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1 . P r e l i m i n a r e s 

Let M ¿ 0 be a s e t and C an a r b i t r a r y s e t of r e a l 

f u n c t i o n s d e f i n e d on M. We denote by r c the weakest t o p o -

logy on M such t h a t a l l f u n c t i o n s b e l o n g i n g t o C are c o n -

t i n u o u s . Por any s e t A c o n t a i n e d i n M we denote by ClA 

the s e t of f u n c t i o n s of the form » |A where or e C. We de-

note by C^ the s e t o f a l l r e a l f u n c t i o n s on A such t h a t 

f o r any p o i n t p of A t h e r e e x i s t s i n r c an open n e i g h -

bourhood U of p and a f u n c t i o n a e C, such t h a t n U = 

= a | A O U. I t i s easy to v e r i f y t h a t , f o r any s e t A c M, we 

have r c = t"C|A = *"C|A. I n p a r t i c u l a r r^, = r c > We denote 

by scC the s e t of a l l r e a l f u n c t i o n s of the form u f o ^ . . . , ^ ) , 

where w e i , a ^ , . . . , < * e C and n b e l o n g s t o the s e t of 

a l l p o s i t i v e i n t e g e r s JT and i s the s e t of a l l r e a l C°°-

- f u n c t i o n s on n - d i m e n s i o n a l E u c l i d e a n spaoe E n . An ordered 

p a i r (M,C) such t h a t CM = C = scC i s s a i d t o be a d i f f e -

r e n t i a l s p a c e . The s e t C i s c a l l e d the d i f f e r e n t i a l s t r u c -

t u r e o f t h i s d i f f e r e n t i a l space [ l ] , [ 2 ] , [ é ] . 

Por a s e t C of r e a l f u n c t i o n s d e f i n e d on M, the set 

(scC) M i s the s m a l l e s t d i f f e r e n t i a l s t r u c t u r e on M i n c l u d -

i n g the s e t C . ( M , ( S C C ) M ) i s c a l l e d the d i f f e r e n t i a l space 

generated by C. 
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If (M,C) is a differential space and A c M, then 
is also a differential space called the differential 

subspace of (M,C) [l], It is easy to see that CA = (C|Ah. 
By a vector tanger.t to a differential space (M,C) at 

a point p of M we mean any linear mapping v : C — E which 
fulfils Leibniz's condition at the point p: 

v(<x 0 J = v(«);8{p) + a (p) v(y8) for all o , fieC. 

Vie shall denote by (M,C) or LI a linear space of all vec-P P tors tangent to (M,C) at a point p e M. 
Any real C°° -manifold M will be identified with the 

differential space (M,C°°(M)), where C°°(M) is the set of 
all smooth real functions on M, In particular, we denote 
C°° (En) by & n and we call the pair (En,£n) the n-dimen-
sional Euclidean differential space. 

It is easy to verify that for 0 t M c En, ne^T, 
£nM = (scjjr^M; i=1,...,n})M where jt^x1 ,x2,... ,xn) / = x 1 

for any (x1,x2,...,xn) e En. The topological space (M,r } 
nM 

is a subspace of the topological space (E , r, ). 
n 

In the sequel the symbol r^ will be used instead of 
r, . Using a partition of unity it may be proved that I M 
nM 

is the set of all functions of the form a | M, where a is 
a C°° -function on an open set U in En including M. 

The basic result of this paper consists in the following 
theorem. 

T h e o r e m 1. For any p e M c En the integer 
m = dim(M,e, ,J is the smallest one such that there exists nM p 
ill fjj an open neighbourhood U of the point p which is 
included in an m-dimensional C°° -surface of En. 

2. The proof of basic result 
Prom now on we fix the integer k > 0, and the non empty 

if set M c 3 . For brevity we write 6 := C : = Cjj» 
Mp != iM.Cip. Sp tBk.£k>p-
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The mappings L1 : M —iip and L? : —-i k defined by 

(1) (L1 (v) )(f) := v(f|ri) for v. e iip and fe£ , 

(21 L2i.vj := (v(*1 ),...,v(jrk); for v e ¿¡k, 

are respectively a linear monoraorphism and a linear isomorphism 
of suitable linear spaces (c.f. [l]). 

Let 3±f(p) denote i-th partial derivative of the fun-
ction fe£ at the point p e Ek', i = 1,...,k. If we denote 
f|h(P) := h3" a ( p ) where h = (h1,...,hk) e Ek, we have 

(3) v(f) = a^ipjvU 1) = f| (?)(p) for v e iik, 

ik 
(the sumation convention is used here). Let L := L 2° L., : M^pE 
and 

(4J M = { L(v) e Ek; v e Mp) . 

It is easy to see that the mapping L : M p — Mp makes these 
linear spaces isomorphic to each other. We have 

(5) 
L(v) = (v(vr1 |M),...,v(jrk|M)) for v « Mp, 
v(f|M) = f|L(v] f o r v « M and f e £fc. 

L e m m a 1. For p e M, h e Ek, k e Jf the follow-
ing properties are equivalent: 

(a) h e Mp, 
(b) there exists a mapping v : £ | M —- E such that 

v(f | M) = f|h(p) for f ti . 

P r o o f . The implication (a)=s»(b) follows immedia-
tely from (4) and (5) BY putting v := v|(£|M), V e Mp and 
h = L(v). 
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In order to prove the imp l i ca t i on ( b ) = ^ ( a ) l e t us suppo-
se t h a t h f u l f i l s (fc) and cons ider the s e t of f u n c t i o n s 
t|M. Prom (b) i t fo l lows t h a t v i s the l i n e a r mapping of 
£|M i n t o E f u l f i l l i n g the L e i b n i z ' s cond i t i on a t the point pj 

v{afi) = v(a)>9(p) + a (p)v( / J ) f o r a , 0 6 I \ M. 

By using t h i s cond i t ion and l i n e a r i t y of v one can easy ve -
r i f y t h a t v ( a ) = 0 f o r each f u n c t i o n « € £ | M equal to 0 
a t an open neighbourhood of the point p. As a consequence of 
t h i s the mapping v : C — E def ined 

v(oc) := v( f |M) f o r « eC, 

where f e i i s a f u n c t i o n such t h a t f |U = a |U f o r some s e t 
U e r M i nc lud ing the point p, i s we l l d e f i n e d . The f u n c t i o n 
v i s l i n e a r and f u l f i l s L e i b n i z ' s cond i t i on so i t belongs t o 
M . For i = 1 , . . . , k we have v i ^ l M ) = j r } h ( p ) = v U 1 iM) = h 1 , 
where h = ( h 1 , h 2 h k ) , so from (5) we have: L(v) = 
= ( h 1 , h 2 , . . . , h k ) = h . The Lemma i s proved. 

L e m m a 2. For h e Ek and p e M the fo l lowing 
cond i t ions are e q u i v a l e n t : 

(a) h e M , 
(b) f - l ^ P ' = 0 f o r f e i equal t o 0 on M. 
P r o o f . I t i s easy to see t h a t the cond i t i ons (b) 

in Lemmas 1 and 2 are equ iva len t to each o t h e r . 
For any f e £ and p e Ek we denote grad f ( p ) := 

:= ( 9 1 f ( p ) , . . . , a k f ( p ) ) . 
L e m m a 3. l e t p = ( 0 , 0 , . . . , 0 ) e M c Ek and 

e i = ( 0 , 0 , . . . , 0 , 1 , 0 , . . . , 0 ) (1 in the i - t h p o s i t i o n ) , 1 i k. 
I f m := dim M , 1 ^ m «s k-1 and e 1 f . . . , e m e Mp then the re 
e x i s t f u n c t i o n s f m + 1 , . . . , f k e l equal to 0 on M and such 
t h a t 3 - f ^ p ) = <5 where = 1 f o r i = j ^ <5̂  = 0 
f o r f J . 

P r o o f . Let the assumptions of the Lemma be s a t i s -
f i e d . Then 
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(6) Mp = L i n ( e 1 , . . . , e m ) , 

where L i n ( e 1 , . . . , e f f l ) i s the l inear subspace of E spanned 
by e1 e . We put K : = {h e E k ; h = grad f ( p ) , f e i 
and f = 0 on M|. K i s a l inear subspace of Ek and 

k 
e ^ K with respect to the canonical scalar product in E 
so K c I i n ( e m + 1 , . . . , 6 ^ ) (see Lemma 2 ) . We shal l prove more, 
namely that K = L i n ( e m + ^ , . . . , 8 ^ ) . I f the above equality i s 
not s a t i s f i e d , then there ex i s t s a non-zero vector 
h e L i n ( e m + 1 , . . . . e ^ J , such that K i h . Hence = 
= grad f (p ) • h = 0 for f = 0 on M, and h € Mp (Lem-
ma 2 ) , but this contradicts (6 ) . Prom above equality we ob-
tain the existence of functions e equal to 
zero on M, such that grad f^(p) = e , or equivalently 

1 i J J 3 i f J ( p ) = <5v. The Lemma i s proved. 
P r o p o s i t i o n 1. Let p e He E k . I f 0 < m : = 

:= dim Mp k then there ex is t non empty s e t s : U open in 
r.. and V open in x , , and regular 1-1 C°° -mapping 

M m 
i : V — Ek such that 

p f D c j 0{u) 6 E k } u e v ) . 

P r o o f . I f m = k , the proposition evidently holds. 
Vie suppose that 1 < m < k. We can assume, without loss of 
general i ty , that p = ( 0 , . . . , 0 ) 6 Ek and Mp = L i n ( e 1 , . . . , e m ) . 
Vie denote q = ix " * , . . . , x k ) = (u,w) where u = ( x 1 , , . . , x m ) 
and w = (xm + 1 x k ) . Let f , j = m + 1 , . . . , k , are fun-
ctions as in Lemma 3. We define a mapping F : E k - ~ E k ~ m by 

F(q) := ( f " * 1 (q ) , . . . , f k ( q ) ) for q e E k . 

This mapping has the following properties: 
(a j F (q j = P(u,w) = 0 for q = (u,w) € M, 
(b) P i s C°° -mapping, 
( c ; P i s regular at the point p = (u tw). 
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Prom the inverse mapping theorem i t follows that there exists: 
(d) a set U'e r . such that p e U' , 

E 
(e ) a set V e x such that u e v 

B 
( f ) a C00-mapping y : V-~E m such tha-t f o r any u e V 

we have F i u ^ f u } ) = 0, 
(g ) i f F(qJ = 0 and q = (u,w) e u' then u e V and 

w = y (u) . 
I t i s evident that U ŝ  u'n M, V and ¿ (u ) .•= (u,y(u)) for 
a e V f u l f i l conditions of Proposition 1. 

How, we examine the case of dim M = 0 , which was not 
' P 

considered above. 
Ir 

P r o p o s i t i o n 2. Let p e M c E . I f 
dim M = 0 then the point p is isolated in M.-p v r _ 

P r o o f . Let us set |q| := V (x 1 ) 2 + . . . + ( x k ) 2 f o r 
/ 1 lr, lr 

any q = (x ' x ) e E . 
Let us assume the point p is not isolated. Then there 

exists a sequence (p^) of points of M di f ferent from p p -p 
and convergent to p. For the sequence hn := . _ . , n e / 

k-1 n 
of points of S we can find a subsequence h_ covergent 

i k-1 to a point h e S . One can easy see that for any f e £ 

f (p n ) - r ip ) 

¿m • f ' » ( p ) -
1 X 

I t easy to see that l e f t side of this equality defines mapp-
ing v s i |M —E such that v(f|M) = f i j-^p)« Prom Lemma 1 
h e M so dim U ^ 0, which ends of the proof. 

P P 
Theorem 1 results easily from Propositions 1 and 2. In 

that Theorem an non-empty discrete subset of En is called 
a O-dimensional C°° -surface in En. 

3. Colloraries 
We say, that d i f f e rent ia l space (K,L) can be d i f f e o -

morphically embeded into the d i f f e rent ia l space (L,H) i f the-
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re exists a subset L'c L such that (L',H^ ) and (N,D) 
are diffeomorphic to each other. In the sequel we shall con-
sider only d i f f e rent ia l spaces (N,D) such that any point 
p € N has a neighbourhood V such that (V,Dy) can be 
embeded into ( E n ^ , C / %) for some n ( p ) e ^ . From The-nip J 
orem 1 we obtain: 

C o l l o r a r y 1. For a point p of the d i f f e ren-
t i a l space (H,D) there exist a set V e r^ and an n-dimen-
sional C°°-manifold (§,C°° (N ) ) , n := dim N , such that 
p e V c H and Dy = C°° (N)y. The inequality 

dim M„ <s dim M„ 
<3 P 

is f u l f i l e d for any point q e V. 
C o r o l l a r y 2. I f (N,D) i s a d i f f e rent ia l spa-

ce such that (U,rD ) is separable and i f there exists n e / 
such that fo r any p e N dim(N,D)p « n, then'topological d i -
mension of does not exceed n. 

P r o o f . This results easily from Corollary 1. 
Di f ferent ia l spaces which have tangent spaces of constant 

dimension are the most interesting. For a d i f f e rent ia l space 
(N,D) and i = 0 ,1 , . . . we shall denote by N1 union of a l l 
sets V 6 r such that dim(N,D) * i f o r any q e V. I f 
i 4 N is not empty then (N ,D ^) is a d i f f e rent ia l subspace 

N i i 
of (N,D) and for any q e N dim(N ,D = i . From Corolla-
ry 1 we obtain 

C o r o l l a r y 3. For any d i f f e rent ia l space (N,D) 
°° i 

the set U N is open and dense in the topological space 
i=0 

P r o o f . For any subset A c N we denote i t s closure 
in (Kjtp) by A. '"e shall use mathematical induction. Let 
p 6 N. I t is easy to see, that dim(N,D)p > 0. I f dim(N,D)p = 
= 0 then the point p is isolated in ( K » ^ ) and p e H°, 

eo 

see Corollary 1, so p e U N1. Suppose, that fo r any q e N 
i=0 
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i 
such that 0 < dim(N,D) < m-1 we have q e U K . For any 

q i=0 
point p c H such that dim(N,D) = m there exists an open 
nsighbourhood V of p such that dim(N,D)g < m f o r any 
point a e V (Corol lary 1 ) . Let U « r^ be a s e t conta ining 
the point p. I f f o r any q e U n V dim(N,D)q = m, then 

_ "3 7 
p e N and p e U N . I f i t i s not t rue then there e x i s t s 

i=0 

a point q « U H , such that dim(N fD)g s£ m-1. From the i n -

duct ion hypothes i s , the point q e 
U so U n U N 0. 

i=0 i=0 
This is true for any set U e t D containing the point p, 

~oo 7 
so we have p « U K . The c o r o l l a r y i s proved. 

i=0 
By v i r t u e of Corol lary 1 any point p of d i f f e r e n t i a l 

space (N,D) such that dim(N,D)^ = k has a neighbourhood V 
such that (V,Dy) can be d i f f eomprphica l ly embedded in 
Hence i t i s i n t e r e s t i n g to oonsider the d i f f e r e n t i a l subspace 
(M.Ej^) of ( B k , t ) f o r which there e x i s t s a point p e M 
such that dim(M,C)p = k . 

C o r o l l a r y 4 . Let p e M c E k . d i m i M , ^ ) = k 
i f and only i f f o r any f e i ^ equal to 0 on M a ^ f f p j . ® 0 
f o r i = 1 , 2 , . . . , m . 

P r o o f . We ge t t h i s imoediately from Lemma 2 , a s 
e^ « Mp, i » 1 , . . . , k . 

C o r o l l a r y 5 . Let N II c B^. Then 
dimiMjCyjJp » k f o r any p M i f and only i f f o r any f e Ck 

equal to 0 on M a l l p a r t i a l d e r i v a t i v e s of any order are 
equal to 0 on U. 

P r o o f . This c o r o l l a r y fo l l ows e a s i l y , by induct ion , 
from Corol lary 4 . 

By v i r t u e of above C o r o l l a r y , any subset M c E k such 
that ( H f C ^ ) has the constant dimension k, has the same 
property , a s aily open s e t of Bkt the va lue 'of the p a r t i a l de-
r i v a t i v e s of a func t ion f e £ k a t a point p c M are uni-
quely determined by the va lues of the func t ion on M. 
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For a d i f f e r e n t i a l space (N,D) a l i n e a r mapping X 
such tha t X(ocy8) = X(<x)fi+cX[fi) i s ca l led a vector f i e l d on 
(N,DJ [ l ] . I t easy to see tha t f o r any point p e N the f u n -
c t ion Xp : D — E defined by Xp(oc) := (X«)(p) f o r a e i 
i s a vec tor belonging to (N,D)p. 

C o r o l l a r y 6.: Let (N,D) be a d i f f e r e n t i a l spa-
« • J 

cp. A point p belongs to U H i f and only i f there 
i=0 

ex i s t vector f i e l d s X. , , . . . ,X S on (NfD) such tha t 
| x 1 p f . . . , X s p | i s the bas is of (N,D)p. 

P r o o f . I f X 1 f . . . , X k are such vector f i e l d s on 
(N,D) tha t X 1 p , . . . f X k p i s a bas is of (N,D)p then there 
e x i s t s a se t V ' t r D such tha t p « V-' and X 1 q , . . . , X k q are 
l ineary independent f o r any q e V' ( c f . [ l ] J . As there e x i s t s 
an open neighbourhood V" of p such tha t f o r any q t V" 
dio(N,D)q * k (Corollary 1) , f o r any q e V'n V" dim(HtD)q = k 
and p e Nk c U N1. 

i=0 
How we s h a l l prove the other impl ica t ion . For the point 

p € N° the proof i s t r i v i a l . Let p t Hk , k > 0 and U be 
such an open neighbourhood of the point p tha t (U,Dy) i s 
diffeomorphic to (V,£k y) f o r c e r t a i n V c Ek and 
dim(V t£k V)q « k f o r any q t V. I t i s s u f f i c i e n t to prove 
Corollary f o r (V,£ky). 

For q « V and « « ¿ k y there e x i s t s an open neigh-
bourhood Vq of q and a func t ion f 0 q t I such tha t 
alv = f 17 . By v i r tue of Corollary 5 the func t ions i q «tQ1 q 
X i 5 ekV~~£kV» 1 " 1 » 2 » * " » k » defined f o r <** c

w * *>J 

( ^ « J i q ) - a i ( f 0 j (q) f o r q « V 
are wel l def ined . I t can be eas i ly v e r i f i e d tha t they are 
vector f i e l d s on ( V f t k y ) and X 1 q , . . . , X k q i s the bas is 
of (V f t k V ) q f o r any q * V. 
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4. Examples " k k E x a m p l e 1. Let M c E be dense in E . Then 
by Corollary 1 the dimension of (Mi^ki^p i s k an7 
p e M. 

E x a m p l e 2. The graph of the function f j E — E 
2 

which is x for x > 0 and 0 for x 0 ha® the tangent 
space of dimension 1 at all points except for the point (0,0), 
where it has tangent space of dimension 2. It results easily 
from Corollary 1. 

E x a m p l e 3. The graph of the function g : E — E 1 „ of class C which is not of class C at any point is a diffe-
rential subspace of 

of constant dimension 2. It re-
sults easily from Corollary 1. Jr 

E x a m p l e . 4. Let M c E . If topological dimen-
sion of any non empty open subset of M is k then 
dimiMjEj^Jp = k for any p e M. This follows easily from 
Corollary 2. 
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