in \mathcal{N}$ the following properties are equivalent:

$$(a) \quad h \in \bar{M}_p,$$

(b) there exists a mapping $\bar{v} : \mathcal{E}|_M \rightarrow E$ such that

$$\bar{v}(f|M) = f|_h(p) \quad \text{for } f \in \mathcal{E}.$$

Proof. The implication $(a) \Rightarrow (b)$ follows immediately from (4) and (5) by putting $\bar{v} := v|(\mathcal{E}|_M)$, $v \in M_p$ and $h = L(v)$.

In order to prove the implication $(b) \Rightarrow (a)$ let us suppose that h fulfills (b) and consider the set of functions $\mathcal{E}|M$. From (b) it follows that \bar{v} is the linear mapping of $\mathcal{E}|M$ into E fulfilling the Leibniz's condition at the point p :

$$\bar{v}(\alpha\beta) = \bar{v}(\alpha)\beta(p) + \alpha(p)\bar{v}(\beta) \quad \text{for } \alpha, \beta \in \mathcal{E}|M.$$

By using this condition and linearity of \bar{v} one can easily verify that $\bar{v}(\alpha) = 0$ for each function $\alpha \in \mathcal{E}|M$ equal to 0 at an open neighbourhood of the point p . As a consequence of this the mapping $v : C \rightarrow E$ defined

$$v(\alpha) := \bar{v}(f|M) \quad \text{for } \alpha \in C,$$

where $f \in \mathcal{E}$ is a function such that $f|U = \alpha|U$ for some set $U \in \tau_M$ including the point p , is well defined. The function v is linear and fulfills Leibniz's condition so it belongs to M_p . For $i = 1, \dots, k$ we have $v(x^i|M) = x^i|_h(p) = \bar{v}(x^i|M) = h^i$, where $h = (h^1, h^2, \dots, h^k)$, so from (5) we have: $L(v) = (h^1, h^2, \dots, h^k) = h$. The Lemma is proved.

Lemma 2. For $h \in E^k$ and $p \in M$ the following conditions are equivalent:

$$(a) h \in \bar{M}_p,$$

$$(b) f|_h(p) = 0 \text{ for any } f \in \mathcal{E} \text{ equal to 0 on } M.$$

Proof. It is easy to see that the conditions (b) in Lemmas 1 and 2 are equivalent to each other.

For any $f \in \mathcal{E}$ and $p \in E^k$ we denote $\text{grad } f(p) := (\partial_1 f(p), \dots, \partial_k f(p))$.

Lemma 3. Let $p = (0, 0, \dots, 0) \in M \subset E^k$ and $e_i = (0, 0, \dots, 0, 1, 0, \dots, 0)$ (1 in the i -th position), $1 \leq i \leq k$. If $m := \dim M_p$, $1 \leq m \leq k-1$ and $e_1, \dots, e_m \in \bar{M}_p$ then there exist functions $f^{m+1}, \dots, f^k \in \mathcal{E}$ equal to 0 on M and such that $\partial_i f^j(p) = \delta_i^j$, where $\delta_i^j = 1$ for $i = j$ and $\delta_i^j = 0$ for $f \neq j$.

Proof. Let the assumptions of the Lemma be satisfied. Then

$$(6) \quad \bar{M}_p = \text{Lin}(e_1, \dots, e_m),$$

where $\text{Lin}(e_1, \dots, e_m)$ is the linear subspace of E^k spanned by e_1, \dots, e_m . We put $K := \{h \in E^k; h = \text{grad } f(p), f \in \mathcal{E}$ and $f = 0$ on $M\}$. K is a linear subspace of E^k and $e_i \perp K$ with respect to the canonical scalar product in E^k so $K \subset \text{Lin}(e_{m+1}, \dots, e_k)$ (see Lemma 2). We shall prove more, namely that $K = \text{Lin}(e_{m+1}, \dots, e_k)$. If the above equality is not satisfied, then there exists a non-zero vector $h \in \text{Lin}(e_{m+1}, \dots, e_k)$, such that $K \perp h$. Hence $f|_h(p) = \text{grad } f(p) \cdot h = 0$ for $f = 0$ on M , and $h \in \bar{M}_p$ (Lemma 2), but this contradicts (6). From above equality we obtain the existence of functions $f_{m+1}, \dots, f_k \in \mathcal{E}_k$ equal to zero on M , such that $\text{grad } f_j(p) = e_j$ or equivalently $\partial_i f_j(p) = \delta_{ij}$. The Lemma is proved.

Proposition 1. Let $p \in M \subset E^k$. If $0 < m := \dim M_p \leq k$ then there exist non empty sets: U open in τ_M and V open in $\tau_{\mathcal{E}_m}$, and regular 1-1 C^∞ -mapping $\phi: V \rightarrow E^k$ such that

$$p \in U \subset \{\phi(u) \in E^k; u \in V\}.$$

Proof. If $m = k$, the proposition evidently holds. We suppose that $1 \leq m < k$. We can assume, without loss of generality, that $p = (0, \dots, 0) \in E^k$ and $\bar{M}_p = \text{Lin}(e_1, \dots, e_m)$. We denote $q = (x^1, \dots, x^k) = (u, w)$ where $u = (x^1, \dots, x^m)$ and $w = (x^{m+1}, \dots, x^k)$. Let f^j , $j = m+1, \dots, k$, are functions as in Lemma 3. We define a mapping $F: E^k \rightarrow E^{k-m}$ by

$$F(q) := (f^{m+1}(q), \dots, f^k(q)) \quad \text{for } q \in E^k.$$

This mapping has the following properties:

- (a) $F(q) = F(u, w) = 0$ for $q = (u, w) \in M$,
- (b) F is C^∞ -mapping,
- (c) F is regular at the point $p = (\bar{u}, \bar{w})$.

From the inverse mapping theorem it follows that there exists:

- (d) a set $U' \in \tau_k^E$ such that $p \in U'$,
- (e) a set $V \in \tau_m^E$ such that $\bar{u} \in V$,
- (f) a C^∞ -mapping $\psi : V \rightarrow E^{k-m}$ such that for any $u \in V$ we have $F(u, \psi(u)) = 0$,
- (g) if $F(q) = 0$ and $q = (u, w) \in U'$ then $u \in V$ and $w = \psi(u)$.

It is evident that $U := U' \cap M$, V and $\phi(u) := (u, \psi(u))$ for $u \in V$ fulfil conditions of Proposition 1.

Now, we examine the case of $\dim M_p = 0$, which was not considered above.

Proposition 2. Let $p \in M \subset E^k$. If $\dim M_p = 0$ then the point p is isolated in M .

Proof. Let us set $|q| := \sqrt{(x^1)^2 + \dots + (x^k)^2}$ for any $q = (x^1, \dots, x^k) \in E^k$.

Let us assume the point p is not isolated. Then there exists a sequence (p_i) of points of M different from p and convergent to p . For the sequence $h_n := \frac{p_n - p}{|p_n - p|}$, $n \in \mathbb{N}$ of points of S^{k-1} we can find a subsequence h_{n_i} convergent to a point $h \in S^{k-1}$. One can easily see that for any $f \in \mathcal{E}$

$$\lim_{i \rightarrow \infty} \frac{f(p_{n_i}) - f(p)}{|p_{n_i} - p|} = f|_h(p).$$

It is easy to see that left side of this equality defines mapping $\bar{v} : \mathcal{E}|M \rightarrow E$ such that $\bar{v}(f|M) = f|_h(p)$. From Lemma 1 $h \in \bar{M}_p$ so $\dim M_p \neq 0$, which ends of the proof.

Theorem 1 results easily from Propositions 1 and 2. In that Theorem a non-empty discrete subset of E^n is called a 0-dimensional C^∞ -surface in E^n .

3. Corollaries

We say, that differential space (N, \mathcal{D}) can be diffeomorphically embedded into the differential space (L, \mathcal{H}) if the-

re exists a subset $L' \subset L$ such that $(L', H_{L'})$ and (N, D) are diffeomorphic to each other. In the sequel we shall consider only differential spaces (N, D) such that any point $p \in N$ has a neighbourhood V such that (V, D_V) can be embeded into $(E^{n(p)}, \epsilon_{n(p)})$ for some $n(p) \in \mathcal{N}$. From Theorem 1 we obtain:

Corollary 1. For a point p of the differential space (N, D) there exist a set $V \in \tau_D$ and an n -dimensional C^∞ -manifold $(\tilde{N}, C^\infty(\tilde{N}))$, $n := \dim_{N_p} N$, such that $p \in V \subset \tilde{N}$ and $D_V = C^\infty(\tilde{N})_V$. The inequality

$$\dim M_q \leq \dim M_p$$

is fulfilled for any point $q \in V$.

Corollary 2. If (N, D) is a differential space such that (N, τ_D) is separable and if there exists $n \in \mathcal{N}$ such that for any $p \in N$ $\dim_{N_p} (N, D) \leq n$, then topological dimension of (N, τ_D) does not exceed n .

Proof. This results easily from Corollary 1.

Differential spaces which have tangent spaces of constant dimension are the most interesting. For a differential space (N, D) and $i = 0, 1, \dots$ we shall denote by N^i union of all sets $V \in \tau_D$ such that $\dim_{N_p} (N, D) = i$ for any $q \in V$. If N^i is not empty then (N^i, D_{N^i}) is a differential subspace of (N, D) and for any $q \in N^i$ $\dim_{N_q} (N^i, D_{N^i}) = i$. From Corollary 1 we obtain

Corollary 3. For any differential space (N, D) the set $\bigcup_{i=0}^{\infty} N^i$ is open and dense in the topological space (N, τ_D) .

Proof. For any subset $A \subset N$ we denote its closure in (N, τ_D) by \bar{A} . We shall use mathematical induction. Let $p \in N$. It is easy to see, that $\dim_{N_p} (N, D) \geq 0$. If $\dim_{N_p} (N, D) = 0$ then the point p is isolated in (N, τ_D) and $p \in N^0$, see Corollary 1, so $p \in \bigcup_{i=0}^{\infty} N^i$. Suppose, that for any $q \in N$

such that $0 \leq \dim(N, D)_q \leq m-1$ we have $q \in \overline{\bigcup_{i=0}^{\infty} N^i}$. For any point $p \in N$ such that $\dim(N, D)_p = m$ there exists an open neighbourhood V of p such that $\dim(N, D)_q \leq m$ for any point $q \in V$ (Corollary 1). Let $U \in \tau_D$ be a set containing the point p . If for any $q \in U \cap V$ $\dim(N, D)_q = m$, then

$p \in N^m$ and $p \in \overline{\bigcup_{i=0}^{\infty} N^i}$. If it is not true then there exists a point $q \in U \cap V$, such that $\dim(N, D)_q \leq m-1$. From the induction hypothesis, the point $q \in \overline{\bigcup_{i=0}^{\infty} N^i}$, so $U \cap \overline{\bigcup_{i=0}^{\infty} N^i} \neq \emptyset$. This is true for any set $U \in \tau_D$ containing the point p , so we have $p \in \overline{\bigcup_{i=0}^{\infty} N^i}$. The corollary is proved.

By virtue of Corollary 1 any point p of differential space (N, D) such that $\dim(N, D)_p = k$ has a neighbourhood V such that (V, D_V) can be diffeomorphically embedded in (E^k, ε_k) . Hence it is interesting to consider the differential subspace (M, ε_{kM}) of (E^k, ε_k) for which there exists a point $p \in M$ such that $\dim(M, C)_p = k$.

Corollary 4. Let $p \in M \subset E^k$. $\dim(M, \varepsilon_{kM})_p = k$ if and only if for any $f \in \varepsilon_k$ equal to 0 on M $\partial_i f(p) = 0$ for $i = 1, 2, \dots, m$.

Proof. We get this immediately from Lemma 2, as $e_i \in \overline{M}_p$, $i = 1, \dots, k$.

Corollary 5. Let $\emptyset \neq M \subset E^k$. Then $\dim(M, \varepsilon_{kM})_p = k$ for any $p \in M$ if and only if for any $f \in \varepsilon_k$ equal to 0 on M all partial derivatives of any order are equal to 0 on M .

Proof. This corollary follows easily, by induction, from Corollary 4.

By virtue of above Corollary, any subset $M \subset E^k$ such that (M, ε_{kM}) has the constant dimension k , has the same property, as any open set of E^k : the values of the partial derivatives of a function $f \in \varepsilon_k$ at a point $p \in M$ are uniquely determined by the values of the function on M .

For a differential space (N, D) a linear mapping $X : D \rightarrow D$ such that $X(\alpha\beta) = X(\alpha)\beta + \alpha X(\beta)$ is called a vector field on (N, D) [1]. It is easy to see that for any point $p \in N$ the function $X_p : D \rightarrow E$ defined by $X_p(\alpha) := (X\alpha)(p)$ for $\alpha \in D$ is a vector belonging to $(N, D)_p$.

Corollary 6. Let (N, D) be a differential space. A point p belongs to $\bigcup_{i=0}^{\infty} N^i$ if and only if there exist vector fields X_1, \dots, X_s on (N, D) such that $\{X_{1p}, \dots, X_{sp}\}$ is the basis of $(N, D)_p$.

Proof. If X_1, \dots, X_k are such vector fields on (N, D) that X_{1p}, \dots, X_{kp} is a basis of $(N, D)_p$ then there exists a set $V' \in \tau_D$ such that $p \in V'$ and X_{1q}, \dots, X_{kq} are linearly independent for any $q \in V'$ (cf. [1]). As there exists an open neighbourhood V'' of p such that for any $q \in V''$ $\dim(N, D)_q \leq k$ (Corollary 1), for any $q \in V' \cap V''$ $\dim(N, D)_q = k$ and $p \in N^k \subset \bigcup_{i=0}^{\infty} N^i$.

Now we shall prove the other implication. For the point $p \in N^0$ the proof is trivial. Let $p \in N^k$, $k > 0$ and U be such an open neighbourhood of the point p that (U, D_U) is diffeomorphic to (V, ε_{kV}) for certain $V \subset E^k$ and $\dim(V, \varepsilon_{kV})_q = k$ for any $q \in V$. It is sufficient to prove Corollary for (V, ε_{kV}) .

For $q \in V$ and $\alpha \in \varepsilon_{kV}$ there exists an open neighbourhood V_q of q and a function $f_{\alpha, q} \in \varepsilon$ such that $\alpha|V_q = f_{\alpha, q}|V_q$. By virtue of Corollary 5 the functions $X_i : \varepsilon_{kV} \rightarrow \varepsilon_{kV}$, $i = 1, 2, \dots, k$, defined for $\alpha \in \varepsilon_{kV}$, by

$$(X_i \alpha)(q) = \partial_i (f_{\alpha, q})(q) \quad \text{for } q \in V$$

are well defined. It can be easily verified that they are vector fields on (V, ε_{kV}) and X_{1q}, \dots, X_{kq} is the basis of $(V, \varepsilon_{kV})_q$ for any $q \in V$.

4. Examples

E x a m p l e 1. Let $M \subset E^k$ be dense in E^k . Then by Corollary 1 the dimension of $(M, \varepsilon_{kM})_p$ is k for any $p \in M$.

E x a m p l e 2. The graph of the function $f : E \rightarrow E$ which is x^2 for $x > 0$ and 0 for $x \leq 0$ has the tangent space of dimension 1 at all points except for the point $(0,0)$, where it has tangent space of dimension 2. It results easily from Corollary 1.

E x a m p l e 3. The graph of the function $g : E \rightarrow E$ of class C^1 which is not of class C^∞ at any point is a differential subspace of (E^2, ε_2) of constant dimension 2. It results easily from Corollary 1.

E x a m p l e . 4. Let $M \subset E^k$. If topological dimension of any non empty open subset of M is k then $\dim(M, \varepsilon_{kM})_p = k$ for any $p \in M$. This follows easily from Corollary 2.

REFERENCES

- [1] R. Sikorski : Wstęp do geometrii różniczkowej. Warszawa 1972.
- [2] R. Sikorski : Abstract covariant derivative, Colloq. Math. 18 (1967) 251-272.
- [3] R. Sikorski : Differential modules, Colloq. Math. 24 (1971) 45-79.
- [4] P. Walczak : A theorem on diffeomorphism in category of differential spaces, Bull. Acad. Sci., Ser. Sci. Math., Astr., Phys., 21 (1973) 325-329.
- [5] P. Walczak : On a class of differential spaces satisfying the theorem on diffeomorphisms, Bull. Acad. Sci., Ser., Sci. Math., Astron., Phys., 22 (1974) 805-814.

[6] W. Waliszewski : Regular and coregular mappings of differential spaces. Ann. Polon. Math., 30 (1975) 263-281.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF WARSAW;

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY, ŁÓDŹ

Received May 3, 1976.

