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1. Preliminares

Ilet M # ¢ be a set and C an arbitrary set of real
functions defined on M, We denote by Tc the weakest topo-
logy on M such that all functions belonging to C are con-
tinuous. For any set A contained in M we denote by ClA
the set of functions of the form o« |A where o ¢ C. We de~
note by CA the set of all real functions on A such that
for any point p of A there exists in fc an open neigh-~
bourhood U of p and a function o €C, such that Ala nUa
=o|A NU, It is easy to verify that, for any set A C M, we

have rCA = Toya = rCIA. In particular rcM = T, We denote
by 8cC the set of all real functions of the form “’(°‘1""’°‘n)’

where we en, Xqyeesyo, € C and n belongs to the set of
all positive integers S and 6n is the set of all real C” -
-functions on n-dimensional Euclldean space EP. An ordered
pair (M,C) such that Cy = C = scC is said to be a diffe-
rential space., The set C 1is called the differential struc~
ture of this differential space [1], [2], [6].

For a set C of real functions defined on M, the set
(scC)M is the smallest differential structure on M includ-
ing the set C. (M,(scC)y) 1is called the differential space

generated by C.
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2 A.Kowalczyk, J.Kubarski

If (M,C) is a differential space and A C i, then
(A,CA) is also & differential space called the differential
subspace of (M,C) [1]. It is easy to see that Cy = (clal,.
By a vector tangert to a differential space (M,C) at
a point p of M we mean any linear mapping v : C —E which
fulfils Leitniz's condition at the point p:

V(x B) = v(«}B{p) + a(p) v(8) for all o , BeC.

We shall denote by (M,C) or M_ a linear space of all vec-
tors tangent to (M,C) at a point p e M.

Any real C” -manifold M will be identified with the
differential space (M,C* (M)), where C* (M) is the set of
all smooth real functions on M, In particular, we denote
c” (8%) by ¢, end we call the pair (En,zn) the n-dimen-
sional tuclidean differential space.

It is easy to verify that for @ # Mc E, ned, .
%ﬂn = (sc{rllM; i= 1,...,n})M where xl(x1,x2,...,xn)) = x*
for any (x ,x2,...,xn) ¢ kI, The topological space (M,rc )

L

is a subspace of the topological space (En,r8 ).
n

In the sequel the symbol Ty will be used instead of

QnM. Using a partition of unity it may be proved that anM

is the set of all functions of the form « [M, where « is
a C* -function on an open set U in E® including M.

‘“he basic result of this paper consists in the following
theorem,

Theorenmn 1o For any pe Mc E®  the integer
m = dim(M,enM) is the smallest one such that there exists
in Ty &n open neighbourhood U of the point p which is
included in an m-dimensional C* -surface of &™.

2. The proof of basic result
¥rom now on we fix the integer k > 0, and the non empty
set Mc Ek. For brevity we write € := €k, C =€y,

M, t= (4,0) ), Eg = (25,¢

k)po
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k

nd 3 ~ . T _.:k . oK 1 4 ~;
The mappings L1 : Mp Lp and L2 A 5 cefined by

(1) (L1(v)}(f) t= v(£[)  for v e iy and Tref ,

<
»
| <

(2) L, t¥) := (V(N1),...,V(rk)) for
2

ere respectively a Linear monomorphism and a linear isomorphism
of suitable linear spaces {c.f. [(1]).

Let aif(p) cenote i-th partial derivative of the fun-
ction fet at the point pe E°, i = 1,.e.,ke If we denote
f|h(p) ;= bt a;f(p) where h = (h1,...,hk) ¢ EX, we have

el o o=y iy =, .k
(3] v(r) = o, f(pivlr) = f|L2(V)(p) for Ve b,
(the sumation convention is used here), Let L := L20 L1 :Mﬁ'Ek
and
(4) u, - {2(¥) e EX; ¥ e Mp} .

It is easy to see that the mapping L : Mp—*-ﬁp makes these
linear spaces isomorphic to each other., We havs

L{v) = (v(r' 1), (r0))  for Ve,

v(£]M) = f| 1(y) for veMand f e .

Lemma 1. For pe M, he Ek, ke N the follow-
ing properties are equivalent:

(a) he M,

(b) there exists a mapping ¥ : £|M—E such that

V(flM):fIh(p) for fe& .

Proof. The implication (a)=>{(b) follows immedia-
tely from (4) and (5) by putting ¥ := v|(E|M), v e M, and
h = L(v).
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In order to prove the implication (b)=>(a) 1let us suppo-
se that h fulfils (k) and consider the set of functions
£|M., From (b) it follows that ¥ is the linear mapping of
£l into E fulfilling the Leibniz s condition at the point p:

Flap) = Fla)plp) +a(p)F(p) for oy BeE | M.

By using this condition and linearity of ¥V one can easy ve-
rify that ¥{a) = 0 for each function «eé|M equal to O
at an open neighbourhood of the point p. As a consequence of
this the mapping v : C—E defined

vix) := F(£|M) for x €C,

where feé is a function such that f|U = «|U for some set
Ue T including the point p, is well defined. The function
v is linear and fulfils Leibniz’s condition so it belongs to
hp. For i = 1,...,k we have v(rtu) -.FT (p) = F(riim) =nt .
where h = (h1 n?, ...,hk) so from (5) we have: L{v) =
= (h1,h2,...,hk) = h, The Lemma is proved.

Lemma 2. For h e Ek and p e M the following
conditions are equivalent:

() heX

(v) f1h(pg =0 forany fef equal to O on I,

Proof. It is easy to see that the conditions (b)
in Lemmas 1 and 2 are equivalent to sach other.

For any fet and pe EX we denote grad f£(p) :=
i= (3,f(p),e.e,yd, flpll.

Lemma 3. Let p = (0,0,e00,0) € M c EX and

= (0,0y00440,1,0y444.,0) (1 in the i-th position), 1 <1i < k.
lf m:=dim M , 1< m < k-1 and €qreees8p € Mp then there
exist funqtions fm+1,...,fke & equal to 0 on M and such
that o,£p) =63, where 6§ =1 for 1i=j and 6) =
for f # j. )

Proof. let the assumptions of the Lemma be. satis-
tied., then
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(6) ﬁp = Lin(eq,e.esep),
where Lin(e1,...,em) is the linear subspace of Ek spanned
By ©q,eees0p. We put K := {h e EX; h = grad £(p), Tet
and f =0 on M}. K 1is a linear subspace of Ek and
eil.K with respect to the canonical scalar product in Ek
so K C Lin(e; 4,.s.4e,) (see Lemma 2). We shall prove more,
namely that K = Lin(em+1,...,ek). If the above equality is
not satisfied, then there exists a non-zero vector
he Lin(em+1,...,ek), such that KL h, Hence flg(p) =
=grad f(p)eh =0 for £ =0 on M, and he Mp (Lem~-
ma 2), but this contradicts (6). From above equality we ob-
tain the existence of functions fm+1""’fk € ek equal to
zero on M, such that grad fj(p) = ej or equivalently
aifj(p) = 6%. The Lemma is proved.

Proposition 1. Iet pe Mc EX, If O<nm :=
t= dim Mp:s k¥ then there exist non empty sets: U open in
r, and V open in T and regular 1-1 C* -mapping
k

=

¢: V—E" such that

pe UCc {¢(u) € Ek; u e V} .

Proof, If m = k, the proposition evidently holds.
We suppose that 1 < m < k, We can assume, without loss of
generality, that p = (0,...,0) ¢ g¥
We denote gq = (x1,...,xk) = (u,w) where u = (x',,..,x0)
and w = (xm+1,...,xk). Let fj, j=m+1,...,k, are fun-
ctions as in Lemma 3., We define a mapping F : g¥—— gk-0 by

and ﬁ =Lin(e1 ,uon,em)c

FPlg) := fm+1(q),...,fk(q)) for g e EX,

This mapping has the following properties:

(a) Flg) = Fluw) =0 for g = {u,w) ¢ M,
(b) P is C~ -mapping,

(c) P is regular at the point p = (Q,%).

"
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From the inverse mapping theorem it follows that thsre exists:
(d) a set U'e rEk such that pe U,

(e) aset Vet  such that UeV,
E .
(f) a C* -mapping v : v—z25"® guch that for any u eV

we have F(u,v(u)) = 0,
(g) if F(q) =0 and g = (u,w) e U' then u eV and
w =vy(u),
It is evident that U := U'N M, V and ¢ in) := (u,p(u)) for

ueV fulfil conditions of Propcsition 1.
Now, we examine the case of dim Mp = 0, which was not

considered above,
Proposition 2, ILet pe McES, If
dim Mp = 0 then the point p 1is isolated in M.

Proof ., Let us set |q] :=IV(X1)2+ veo + (2502 for
any q = (x',...,x5) ¢ BX,

Let us assume the point p is not isolated, Then there
exists a sequence (pi) of points of M different from p

b,-P

and convergent to p. For the sequence hn := TE—:ST , nef
n

of points of Sk'1 we can find a subsequence hn covergent
i

to a point h e Sk'1. One can easy see that for any fet

£(p, ) - £(p)
lim = £y, (pl.

It easy to see that left sgide of this equality defines mapp-
ing ¥ : €|M-—E such that (f|if) = £, (p). From Lemma 1
he M so dim Mp # 0, which ends of the proof.

Theorem 1 results easily from Propositions 1 and 2. In
that Theorem an non-empty discrete subset of E? is called
a U-dimensional C* -surface in z".

3. Colloraries
We say, that differential space (X,I} can be diffeo-
morphically embeded into the cifferertizl space {(L,H} if the-
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‘re exists a subset L'C L such that (L,H) eand (N,D)
are diffeomorphic to each other, In the sequel we shall con-
sider only differential spaces (N,D) such that any point
p€ N has a neighbourhood V such that (V,Dv) can be
embeded into (En(p),en(p)) for some naf{pleSNS . From The-
-orem 1 we obtain:

Collorary 1e For a point p of the differen-
tial space (N,D) there exist a set V e TH and an n-dimen-
sional C* -manifold (¥,c*” (¥)), n := dim N, such that
pe VcX and Dy = C” (ﬁ)v. The inequality

dim Mq = dim Mp
is fulfiled for any point q e V.

Corollary 2, If (N,D) is a differential spa-
ce such that (N,rD) is separable and if there exists neW
such that for any pe N dim(N,D)p < n, then ’'topological di-
mension of (N,7;) does not exceed n.

Proof., This results easily from Corollary 1.

Differential spaces which have tangent spaces of constant
dimension are the most interesting. For a differential space
(N,D) and i = 0,1,... we shall denote by N> union of all
sets Ve r such that dim(N,D) = i for any g e V. If
N is not empty then (Ni,DNi) is a differential subspace

of (N,D) and for any g e N©

ry 1 we obtain
Corollary 3, For any differential space (N,D)

the set U wni

i=0
(N,rD). ‘

Proof., For any subset A ¢ N we denote its closure
in (N,tD) by A. Ve shall use mathematical induction. let
pe N, It is easy to see, that dim(N,D)_ = 0, If dim(l\T,D)p =
= 0 then the point p is isoleied in (N,ry) and p e NO,

dim(Nl,DNi) = i, From Corolla-

is open and dense in the topological space

see Corollary 1, so pe U N, Suppose, that for any q ¢ N
i=0 '
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8 A.Kowalczyk, J.Kubarski

such that 0 < dim(N,D), < m~1 we have qe U N, For any
i=0

point p e N such that dim(N,D) = m there exists an open

n3ighbourhood V of p such thag dim(N,D)q < m for any

point a ¢ V (Corollary 1). Let U e ™ be a set containing

the point p. If forany qe UNYV dim(N,D)q = m, then

pe XN and pe U ¥, If it is not true then there exists

1=0
a point q e UN YV, such that dim(N,D)q < m~1. From the in~
duction hypothesis, the point qe¢ U F, so Un U N £g.
' 1=0 1=0

This is true for any set Ue D containing the poin; P

80 we have p e G Ni. The corollery is proved.
i=0

By virtue of aorollary 1 any point p of differential
space (N,D) such that dim(N,D)_ = k has a neighbourhood V
such that (V,Dy) can be diffeomprphically embedded in (Ek,ak).
Hence it is interesting to consider the differential subspace
(M,€y,) of (E,e. ) for which there exists a point p e M
such that dim(m,cfp = k, =

Corollary 4. Iet peMcES dnMeyl =k
if and only if for any f €&, equal to O on ¥ 3if(pg-= 0
for 1 = 1,2,e00,

Proof., We get this immediately from lemma 2, as
8y ¢ ﬁp, 1 = 1,000,ke

Corollary 5. Iet ¢ £ M¥c Ek. Then
dim(M,ekM)p =k forany p M if and only if for any f e &
equal to O on M all partial derivatives of any order are
equal to 0 on M.

Proof. This corollary follows easily, by induction,
from Corollary 4.

By virtue of above Corollary, any subset M ¢ Ek such
that (M,€,,) has the constant dimension k, has the same
propexrty, as afy open set of Bk: the valus 'of the partial de-~
rivatives of a function f ¢ €y at a point p e M are uni-
quely determined by the values of the funetion on M,
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A local property of the subspaces 9

For a differential space (N,D) a linear mapping X :D—1D
such that X{x8) = X{a)B+aX(8) 1is called a vector field on
(N,D) [1]. It easy to see that for any point p ¢ N the fun-
ction X_ : D—E defined by X («) := {X«)(p) for o €D
is a vector belonging to (N,D) . '

Corollary 6., et (N,D) be a differential spa-

ce. A point p belongs to U N' 1if and only if there
b 2

exist vector fields X,,...,X, on (N,D) such that
{x1p,...,x5p} is the basis of (N,D).

rroof., If X1,...,Xk are such vector fields on
(N,D) that x1p,...,xkp is a basis of (N,D)p then there
exists a set V' e ry such that pe V' and Xy ,ee0sXy, are
lineary independent for any q e V' (cf. [1]). As there exists
an open neighbourhood V' of p such that for any g e V”
dim(N,D)q &« k (Corollary 1), for any qe VA V" dim(N,D)qx=k
ke § w,

i=0

Now we shall prove the .other implication. For the point
pe N0 the proof is trivial, let pe N5, k>0 and U be
such an open neighbourhood of the point p that (U,DU) is
diffeomorphic to (V,E,y) for certain Vc B¥ and
dim(V,ekv) =k forany qe V. It is sufficient to prove
Corollery for (V,t,.y).

For qe¢ V and « ‘ékV there exists an open neigh-
bourhood V of q and a function £, el such that
qlvq = r&.q|vq. By virtue of Corollary 5 the functions
xi t by 1= _1,2,...,k, defined for aelkv, by

and pe N

(X4a)(q) = ai(fa’qf(q) for qeV
are well defined, It can be easily verified that they are

vector fields on (V,t,y) and x1q,...,xkq is the basis
of (V,Ekv)q for any q ¢ V,
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4., Examples

Example 1. Let M c E- be dense in Ek. Then
by Corollary 1 the dimension of (M,EkM)p is k for any
p ¢ M.

Example 2, The graph of the function f : E—E
which is x2 for x>0 and O for x< O has the tangent
space of dimension 1 at all points except for the point (0,0},
where it has tangent space of dimension 2. It results easily
from Corollary 1.

Example 3. The graph of the function g : E —E
of class C which is not of class C* at any point is a diffe-
rential subspace of (E2,£2) of constant dimension 2, It re-~
sults easily from Corollary 1.

Example«. 4, Let M c Ek. If topological dimen-
sion of any non empty open subset of M is k then
dim(M, €y ) p =k forany pe M This follows easily from
Corollary 2.

k
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